Автоматическое регулирование температуры теплоносителя
Системы автоматического регулирования
Выбираете энергоэффективные решения?
Обратите внимание на геотермальные тепловые насосы FORUMHOUSE
Геотермальный тепловой насос EU (старт/стоп)
Геотермальный тепловой насос IQ (псевдоинвертор)
Геотермальный тепловой насос IQ (инвертор)
Даже в достаточно «теплых» регионах нашей страны отопительный сезон составляет не менее семи месяцев, а где и все девять, и залог комфортного проживания в квартире или доме — эффективная система отопления. И в это понятие входит не только надежность оборудования и его достаточная мощность, но и экономичность, а этот параметр в большой степени зависит от управления отоплением. Сравнительно недавно не было альтернативы ручному управлению и регулированию, сегодня же активно применяются системы автоматического регулирования, что гораздо удобнее и выгоднее. В этой части курса Академии FORUMHOUSE при помощи специалиста компании REHAU, рассмотрим:
- Преимущества автоматического управления отопительными системами
- Функционал и компоновка автоматических систем управления
- Особенности систем управляющей автоматики
Преимущества автоматического управления отопительными системами
Современные отопительные системы преимущественно панельного, либо панельно-лучистого типа. Это радиаторы, комбинация теплого водяного пола с радиаторами или только теплый пол. Настроить и поддерживать желаемые параметры отопления можно вручную – с помощью встроенных насосно-смесительных узлов. Особенно, если напольный подогрев частичный. Ручная регулировка по собственным ощущениям температуры в помещениях и степени нагрева отопительных элементов обеспечивает нормальную работу системы. Но полностью раскрыть ее потенциал такой способ управления не способен. Необходимо учитывать и высокую тепловую инерционность теплого пола, из-за которой выход на заданный режим происходит медленнее, чем в радиаторных системах, что дополнительно снижает удобство ручной балансировки.
Тогда как автоматическая настройка и управление обладает рядом преимуществ.
Автоматические системы управления отоплением (охлаждением) обеспечивают точную настройку рабочих параметров с учетом потребностей владельцев и поддержание заданного режима в течение всего периода использования. Они позволяют полностью задействовать функционал оборудования, повысить уровень комфорта и значительно сократить затраты на отопление. По сравнению с ручной настройкой экономия составит до 20%.
Еще одним достоинством автоматики является защита напольных покрытий – система не допустит повышения температуры теплоносителя выше ограничения. Превышение рекомендованной температуры на поверхности пола может вызвать порчу напольного покрытия. Контролируя работу системы напольного обогрева можно не только создать комфортные условия, но и надолго сохранить отличное состояние отделочных материалов.
Функционал и компоновка автоматических систем управления
Автоматическая регулировка в контурах осуществляется посредством повышения или снижения интенсивности работы отопительного оборудования, что позволяет оптимизировать энергопотребление. Помимо повышения энергоэффективности подобные системы предоставляют повышенный комфорт для пользователей.
Базовая система компонуется всего несколькими элементами.
- Комнатный терморегулятор – контроль и поддержание температуры.
- Клеммная колодка – коммутация системы.
- Сервопривод – управление регулирующими клапанами.
Подключение к терморегулятору выносного датчика температуры позволяет контролировать температуру пола или строительной конструкции. Также выносной датчик температуры может использоваться в качестве замены встроенного датчика температуры воздуха.
Внутри большинства терморегуляторов установлен датчик температуры. При отклонении от заданного значения температуры, терморегулятор формирует сигнал на исполнительный механизм (сервопривод). Исходя из пожеланий, пользователь может выбрать терморегулятор не только с базовыми функциями (управление обогревом), но и с расширенными: управление также и охлаждением, переключение режимов работы по таймеру. По желанию в разных помещениях могут быть установлены разные модификации терморегуляторов. При необходимости систему можно дополнительно упростить – соединить терморегуляторы с сервоприводами (до пяти) напрямую, без использования клеммной колодки.
Базовая система оптимальна для применения в квартирах или частных домах. Она эффективно контролирует отопление (охлаждение) и адаптирует режим под запросы домочадцев.
Если же речь идет не только об отоплении, но и о другом климатическом оборудовании (кондиционирование, вентиляция, осушение/увлажнение), для комплексного контроля выпускается специализированная система автоматики.
Элементы системы климатического контроля в помещении взаимодействуют по тому же принципу, что и в системе автоматического управления отоплением (охлаждением). С той разницей, что вычислительные процессы, позволяющие оптимизировать работу подключенного оборудования, происходят не в терморегуляторе, а в базовой станции. А компоновка системы помимо стандартного оборудования включает также модули расширения.
Для большинства частных домов и коттеджей достаточно системы с одной базовой станцией, которая рассчитана на управление температурно-влажностным режимом в восьми помещениях. Но при необходимости управления климатом в большем количестве комнат можно объединить до пяти базовых станций.
Особенности систем управляющей автоматики
Наряду с проводными системами управляющей автоматики, элементы которых соединяются кабелем, также существуют системы с беспроводными соединениями. Их установка не требует штрабления стен, что особенно актуально, если монтаж выполняется в доме с уже готовой чистовой отделкой. Независимо от вида систем, все оборудование характеризуется привлекательным дизайном, а интерфейс терморегуляторов интуитивно понятен.
Удаленный доступ осуществляется посредством подключения системы к сети «Интернет», с использованием браузеров или мобильного приложения, что значительно расширяет возможности пользователей. Контролировать температурный режим или климат в помещении в целом, можно из любой точки мира и в любое время. Мониторинг в режиме реального времени позволяет поддерживать оптимальные параметры инженерных систем в отсутствие владельцев и подготавливать дом к их возвращению.
