Акустический метод поиска повреждений кабеля

Акустический метод поиска повреждений кабеля

Методы поиска повреждений на кабелях подразделяют на абсолютные и относительные. Относительные предполагают определение расстояния до повреждения в процентах к общей длине линии или в метрах от оконечного устройства. (Относительно длины). Абсолютные определяют повреждения прямо на месте.

К относительным методам относятся импульсный, импульсно-дуговой, мостовой (метод петли),

К абсолютным можно отнести индукционный, акустический, индукционно-акустический и в какой-то мере прожиг.

Индукционный метод

Основан на прослушивании электромагнитных наводок вокруг кабеля при прохождении по нему токов звуковых частот. Один из основных абсолютных методов поиска не только повреждений, но и трассировки кабельной линии. Почти без изменений применяется также на телекоммуникационных кабелях (стр. → Индукционный метод. Поиск трассы кабеля кабелеискателем).

Для введения тока звуковой частоты в кабель используется специализированный генератор. Поиск повреждения или трассировка осуществляется приёмной частью комплекта, состоящего из антенны и приёмника, способных улавливать возникающее вокруг кабеля электромагнитное поле.

Методом можно определить место короткого замыкания в кабеле, трассу прокладки и глубину залегания. Приёмам и способам работы с кабелеискателем, а именно он использует индукционный метод посвящены страницы:
• Подключение генератора кабелеискателя,
• Иллюстрации использования кабелеискателей
• Индуктивные методы трассировки кабеля: схемы и описания
• Подключение к кабелю генератора звуковой частоты

Прожиг или преобразование повреждения


Схема прожигающего устройства ЛВИ—3М (Ярославская)

В силовых кабелях есть также возможность использования больших токов и преобразования повреждения, что серьёзно увеличивает возможности обнаружения места пробоя. Например, в случае, когда происходит пробой изоляции только при большом, в несколько сотен или тысяч вольт напряжении или сопротивление повреждения большое, то средствами высоковольтной лаборатории такое повреждение можно дожечь. Для этой цели используют прожигающее устройство.

Основой такого прибора является мощный высоковольтный трансформатор с возможностью переключения коэффициента трансформации и автотрансформатором в первичной обмотке. Прожиг начинают с постепенного поднятия переменно напряжения в кабеле и наблюдают за протекающим через повреждение током. При каком-то значении напряжения в месте повреждения кабеля возникает устойчивый пробой и соответственно зажигается дуга. Постепенно эта дуга и дожигает место повреждения — полностью сплавляет изоляцию кабеля, превращая её в проводящий ток уголь. Либо, что случается реже, повреждённая жила отгорает до обрыва. Не всегда этот процесс протекает одинаково и для того чтобы добиться устойчивого горения дуги оператору приходится менять коэффициент трансформации установки и выходное напряжение.

В итоге после удачного прожига сопротивление повреждения либо падает до десятков Ом, либо жила переходит в обрыв. В обоих из этих случаев расстояние до повреждения легко определяется импульсным методом (рефлектометром) или индукционным методом (кабелеискателем). Тем не менее, с применением прожига спешить не стоит, так как он имеет свои недостатки. Так его опасно применять на низковольтных кабелях с небольшим сечением жилы — ток, протекающий по кабелю, может его перегреть в неповреждённой длине.

Прожиг кабеля увеличивает время поиска повреждения. Сначала ведь кабель надо дожечь, а затем еще и искать место повреждения индукционным методом. Быстрее определить место повреждения помогает акустический метод с использованием генератора высоковольтных импульсов.

Прожиг в абсолютные методы поиска можно отнести условно. Если вдуматься в его суть, то это даже не метод поиска повреждений, а лишь способ улучшить условия использования таких методов как акустический, индукционный и импульсный. Тем не менее, иногда он может быть использован именно как абсолютный. Его иногда используют при сомнениях в определённых муфтах или разделках — подав через ЛВИ приличный ток можно добиться возгорания сомнительного места, тем самым абсолютно точно определить повреждение.

Акустический метод или метод удара

Метод предполагает использование генератора высоковольтных импульсов и иногда его же называют ударом.

Основой генератора для акустического метода является высоковольтный конденсатор с нагруженным на него трансформатором и выпрямителем. Через автотрансформатор на этом конденсаторе задаётся высокое напряжение. Затем через ручной или автоматический переключатель это напряжение подаётся в кабельную линию. Учитывая приличную энергию, накопленную на конденсаторе, импульс такого генератора на короткое время зажигает дуговой разряд в месте пробоя изоляции с образованием громкого выстрела (удара). Если генератор перевести в автоматический режим, то можно добиться непрерывной последовательности таких ударов.