Системы автоматического управления отоплением и охлаждением удобны, практичны и экономичны. Круглый год в доме будет поддерживаться оптимальный микроклимат, не требующий постоянной ручной регулировки. С управляющей автоматикой даже резкое похолодание в отсутствии хозяев не влечет последствий в виде выстывшего дома или повреждений систем отопления.
Что такое САРТ?
Что такое САРТ? Зачем она нужна? Какой от нее толк и эффект? Что необходимо сделать для ее установки? Какие существуют варианты реализации этой энергосберегающей технологии?
Итак, САРТ, что же это? Это система автоматического регулирования подачи теплоносителя в контур теплоснабжения зданий и сооружений. Данная система состоит из следующих элементов, я перечислю самые основные, те, которые принимают непосредственное участие в работе системы, это:
- Контроллер;
- Запорно-Регулирующий клапан с приводом;
- Датчики температуры внутри контура объекта;
- Датчик температуры наружного воздуха;
- Циркуляционный насос;
- Реле давления, отвечающее за защиту двигателя от сухого хода.
Принцип действия САРТ следующий: Контроллер, настроенный по заданным контрольным точкам температурного графика в зависимости от температуры наружного воздуха отдает команду запорно-регулирующему устройству на ограничение подачи теплоносителя в систему теплоснабжения здания. Ориентируясь на показания датчиков температуры внутри контура, теплоноситель гоняется циркуляционным насосом до его критического остывания, затем контролер отдаёт команду на открытие клапана и система наполняется теплофикатом из магистрали, повышая свою температуру до заданной верхней отметки в контроллере. Таким образом периодически ограничивается потребление теплоносителя. За счет этого достигается экономия. Размер этой экономии зависит от характера здания, в случае с многоквартирными домами ее % не так велик и основной момент экономии приходится на теплые дни отопительного периода. Если же это объекты непостоянного пребывания людей, то экономия становится весомей, ведь температуру внутри помещения можно снизить до максимально допустимой в те моменты, когда нет людей в помещении, а это нерабочее время, выходные и праздничные дни.
В некоторых случаях данная система не приносит экономии и у нас есть такой опыт. Если система здания не сбалансирована и ее состояние уже далеко от нового, то должного эффекта не добиться. И если теплоснабжающая компания дает разрешение на установку только при настройке контроллера не по температуре наружного воздуха по температуре обратного трубопровода, то привязка идет к параметрам подаваемого теплоносителя, а он не всегда соответствует договорным, а также регулируется в ЦТП.
САРТ интересен не только своей экономией, но и тем что выстраивает комфортную температуру внутри объекта внедрения. Таким образом отпадает необходимость снижать температуру в квартирах путем открывания окон, что на верхних этажах зданий зимой приводит к образованию сосулек и увеличивает вероятность схода снега с крыш. Последствия этого на всем хорошо знакомы.
В среднем % экономии потребления тепловой энергии от внедрения САРТ достигает 30. Соответственно на МКД он ниже 5-15%, на объектах непостоянного пребывания людей достигает до 50%.
Очень важно понимать следующее, что экономия будет достигаться только тогда, когда работает УКУТ и сама система автоматического регулирования. Сами по себе без присмотра они работать без перебоев будут маловероятно, поэтому их в обязательном порядке необходимо обслуживать, то есть следить за их работоспособностью. Настоятельно рекомендуем оснащать и УКУТ и САРТ средствами связь для непрерывного контроля их работоспособности. Только тогда экономия возможна. Существует множество примеров, когда вышедший из строя САРТ превращается в груду железа и выброшенные деньги на ветер. Оборудование должно работать!
Итак, мы познакомились с принципом работы и самой сутью системы, теперь разберем какие действия необходимо выполнить для установки САРТ.
- Прежде всего нужно запросить технические условия в теплоснабжающей организации, с которой у Вас заключен договор на теплоснабжение.
- Получив ТУ необходимо разработать проект и отдать его на согласование в теплоснабжающую компанию.
- Закупить оборудование и материалы.
- Выполнить монтаж на системе теплоснабжения здания, согласно проекта.
- Произвести электромонтаж и настройку контроллера.
- Осуществить проверку работы САРТ и выполнить пуско-наладку.
Существуют следующие варианты
- Прямой договор
- Энергосервисный контракт
Погодозависимая автоматика. Стоит ли за нее переплачивать
Исполнительные устройства
Для того чтобы организовать работу нескольких отопительных контуров с различными, не всегда постоянными температурами, требуются исполнительные устройства. Самыми распространенными являются трех — и четырехходовые смесительные краны (смесители). Принцип их работы заключается в регулировании температуры теплоносителя в отдельном отопительном контуре путем смешивания воды из котла с водой из обратной линии. Таким образом, температура теплоносителя в подающей линии контура может меняться от минимальной, например равной комнатной, до максимальной, равной температуре котловой воды, но не выше нее. Поворот крана можно осуществлять вручную (но тогда ни о какой автоматизации управления говорить не приходится!) или с помощью специального двигателя — сервопривода.
Обычно несколько параметров сервоприводов указываются в техническом паспорте. Это напряжение сети питания, максимальный крутящий момент, создаваемый на валу, и быстродействие привода. Последний показатель отражает время перехода сервопривода из одного крайнего положения в другое. Это, как правило, от 60 до 300 секунд. Стоит иметь в виду, что меньшее время реакции сервопривода вовсе не гарантирует быстрого изменения температуры в отопительном контуре. Напомним, что все тепловые процессы очень инерционны. Именно по этой причине обычно не применяются приводы с быстродействием менее 60 секунд. Примерно такое количество времени требуется, чтобы на изменения в температуре теплоносителя успел отреагировать датчик, установленный на подающей трубе, температура которой не может измениться мгновенно. В сервисном меню многих панелей управления имеется установочный параметр, учитывающий быстродействие сервопривода. К примеру, в панелях управления серии Logamatic 4000 от BUDERUS стоимостью € 1270 в базовой комплектации задается непосредственно время открытия трехходового смесительного вентиля в секундах. Этот показатель характеризует реакцию конкретного сервопривода и отражен в техпаспорте.
Смесительные краны и сервоприводы к ним выпускаются целым рядом производителей, например ROCA, Honeywell, WOLF. Корпус крана может изготавливаться как из чугуна, так и из латуни. И тот и другой материал хорошо подходят для работы в системах отопления. Прекрасно себя зарекомендовали смесители шведской компании ESBE. Трехходовой смесительный кран диаметром 32 мм, изготовленный этой фирмой, можно приобрести за € 60-70, сервопривод к нему обойдется уже в € 150-170.
Типы управляющих устройств
Для обеспечения контроля за температурным режимом теплогенератора или потребителя используется один и тот же прибор, оснащенный термодатчиком.
Эти устройства делятся на три категории, которые могут работать как поодиночке, так и в связке:
- Термостат. Это устройство является самым простым регулирующим устройством в системе отопления. Будучи расположенным в здании, он отслеживает изменения температуры воздуха. Когда необходимая температура достигнута, термостат подает сигнал на котел или кран радиатора, вследствие чего происходит остановка нагрева теплоносителя или блокируется подача жидкости в радиатор. Самостоятельная установка термостата не отличается особой сложностью: достаточно посмотреть на фото, где показан схема его подключения и работы, чтобы убедиться в простоте такой конструкции.
- Регулятор температуры теплоносителя. Такой прибор может работать самостоятельно или вместе с термостатом. Конструкция работает за счет термодатчиков, которые установлены внутри отопительного контура. Они постоянно отслеживают изменения температуры в системе и передают эти данные управляющему модулю, который управляет смесительным клапаном контура. При необходимости повышения температуры регулятор может при помощи клапана выполнить эту задачу.
- Погодозависимая автоматика систем отопления. Этот тип устройств можно отнести к категории самых сложных, поскольку такой системе приходится работать не только с контуром отопления, но и с окружающей средой, за счет чего обеспечивается наиболее точный и рациональный контроль температуры.
В базовую конструкцию погодозависимой автоматики входит наружный термометр, тепловой регулятор контура и термостат, расположенный в помещении. Несмотря на высокую стоимость, такая система считается наиболее востребованной, поскольку она способна обеспечить максимальный комфорт, который только можно «выжать» из отопления. Погодозависимая автоматика систем отопления использует сложные программные комплексы, которые и позволяют обеспечить максимальную эффективность и экономичность.
Управление погодозависимой автоматикой можно осуществлять как с ее собственного пульта, так и дистанционно, установив необходимое программное обеспечение на смартфон или планшет (детальнее: «
Как выбрать дистанционное управление отоплением – характеристики, возможности
«). В таком случае регулировать температуру в доме можно, находясь на удалении от него.
Автоматика для котлов отопления стоит дорого, но сразу же после установки эти устройства начнут экономить топливо, что скажется на экономическом положении через некоторое время. К тому же, именно автоматическая система управления температурой позволяет обеспечить максимальный комфорт в доме.
Система погодного климатического регулирования многоквартирных многоэтажных домов ЖКХ
Звоните:8 (977) 262-36-80
Автоматизация ЖКХ является актуальной задачей при экономии тепловой энергии для Управляющих компаний в сфере ЖКХ. Система погодного регулирования отопления оправдывает себя только в случае, если в доме уже установлен теплосчетчик (узел учета тепловой энергии)
«Московская объединенная энергетическая компания» (МОЭК) никогда не соблюдает температурный график (сами же его утверждают и не соблюдают) и поэтому завышение температуры теплоносителя наблюдаются повсеместно. Их цель взять как можно больше денег с потребителя, причем любой ценой, поэтому при температуре -5Сº МОЭК дает температуру, какую должны давать при температуре -15Сº и т.д.
Надоело переплачивать? Есть выход!
Система погодного регулирования отопления позволяет экономить до 35% расхода тепловой энергии. Если учесть, что многоквартирный дом (управляющая компания, ЖСК, ТСЖ) платят за отопление в отопительный сезон около 1 миллиона рублей в месяц, то экономию жильцы почувствуют уже через месяц!
Звоните по телефону в Москве: 8 (977) 262-36-80 и за 10 минут Вы узнаете больше,чем за 3 часа поиска в интернете
Как это работает?
Датчик наружного воздуха (выведенный на теневую сторону улицы) измеряет уличную температуру. Два датчика на подающем и обратном трубопроводе измеряют температуру теплосети. Логический программируемый контроллер вычисляет необходимую дельту и управляя клапаном (КЗР) регулирует скорость потока теплоносителя.
С целью защиты от полного перекрывания в клапане предусмотрена защита. Для предотвращения застоя стояков (попадания воздуха) насос внутренней циркуляции циркулирует теплоноситель в системе, через обратный клапан. Узел погодного регулирования также оборудован автоматическим воздухоотводчиком.
Если теплосеть не имеет необходимого перепада (что бывает крайне редко), то проблема легко устраняется установкой автоматического балансировочного клапана.