Схема выходного каскада генератора высоковольтных импульсов ЛВИ—3М (Ярославль)

Далее поиск повреждения зависит от характера повреждения изоляции и трассы кабельной линии. Так, если кабель проложен открыто, то выстрелы могут быть слышны на десятки и сотни метров и поиск дефекта сводится прослушиванию трассы без приборов. В месте повреждения, как правило, видны вспышки высоковольтного разряда.

Если кабель лежит в грунте, то конечно, эти удары слышны не так далеко. Но тоже бывает достаточно пройтись по трассе — удары часто слышны в пределах нескольких метров от повреждения, причём часто толчки ощущаются даже подошвами ног.

Стоит заметить, что акустический метод может быть использован совместно с импульсным (→ Импульсно-дуговой метод) и в этом случае он перестаёт быть абсолютным. Результат измерений рефлектометра будет обозначен в метрах, а это уже относительно.


Приемник ударных волн Digiphone+
(геомикрофон слева, вверху
увеличенный экран прибора)

Геомикрофон и индукционно-акустический метод

Если повреждение не выгорело наружу, то возможна ситуация, когда удары не слышны. В этом случае используется специальный геомикрофон. Прибор этого типа, как правило, имеет размер с пол-литровую банку и закреплён на полуметровой ручке. Шнур от такого геомикрофона соединяется со специальным портативным усилителем и оператор, проходя по трассе кабеля, ищет по громкости щелчка место повреждения. Во время поиска датчик прибора периодически ставят на грунт и не шевелят его, слушая щелчки в наушниках. По максимальной громкости разрядов и определяют место повреждения.

В более новых приборах микрофон дополняется ещё и электромагнитной антенной — при этом акустический метод становится индукционно-акустическим. Геомикрофон такого типа ловит не только звук выстрела, но и электромагнитный импульс, возникающий при разряде. Учитывая, что звук распространяется медленней электромагнитного поля, то у электронной начинки прибора есть возможность сравнить время прихода обоих сигналов и рассчитать расстояние до места пробоя в метрах. Результат отображается на экране такого прибора.

Умный сайт для вашего энергокомплекса

Изоляция кабелей служит гораздо меньше токоведущих жил, которые изготовлены из стойкого гомогенного металла (медь или алюминий). Знание точных координат места повреждения изоляции позволяет в случае аварии сократить количество заменяемого кабеля, поэтому предложено множество различных методов диагностики изоляции. В этой статье рассмотрим акустические методы диагностики изоляции кабельных линий.


Акустические локаторы применяются для поиска повреждений в кабелях и газопроводах

На каких кабелях применяется акустический метод диагностики?

Наиболее часто диагностику требуется проводить на высоковольтных кабельных линиях с полиэтиленовой изоляцией. Изоляция может быть изготовленной из любого материала: полиэтилена, поливинилхлорида, композитных составов, в том числе и маслонаполненные кабели. Также кабельная линия может иметь любой вольтаж. Он обязательно учитывается при выборке напряжения и мощности импульсов тока звуковой частоты при диагностике.

В подземных кабельных линия наиболее распространены кабели с изоляцией из сшитого полиэтилена. Связано это не только с отличными изоляционными качествами полиэтилена, но и с его низкой ценой. Это самый дешевый полимер в мире. При этом именно в сшитом полиэтилене возникает эффект так называемого водяного триинга, что является нормальным процессом старения полимеров в условиях влажного грунта. Данный дефект со временем переходит в «заплывающий пробой», когда электрическое сопротивление изоляции на низком напряжении нормальное, а с повышением возникает пробой, который исчезает при повторном снижении напряжения.

Акустический метод неразрушающего контроля хорошо подходит для поиска дефектов типа «заплывающий пробой» по нескольким причинам. Рассмотрим преимущества этого метода:

Для диагностики используется переменный ток высокого напряжения, получаемый от кенотронного генератора. В месте заплывающего пробоя создается мощное электромагнитное и акустическое поле (звук, хорошо слышимый даже при подземной прокладке).

Поиск возможен, когда соседние, или близко расположенные кабели, в силовой линии не обесточены. В этом случае полностью отключается электромагнитный приемник из-за наводок 50 Гц и включается акустический с геомикрофоном. Частота импульсов не является кратной 50 Гц и акустический тракт приемника имеет фильтры для отстройки.