Система имеет полнопроходной байпас и на 100% гарантирует отсутствие перебоев с теплоснабжением в зимнее время.
В случае незапланированной остановки насоса и других аварийных ситуаций, влияющих на автоматическое погодное регулирование отопления, система отправляет SMS через GSM-модуль на мобильный телефон.
Нужна помощь в расчетесистемы погодного регулирования?
Звоните: 8 (977) 262-36-80
Сколько стоит система погодного регулирования?
Цена системы погодного регулирования в большей степени зависит от применяемого оборудования (зарубежное или отечественное). Все плюсы и минусы применения зарубежного или отечественного оборудования можно узнать у специалистов «ВНТ». При запросе цены необходимо выслать распечатку за отопление (месячную, что сдаёте в МОЭК) и указать диаметр труб отопления.
В качестве примера, приведем несколько вариантов стоимости работ по установке погодного регулятора на систему отопления на базе импортного оборудования для многоквартирных домов (300 квартир и более). Цены на начало 2016 г.
- Насос циркуляционный — 40000 рублей
- Клапан регулирующий с электроприводом — 60000 рублей
- Шкаф управления двумя насосами в сборе — 85000 рублей
- Железо (трубы, муфты, фланцы, краны, клапаны, болты, гайки, фильтр, и др.) — 85000 рублей
Итого: 270000 рублей — оборудование Стоимость монтажных и пусконаладочных работ: 290000 рублей
ИТОГО ПОД КЛЮЧ: 560000 рублей
Коммерческое предложение на установку погодного регулятора на систему отопления частного дома не более 10 квартир. Цены на начало 2016 г.
Данный вариант системы погодного регулирования является полностью автоматический и регулирует тепло в зависимости от температуры наружного воздуха. Она актуальна в небольших жилых домах, где не более 10 квартир.
- Насос циркуляционный в пределах — 10000 рублей
- Клапан с приводом в пределах — 60000 рублей (может меньше со скидкой)
- Электрический шкаф в сборе с термопреобразователями и монтажным набором — 40000 рублей
- Железо (трубы, муфты, фланцы, краны, клапан, болты, гайки, фильтр, и др.) — 30000 рублей
Итого: 140000 рублей — оборудование Стоимость монтажных и пусконаладочных работ: 160000 рублей.
ИТОГО ПОД КЛЮЧ: 300000 рублей
Экономия от применения автоматической системы погодного регулирования составит около 50%!
В данном варианте системы применяется ручное регулирование с помощью балансировочного клапана.
Итого: 50000 рублей — оборудование Стоимость монтажных и пусконаладочных работ: 80000 рублей.
ИТОГО ПОД КЛЮЧ: 130000 рублей
* Цены обоих вариантов указаны при оплате наличными. При оплате по безналичному рачету, стоимость будет на 20% выше.
Мы поможем Вам сэкономитьЗвоните: 8 (977) 262-36-80
Характеристики автоматических систем управления отопительной системой
На данный момент на рынке представлена широкая номенклатура отопительной автоматики. Несмотря на отличия в конструкции, функционале и параметрах, ко всей автоматике предъявляются одни и те же требования, выполнение которых является обязательным.
Первым и самым важным требованием является надежная и эффективная обратная связь, которая достигается за счет наличия высокочувствительных термодатчиков. При работе автоматики минимальные перепады температуры все же будут появляться, и задача датчиков – не допустить заметного перепада.
Кроме того, важным параметром при выборе автоматики для отопления является понятный и приятный интерфейс, который позволит осуществлять регулировку без каких-либо усилий и знаний (подробнее: «
Регулировка системы отопления — подробности из практики
«). За такую простоту придется заплатить, поскольку даже самая простая управляющая панель скрывает под собой сложный контроллер для системы отопления. Надежность этих устройств очень высока, но и стоимость соответствует высокому качеству.
Все устройства должны быть безопасными и надежными – это обязательное условие. Монтаж таких систем обычно выполняется квалифицированными специалистами, но есть и такие модели, которые можно установить самостоятельно.
Погодозависимое регулирование отопления
На первый взгляд все логично, но у меня возник вопрос о целесообразности именно постоянной корректировки температуры теплоносителя в системе отопления. Бытует мнение, что достаточно разовой подстройки системы отопления в течение какого-либо периода времени в случае резкого изменения температуры наружного воздуха.
В этом случае, регулировку можно производить вручную с использованием различных систем дистанционного управления, при этом избегая излишних «наворотов» в инженерных системах и тем самым упрощая их эксплуатацию. Для того чтобы в этом разобраться, давайте рассмотрим вторую функцию, для которой нужно погодозависимое регулирование отопления – экономию энергетических ресурсов.
Уверен, что не надо быть академиком, чтобы ответить на вопрос, какой вид регулирования подачи теплоносителя будет самым энергоэффективным. Естественно, что автоматический. Но сразу возникает вопрос, а на сколько уменьшаются затраты на выработку тепловой энергии если у вас применяется погодозависимое регулирование отопления, и насколько затраты на него целесообразны.
Зачем устанавливать автоматизированный узел управления отоплением
Автоматизированный узел управления отоплением поможет вам решить две задачи:
- обеспечить оптимальную температуру внутри здания и
- сократить затраты на отопление.
В нашем обзоре узлов управления системой отопления вы узнаете:
Автоматизированный узел управления отоплением
Как это работает
Принцип действия узла управления системой отопления очень простой:
Когда температура снаружи понижается, например до -20 °С узел управления отоплением подает больше тепла в помещения, поддерживая, тем самым, температуру внутри помещений на необходимом уровне, например +20 °С.
Когда температура снаружи повышается, например до +5 °С, узел погодного регулирования, как его еще называют, подает меньше тепла в помещения.
Тем самым, потребления тепла сокращается, а температура в помещениях остается на необходимом нам уровне, например, +20 °С и не возрастает до +28 °С, как это часто бывает во время резкого потепления.
Температура не возрастает до +28 °С
А если по научному, то узел погодного регулирования предназначен для обеспечения и поддержания требуемой температуры теплоносителя в подающем трубопроводе, в зависимости от температуры наружного воздуха.
Основные плюсы установки автоматизированного узла управления отоплением
Как мы уже говорили, целью данного энергосберегающего мероприятия является оптимизация потребления тепловой энергии в здании, а именно:
- существенное снижением затрат на теплоснабжение зданий и сооружений,
- повышении качества и надежности теплоснабжения,
- автоматическое регулирование подачи тепла в здания и сооружения,
- возможность дистанционного контроля параметров теплоносителя и режимов работы теплоснабжающего оборудования,
- возможность, без дополнительных затрат, перенастроить работу системы отопления, например, после утепления фасадов, замены окон, ремонта здания,
- автоматизация системы учета потребления тепловой энергии.
Как показывает практика, автоматизированный узел управления (АУУ) позволяет экономить около 25% – 37 % тепловой энергии и обеспечивать комфортные условия проживания в каждом помещении.
Когда целесообразно устанавливать АУУ — примеры и расчет срока окупаемости
Давайте рассмотрим 3 примера установки узла учета и рассчитаем срок окупаемости данного мероприятия.
Все примеры из реальной жизни и базируются на энергетических обследованиях, которые мы провели.
И так, у нас три административных здания (офисы):
- Здание 1 площадью 1300 м2
- Здание 2 площадью 4800 м2
- Здание 3 площадью 18500 м2
Все три здания находятся в Москве.
Вот основные итоги установки узла управления системы отопления:
Площадь м2 | Общий расход тепла за отопительный период до установки АУУ | Общий расход тепла за отопительный период после установки АУУ | Сокращение потребления тепла Гкал | Стоимость Гкал тыс. руб. (2018 г.) | Экономия за отопительный период тыс. руб. | |
Здание №1 | 1 300 | 340 | 266 | 74 | 2,0 | 148 |
Здание №2 | 4 800 | 550 | 418 | 132 | 2,0 | 264 |
Здание №3 | 18 500 | 4 400 | 3 720 | 680 | 2,0 | 1 360 |
Как видно из таблицы, установка узла управления отоплением помогла сократить потребление тепла за отопительный период на:
- Здание №1 – 74 Гкал,
- Здание №2 – 132 Гкал,
- Здание №3 – 680 Гкал.
Столь существенная разница в сокращении потребления обусловлена, в основном:
- размером зданий (площадь и этажность)
- количеством часов эксплуатации,
- назначением.
В следующей таблице указаны:
- экономия тепла за отопительный период (из расчета стоимость 2 тыс. руб. за Гкал)
- стоимость установки и монтажа узла управления отоплением и
- срок окупаемости.
Экономия за отопительный период тыс. руб. | Стоимость АУУ (оборудование и монтаж) | Простой срок окупаемости лет | |
Здание №1 | 148 | 1 556 | 10,5 |
Здание №2 | 264 | 1 856 | 7,0 |
Здание №3 | 1 360 | 2 000 | 1,5 |
Основной вывод, который мы можем сделать из расчета срока окупаемости АУУ
Автоматизированный узел управления отоплением целесообразно устанавливать в зданиях со значительным потреблением тепловой энергии и в зданиях с перетопами.
В небольших зданиях и зданиях с малым потреблением тепловой энергии автоматизированный узел управления отоплением будет окупаться очень долго или не окупиться никогда.
В небольших зданиях более целесообразно произвести ревизию элеваторных узлов или их установку, а также установить систему балансировочных клапанов на главных стояках системы отопления.
Узел управления системы отопления
Почему более выгодно устанавливать АУУ в зданиях с большим потреблением тепла?
Узел управления отопления стоит примерно одинаково для больших и малых зданий (разница стоимости оборудования и монтажа – 20%-30%).
В то же время, в здании больших размеров можно сэкономить в 5-10 раз больше тепловой энергии, чем в здании малого размера.
В нашем примере мы видим:
- Узел управления отоплением окупается за 10,5 лет в здании №1, площадью 1 300 м2 и потреблением тепла 340 Гкал до установки АУУ.
- Такой же узел окупается за 1,5 лет в здании №3, площадью 18 500 м2 и потреблением тепла до установки АУУ 4 400 Гкал.
Наш анализ и расчет не являются универсальными.
Они лишь дают вам основное понимание, в каких зданиях целесообразней устанавливать автоматизированные узлы управления отопления.
Мы рекомендуем делать расчет целесообразности и срока окупаемости узла управления отоплением индивидуально для каждого здания, исходя из конкретных обстоятельств и условий.
Как происходит установка автоматизированного узла управления системой отопления
Принципиального изменения схемы теплоснабжения здания при установке автоматизированного узла управления системой отопления (АУУ) не происходит.
В отличие от элеваторных узлов, устанавливаемых на каждой секции дома, АУУ монтируется, как правило, один на здание.
Присоединение узла управления выполняется после узла учета тепловой энергии.
Узел погодного регулирования включает в себя следующие элементы:
- управляющий элемент,
- регулирующий клапан с исполнительным механизмом,
- циркуляционный насос,
- датчики температуры наружного воздуха,
- датчики температуры в помещении.