В условиях акустических шумов (например, вблизи автомобильных дорог), наоборот, задействуется электромагнитный приемник вместо акустического геомикрофона. Чувствительность электромагнитных сенсоров в разы выше акустических, соответственно, возрастает дальность обнаружения. В некоторых случаях она превышает 1000 м.

Расстояние до места замыкания распознается очень точно, благодаря технологии подсчета задержек импульсов. По схожим технологиям работают многие высокоточные системы, например, лазерные дальномеры или навигация GPS.


Пример прокладки множества кабелей в одной траншее. Поиск места повреждения акустическими методами возможен без обесточивания близлежащих кабелей.

Ограничения акустического метода контроля

Акустический метод исследования не позволяет обнаруживать водяные триинги и дефекты изоляции, не приведшие к пробою. Можно обнаружить только имеющиеся повреждения. Нельзя составить прогнозы, оценить степень старения изоляции.

Обнаруживается только первый пробой. Если дефекты в виде заплывающих пробоев следуют один за другим, они не обнаруживаются.

Акустические шумы и электромагнитные помехи снижают дальность определения.

Примеры оборудования

Генератор SWG и приемник ударных волн (акустический локатор) Digiphone

Передовой комплект оборудования для поиска мест повреждения изоляции акустическим методом. Генератор ударных волн SWG представляет собой блок с минимумом элементов управления. Оператору необходимо подключить генератор к испытуемым кабельным жилам (не менее двух), выставить энергию заряда, (например, 1000 дж) и частоту. При работе с прибором соблюдают меры предосторожности. Выходное напряжение — до 32 кВ. При включенном генераторе выполняется ручной поиск с помощью различных акустических локаторов. Сам генератор SWG универсален. Его можно использовать для диагностики кабелей иными методами.

Приемник ударных волн Digiphone имеет чувствительный узкополосный УНЧ и геомикрофон. Оборудование защищено от влаги, поиск может выполняться в любых условиях, в том числе и по мерзлому грунту, когда акустическая проводимость улучшается.

Приемник ударных волн Digiphone+


Акустический локатор Digiphone+

В отличие от акустического локатора Digiphone, Digiphone+ принимает не только акустические, но и электромагнитные волны. На практике это означает удлинение расстояния между точкой подключения генератора и уверенным распознаванием места повреждения. Приемник ударных волн Digiphone+ отличается высокой чувствительностью и строгим соответствием всем современным требованиям. Так выходной звуковой каскад имеет ограничение по звуку 84 дБ/А в соответствии с положениями об охране труда. Приемный тракт узкополосный с системой подавления посторонних шумов. Дополнительные плюсы: компас, цветной дисплей, удобная регулируемая ручка и вес всего 2,2 кг.

На следующем видео показано, как работать с акустическим локатором Digiphone+

Если вам нужна профессиональная консультация по диагностике изоляции кабеля, просто отправьте нам сообщение!

Акустический метод поиска повреждений кабеля

Трассы кабельных линий (КЛ) – важные составляющие электрических сетей, они обеспечивают доставку электроэнергии от трансформаторных подстанций потребителю и, обеспечивая достаточную пропускную способность, обладают рядом преимуществ перед воздушными линиями. Для проложенных в земле силовых кабельных линий:

  • Не страшны атмосферные влияния (ветровые нагрузки, обледенения, колебания температур);
  • к ним ограничен несанкционированный доступ;
  • кабельные трассы не «загромождают» городских территорий.

Правда такой способ доставки электроэнергии имеет свои недостатки, одним из которых можно считать сложность поиска повреждений в силовых кабелях.

Чтобы минимизировать затраты на ремонт и устранение повреждения силовых кабелей необходимо знать точное место повреждения кабеля, определить которое помогает применение ряда методик, обладающих разными уровнями погрешности. Как правило, определение точки аварии КЛ происходит в два этапа:

  • С помощью относительных методик (импульсной, петлевой, емкостной) выявляют проблемный участок трассы КЛ;
  • абсолютные методы (акустический, индукционный) помогают локализовать повреждение с высокой точностью.

На самом деле методик поиска повреждений кабеля значительно больше, однако акустический метод завоевал свою популярность, благодаря высокой точности и сравнительной простоте реализации.

Суть акустического метода

На сегодняшний день акустический способ поиска повреждений кабелей признан самым востребованным. Он позволяет определять места повреждения кабеля со следующим характером неисправностей:

  • Замыкания фазных проводников на оболочку кабеля;
  • межфазные замыкания с различными значениями переходных сопротивлений при пробоях изоляции;
  • обрывы токопроводящих жил;
  • определение мест повреждений типа «заплывающий пробой» и т.д.