Управляющий элемент узла погодного регулирования позволяет вручную менять настройки, определяющие режим работы системы отопления, и позволяющие поддерживать различную температуру в здании в различное время.
Например, в административных зданиях в выходные и праздничные дни можно снижать температуру воздуха внутри до +12 °С.
В рабочие дни температуру можно повышать до +18 °С.
Схема и общий вид автоматизированного узла погодного регулирования представлены на рисунках ниже.
В схеме предусмотрено:
- автоматическое переключение между основным и резервным насосом при отказе одного из насосов,
- возможность введения гибкого графика регулирования температуры воздуха в помещениях с учётом ночного времени, выходных и праздничных дней на весь отопительный сезон,
- обязательный контроль температуры обратного теплоносителя,
- поддержание температурного графика.
Регулирование температуры системы отопления происходит путем изменения пропускной способности клапана и подмешивания сетевой воды при помощи циркуляционного насоса.
В процессе работы контроллер:
- периодически опрашивает датчики температуры теплоносителя, датчик воздуха внутри помещения (если он есть) и датчик наружного воздуха,
- обрабатывает полученную информацию и
- формирует управляющие сигналы, дающие команду исполнительному механизму на открытие или закрытие.
Управляющее воздействие от контроллера изменяет величину открытия проходного сечения регулирующего клапана.
При отсутствии датчика воздуха внутри помещения главным приоритетом регулирования является поддержание температурного графика.
Эффективное применение автоматизированных узлов учета
Применение АУУ наиболее эффективно:
- в зданиях большого размера с существенным теплопотреблением,
- в домах присоединенными к городским тепловым сетям,
- в зданиях с недостаточным перепадом давления в системе центрального отопления и с обязательной установкой насосов центрального отопления,
- в зданиях с децентрализованным горячим водоснабжением и центральным отоплением.
Выводы
И так, автоматизированный узел управления отоплением позволит вам:
1. Использовать на нужды отопления только необходимую для этого тепловую нагрузку.
При этом, в случае ее избытка (в периоды «перетопа»), уменьшать подачу теплоносителя вплоть до полной остановки расхода с обеспечением циркуляции горячей воды во внутреннем контуре за счет насоса.
В эти периоды УУТЭ будет фиксировать отсутствие внешнего теплопотребления.
2. Выровнять температуру нагрева радиаторов на всех этажах здания при любой схеме разводки трубопроводов за счет принудительной циркуляции.
3. Обеспечить более равномерный прогрев стояков отопления за счет сохранения насосом требуемого уровня циркуляции при проведении постоянной регулировки.
4. Поддерживать более высокую температуру в помещениях при температуре наружного воздуха ниже расчетного минимума и не выдерживании требуемого при этом температурного графика теплоисточником за счет увеличения расхода на внутреннем контуре.
Автоматизация системы отопления
Автоматизация системы отопления в многоквартирном доме в последнее время стала очень популярной. Вызвано это тем, что тарифы постоянно расту. Погодозависимая автоматика, позволяет экономить энергозатраты и поэтому становится востребованными.
Автоматизация системы отопления многоквартирного дома – это средство регулирования микроклимата в помещениях при температурных изменениях на улице. Как показывает практика, эти устройства системы отопления многоквартирного дома действительно полезны в регионах, где зимой случаются частые суточные перепады температур.
Подобные устройства оснащены программами, позволяющими заранее устанавливать необходимые параметры. Например, при — 10 нагрев батарей доходит до одного уровня, но когда на улице температура падает до -15 градусов – до другого, более горячего, и наоборот.
Там, где температурный режим зимой не подвержен резким перепадам, а держится примерно на одном уровне, погодозависимая автоматика не востребована.
Автоматизация системы отопления: экономическая эффективность.
Проблема экономного расходования тепловой энергии в системах отопления многоквартирных домов в связи с ростом цен на энергоносители и соответственно платы за предоставление тепла приобретает все более весомое значение. В новом строительстве устанавливаются автоматизированные системы отопления. Автоматическое регулирование температурных параметров теплоносителя, установка в индивидуальном тепловом пункте дома автоматизированного узла управления.
В домах старой постройки проблема рационального использования тепла практически не решается, во-первых, из-за отсутствия технического и экономического обоснования необходимых работ, во-вторых, из-за нехватки или отсутствия финансовых ресурсов.
Хотя, самая большая статья расходов в платежах за коммунальные услуги это плата за отопление и горячие водоснабжение, она составляет около 60%. Производится в каждом месяце независимо от отопительного сезона. Это очень внушительная сумма, а тем более в регионах, где холодно большую часть года.
В связи с этим, особенно актуальной является задача, повышения эффективности работы существующих систем отопления и водоснабжения в многоквартирных домах. Одно из перспективных решений данной проблемы является установка приборов учета и внедрение автоматизированной системы отопления и регулирования, которая будет исключать необоснованный перерасход тепловой энергии.
Установка узла учета тепловой энергии позволяет перейти к расчетам за фактическое потребление энергии, а система автоматического регулирования тепла осуществляет сбережение тепловой энергии. Целью применения системы автоматизации и регулирования отопления является управление процессом пользования тепла согласно наружной температуре воздуха.
Это выполняется посредством повышения или понижения интенсивности потока носителя тепла в многоквартирных домах. Данный процесс зависит от реальных потребностей помещения в тепловой энергии в конкретный момент.
Применение автоматизированной системы отопления позволяет выделить следующие факторы экономии:
- Снятие вынужденных «перетопов» в переходные, межсезонные периоды. Применение систем регулирования температуры отопления на тепловых пунктах позволяет достигнуть 30-40 % экономии в эти периоды отопления. Актуальность регулирования подачи теплоносителя в межсезонный период повышается в силу повышения общего значения положительных температур наружного воздуха в осенне-зимний период.
- Снятие влияния на потери тепла инерции тепловой сети. Это значит, что температура в сетях не может быстро изменяться. Во многих районах России разница между дневными и ночными температурами может достигать 10-20 С. Тепловой инерции здания, как правило, не хватает для компенсации этих изменений. В результате, возможны «перетопы» в дневные часы. Следовательно, потери тепла или «недотопы» в ночные часы, что приводит к перерасходу более дорогой электроэнергии за счет включения бытовых нагревательных приборов. Этот фактор можно оценить только ориентировочно, в пределах 3-5 % общего теплопотребления.
- Коррекция температурного графика по фактической производительности приборов отопления. То есть корректирование проектного температурного графика отопления здания с учетом устранения запасов, которые закладывают проектировщики при определении необходимой площади отопительных приборов. Эффект экономии от автоматизации теплового пункта в данном случае может составлять от 7 до 15 %.
- Экономический эффект за счет применения графика качественного регулирования. При качественном регулировании все помещения находятся по теплу в равных условиях. Следовательно, может быть применено глубокое регулирование с наибольшим экономическим эффектом (вышесказанное относится к гидравлически отрегулированным системам). Так, к примеру, один градус перегрева в помещениях (т. е. 21°С вместо 20°С) равносилен почти 7 % потерь.
Таким образом, можно сделать выводы, что переход на автоматизированную систему отопления достаточно эффективен с экономической точки зрения. Низкие сроки окупаемости позволяют отнести этот способ экономии энергии к малозатратным и быстроокупаемым.
Погодозависимая автоматика: как она устроена.
Система управления отоплением на основе текущих погодных условий состоит из нескольких основных компонентов:
- управляющий контроллер;
- датчики температуры;
- элеватор, или регулирующий клапан с насосом.
Принцип работы контроллера основан на анализе данных с четырех температурных датчиков:
- внутри дома;
- снаружи;
- на прямом трубопроводе;
- на возврате.
При увеличении или уменьшении температуры на улице контроллер дает команду исполнительным механизмам на закрытие или открытие и соответственно увеличение или уменьшение поступления горячей воды из тепловой сети. Автоматика анализирует все данные и по специальным алгоритмам рассчитывает необходимую температуру.
Алгоритм поддержания температуры в зависимости от температуры на улицы в многоквартирных домах уже встроен в автоматику контроллера. Его необходимо подстроить в зависимости от того какой дом. Допустим, дом кирпичный с толстыми стенами или панельный, у которого стены холодные. В старые панельные дома, очень не выгодно ставить теплосчетчики, у них очень холодные стены и вместо ожидаемой экономии, вы будете платить больше. Поэтому если в панельном доме стоит теплосчетчик, то чтобы экономить, необходимо установить погодозависимую автоматику.
Поддерживать определенную температуру в доме можно в зависимости от температуры в какой то одной из ее квартир, а в квартире в одной из комнат. Это должна быть средняя температура, и колебания ее должны быть минимальными. Лучше всего под эти условия подходит спальня или детская комната.
В процессе работы контроллер периодически, с определенным интервалом времени, опрашивает датчики температуры, измеряющие температуру теплоносителя, наружного воздуха и (или) воздуха внутри помещения при его наличии.
При увеличении или уменьшении температуры на улице контроллер дает команду исполнительному механизму элеватора (шаговому двигателю) на закрытие или открытие и соответственно увеличение или уменьшение поступления теплоносителя из тепловой сети. Шаговый двигатель приводит в движение конусную иглу, которая, перемещаясь, уменьшает или увеличивает площадь прохода теплоносителя.
В результате в элеватор и соответственно в систему отопления квартир поступает больше охлажденного (использованного) теплоносителя из обратного трубопровода, если необходимо уменьшить температуру. Или меньше, если необходимо температуру в систему отопления дома увеличить.
Если вы решили датчик воздуха в помещении не устанавливать, автоматизированная система отопления поддерживает температуру по температурному графику.
Автоматизированная система отопления гарантированно окупается в многоэтажных домах и больших коттеджах. В небольших частных домах экономическая эффективность сильно варьируется в зависимости от местных условий.
Контроллеры для тепловых пунктов
Контроллеры для тепловых пунктов
На сегодняшний день достаточно остро стоит задача автоматизации регулирования температуры в системе отопления многоквартирных домов. Компания ОВЕН предлагает целую линейку приборов для тепловых пунктов.
- Промышленный контроллер для регулирования температуры в системах отопления ОВЕН ТРМ32
Прибор выпускается с 2010 года. Благодаря простоте и безотказной работе, а также невысокой стоимости широко распространен в бюджетных учреждениях.