Метод достаточно универсален и применим для поиска неисправности при глубинах залегания кабеля до 5 метров.

Суть методики основывается на определении интенсивности акустических колебаний от электрического разряда, возникающего на поврежденном участке. Метод реализуется при помощи генератора высоковольтных импульсов и акустического приемника, чувствительной аппаратуры, у которой в качестве акустического датчика выступает микрофон, контактирующий с грунтом.

Генератором импульсов вырабатываются короткие импульсы высокого напряжения, которые прикладываются к исследуемой цепи КЛ, например, на жилу кабеля и его оболочку. Это способствует появлению искровых разрядов в проблемных точках силового кабеля (кабельных муфтах), сопровождающихся акустическими импульсами (щелчками).

Оператор, перемещающийся вдоль прокладки кабельных линий, вместе с приемной аппаратурой находит точку с максимальной интенсивностью звуковых импульсов, она будет находиться над местом повреждения кабеля. Для обеспечения большей достоверности местоположения аварии современная аппаратура приемника акустического сигнала помимо наушников оснащена визуальной индикацией. При использовании акустического метода могут возникать проблемы, связанные с зашумлённостью, например, вблизи высоко загруженных автомобильных трасс, в таких условиях трудно определять максимумы акустических импульсов. Более точную информацию дают комбинированные приемники, одновременно анализирующие звуковые и электромагнитные импульсы, возникающие в процессе мощных разрядов.

Аппаратура для акустического поиска поврежденных участков кабеля, включая и комбинированные варианты, имеется в арсенале современных передвижных электротехнических лабораторий.

Видео акустического метода повреждений кабелей

В итоге в этом месте было выявлено повреждение, прямо около соединительной муфты, скорее всего когда ее делали была повреждена изоляция и со временем произошел пробой. Ниже фотография с объекта.

Определение места повреждения кабеля

Как правило, соединения потребителей с источниками электроэнергии (трансформаторными и распределительными подстанциями) осуществляется при помощи кабельных линий (КЛ). Это связано с тем, что у данного способа есть масса преимуществ перед воздушными линиями (ВЛ). Но, если случилась авария на КЛ, то поиск места повреждения кабеля без специальных приборов, практически невозможен. Сегодня мы рассмотрим несколько способов, позволяющих локализовать аварийный участок кабельной трассы, проложенной в земле.

Причины и виды повреждений кабельных линий

Существует много факторов, негативно влияющих на целостность силовых кабелей, к наиболее распространенным из них можно отнести следующие:

  • Подвижка грунта, может быть вызвана аварией водопроводных, канализационных или тепловых сетей, а также сезонными явлениями, например, весенним оттаиванием.
  • Превышение допустимых норм эксплуатации КЛ, что может привести к термической перегрузки линии, вызванной увеличением токовой нагрузки.
  • Образование в КЛ высокого уровня электрического тока от транзитного КЗ.
  • Механическое повреждение при земляных работах без учета прохождения подземных коммуникаций и глубины трассы.
  • Ошибки при прокладке КЛ. В качестве примера можно привести нарушения технологии соединения жил кабельными муфтами.
  • Заводской брак.

Заметим, что при открытой прокладке кабельных трасс некоторые перечисленные выше причины повреждений встречаются крайне редко. В частности, снижается вероятность влияния подвижки грунта и механические воздействия вследствие земляных работ. Помимо этого зоны повреждения открытых КЛ, в большинстве случаев, можно обнаружить при визуальном осмотре, без задействования спецметодов.

Разобравшись с причинами, перейдем к видам повреждений, поскольку от этого напрямую зависит, каким методом будет локализирован аварийный участок КЛ.

Чаще всего ремонтным бригадам приходится сталкиваться со следующими видами неисправностей:

  • Дефект, вызванный полным или частичным обрывом КЛ. Чаще всего причиной аварии является проведение земляных работ без определения прохождения кабельных трасс. Несколько реже причиной данного повреждения может стать КЗ в соединительных муфтах.
  • В силовых кабелях (более 1кВ), часто встречается пробой одной из жил на землю (однофазное замыкание). Ток утечки, как правило, это вызвано снижением качества изоляции в процессе эксплуатации КЛ.
  • Межфазные повреждения, а также виды металлических замыканий, могут возникнуть в любых линиях, причина повреждений такая же, как и в предыдущем пункте.
  • Плановое испытание кабеля, при котором задействуется высокий уровень напряжения, показывают низкую надежность изоляции, и приводит к возникновению пробоя. При определенных обстоятельствах такая линия может продолжать эксплуатироваться, но из-за низкого уровня ее надежности, авария может проявиться в любое время.