от 130 до 242 В (номинальное значение 220 В)
Диапазон контроля температуры
Количество каналов контроля температуры
Количество дискретных входов
Время цикла опроса датчиков
Количество выходных реле
Максимальный ток, коммутируемый контактами реле
1 А при напряжении 220 В 50 Гц (cos j > 0,4)
Адаптеры, используемые для подключения прибора к RS-232 порту ПК
АС3М для приборов ТРМ32.Х.ХХ.RS
Адаптер, используемый для подключения прибора к USB порту ПК
АС4 (для приборов ТРМ32-Х.ХХ.RS)
Контроллер для регулирования температуры в системах отопления и ГВС ОВЕН ТРМ32-Щ4. Функциональная схема прибора
Входы для измерения температуры
Регулирование температуры в контурах отопления и горячего водоснабжения
Регистрация данных на ЭВМ
Регулирование температуры в контуре отопления
Регулирование температуры по отопительному графику
Дневной/ночной режим работы
Контроль температуры обратной воды, возвращаемой в теплоцентраль
Регулирование температуры в системе горячего водоснабжения (ГВС)
Температура, поддерживаемая в контуре ГВС (Тгвс), задается пользователем при программировании контроллера. С помощью реле прибор ТРМ32-Щ4 управляет положением запорно-регулирующего клапана КЗРгвс по температуре уставки Туст.гвс. Управление КЗРгвс осуществляется кратковременными импульсами (ШИМ) по ПИД-закону регулирования, что позволяет поддерживать заданную температуру с требуемой точностью.
Стоимость прибора в комплекте с 4 датчиками температуры (наружный воздух, подача, обратка, ГВС) составляет 12 500 руб.
2) Усовершенствованный контроллер для систем отопления и горячего водоснабжения (ГВС) ТРМ132М в комплекте с модулем расширения МР1
Возможности контроллера ТРМ132М
- Встроенные часы реального времени
- Автоматическая настройка ПИД-регуляторов
- Автоматический выбор режимов (нагрев/обратная/летний)
- Возможность смены прошивки (при помощи комплекта для перепрошивки ТРМ133М)
Функциональные возможности ОВЕН ТРМ132М
- Автоматическое регулирование температуры в контуре ГВС с соответствии с заданной уставкой.
- Автоматическое регулирование температуры в контуре отопления по графику от Т-наружного воздуха и Т-прямой воды
- Отработка графика температуры обратной воды в зависимости от Т-наружного воздуха и Т-прямой воды (защита от завышения и занижения температуры обратной воды)
- Управление основным и резервным насосом в обоих контурах
- Защита от превышения температуры в контуре ГВС
- Управление насосом подпитки в контуре отопления
- Возможность использования третьего насоса в каждом контуре (аварийного)
- Формирование сигналов управления внешними исполнительными механизмами и устройствами в контуре ГВС: запорно-регулирующим клапаном, основным и резервным насосами, клапаном слива (опционально); устройствами сигнализации
- Формирование сигналов управления внешними исполнительными механизмами и устройствами в контуре отопления: запорно-регулирующим клапаном, основным и резервным насосами, насосом подпитки, устройствами сигнализации
- Диагностика аварийных ситуаций (обрыв датчиков температуры и датчиков положения, неисправность насосов)
- Задание значений программируемых рабочих параметров с помощью встроенной клавиатуры управления, а также от ПК по сети RS-485 и RS-232
- Поддержка протоколов обмена: ОВЕН, Modbus-RTU и Modbus-ASCI
Функциональная схема контроллера ТРМ132М
Стоимость комплекта с 4 датчиками температуры и модулем расширения МР1 составляет 20 000 руб.
3) Контроллер для одно- и двухконтурных систем отопления и ГВС ОВЕН ТРМ232М
Контроллеры ТРМ232М в комплексе с первичными преобразователями и исполнительными механизмами предназначены для контроля и регулирования: • в одноконтурных системах (система отопления (СО) либо горячего водоснабжения (ГВС));
• в двухконтурных системах (две системы отопления/ две системы ГВС/ система отопления + система ГВС)*
*в комплекте с модулем расширения МР1.
Преимущества ТРМ232М:
- Управление одним (СО либо ГВС) либо двумя независимыми контурами (две СО/ две ГВС/ СО + ГВС)
- Полная автоматизация одного контура в одном приборе: управление запорно-регулирующим клапаном СО либо ГВС, насосами, контуром подпитки (не требует дополнительных модулей)
- Конфигуратор на основании схем для технологов и проектировщиков
Возможности контроллера ТРМ232М
- Встроенные часы реального времени
- Автоматическая настройка ПИД-регуляторов
- Автоматический выбор режимов (нагрев/ночь/летний и т.п)
— Диагностика аварийных ситуаций (обрыв датчиков температуры и датчиков положения, неисправность насосов)
— Задание значений программируемых рабочих параметров с помощью встроенной клавиатуры управления, а также от ПК по сети RS-485 и RS-232
- Поддержка протоколов обмена: ОВЕН, Modbus-RTU и Modbus-ASCI
- Возможность обновления прошивки (необходимые устройства входят в комплект поставки)
- Настройка вручную с панели прибора либо с помощью программы-конфигуратора.
Функциональные возможности для одноконтурных систем:
- автоматическое регулирование температуры в контуре в соответствии с графиком по температуре наружного воздуха (прямой воды) либо с заданной уставкой;
- автоматическое регулирование по графику температуры обратной воды (защита от завышения; защита от понижения);
- управление насосом подпитки;
- управление циркуляционными насосами (с выравниванием времени наработки и АВР);
- управление устройствами аварийной сигнализации.
Функциональные возможности для двухконтурных систем:
- автоматическое регулирование температуры в соответствии с графиком по температуре наружного воздуха (прямой воды) либо с заданной уставкой – в каждом контуре;
- автоматическое регулирование по графику температуры обратной воды (защита от завышения; защита от понижения) в каждом контуре;
- управление насосами подпитки в контуре 1;
- управление насосами подпитки либо ХВС в контуре 2;
- управление циркуляционными насосами (с выравниванием времени наработки и АВР) – в каждом контуре;
- управление устройствами аварийной сигнализации.
Стоимость комплекта с 4 датчиками температуры и модулем расширения МР1 составляет 20 000 руб.