Кратко о ремонте кабельной линии

Ремонтные работы на кабельных линиях принято классифицировать на плановые и аварийные. Что касается объема таких работ, то у первых он, как правило, капитальный, у вторых – текущий.

При капитальных работах производится плановая замена КЛ, прокладка новых трасс и т.д. При необходимости также выполняется ремонт и/или модернизация сопутствующего оборудования. К последним относятся вентиляционные системы и освещение кабельных туннелей, а также насосы для откачки грунтовых вод. Учитывая специфику плановых работ, при их проведении не требуется локализация дефектных участков.

Совсем иначе обстоит дело при аварийном ремонте. Чтобы не раскапывать всю трассу, следует точно определить место обрыва провода, пробоя изоляции и т.д. Для этой цели применяются различные способы, для которых задействуется спецоборудование. Подробно об этом будет рассказано ниже.

Методики определения повреждения кабеля в земле

Как правило, дефектоскопия кабеля осуществляется в два этапа:

  1. Устанавливаются границы зоны, в пределах которой находится аварийный участок.
  2. Производится поиск точного места повреждения в определенной зоне.

Соответственно на первом этапе применяются относительные способы, а на втором широко используются технологии с повышенной точностью поиска повреждений. Перечислим основные методики дефектоскопии и особенности их применения.

Индукционный метод

Эта технология позволяет определить локацию, где произошел пробой изоляционного слоя токопроводящих элементов кабеля. Для этого при помощи специального генератора в КЛ подается переменный ток с силой до 20,0 ампер и частотой от 800,0 до 1200,0 герц. В результате, вокруг КЛ формируется электромагнитное поле определенной интенсивности. Если поместить в него антенную рамку подключенную к наушникам через усилитель, то можно услышать звук определенной частоты над неповрежденными токопроводящими элементами.

По характеру звукового сигнала можно определить не локацию дефекта, позиции муфт для соединения, топографию трассы (трассировку), включая наличие защитных труб. Ниже представлен рисунок, где показан уровень изменения сигнала над различными участками КЛ.

Поиск повреждений кабеля индукционным методом

Обозначения:

  1. Задающий генератор.
  2. Расположение соединительных элементов.
  3. Защита кабеля.
  4. Дефектное место.

Импульсный метод

Как уже упоминалось выше, данный способ относится к относительным, то есть, позволяющим установить дефектную зону повреждения (как правило, межфазное КЗ). Принцип работы заключается в подаче специальным прибором эталонного высоковольтного импульса в КЛ и последующим определением удаленности аварийного участка по отраженному сигналу импульсных токов.

Экран прибора ИКЛ с отображением отраженного импульса в случае замыкания (а) и обрыва (b) кабеля

В приведенном на рисунке примере расстояние до дефектного участка определяется следующим образом:

tx – интервал времени между посланным и отраженным электрическим сигналом, измеряется в микросекундах. Как видно из рисунка, он равен 3,5 мкс. Учитывая, что скорость распространения импульса (v) примерно равна 160,0 м/мкс, то для решения необходимо применить следующую формулу: lx = ( tx*v ) / 2, где lx – расстояние от генератора импульсов до поврежденного участка кабеля. В результате мы получим ( 3.5 * 160 ) / 2, то есть, 280,0 метров.

Обратим внимание, что в некоторых приборах по форме отраженного сигнала можно судить о характере дефекта.

Акустический метод

Технология основана на формировании в дефектном участке искровых разрядов, сопровождающимися звуковыми импульсами. Зафиксировать их можно используя обычный стетоскоп, прикладывая акустическую головку к земле, либо применяя специальный акустический приемник. Над дефектным участком разряды звуковых частот будут максимально громкими.

Различные схемы, применяемые при акустическом методе поиска повреждений кабеля

Обозначения:

  1. Поиск устойчивого короткого замыкания между токоведущей жилой и оболочкой кабеля.
  2. Схема для поиска заплывающих пробоев.
  3. Применение работоспособных токопроводящих элементов (задействована емкость жил).
  4. Схема для поиска обрыва.

Видео по теме:

Емкостной метод

Технология данного метода позволяет проводить поиск повреждения, в частности обрыва токоведущих элементов кабеля, путем измерения емкости жил. Как известно данный параметр напрямую зависит от длины кабеля. С упрощенной схемой высоковольтных колебаний для такого устройства можно ознакомиться ниже.

Мост переменного тока, используемый в емкостном методе обнаружения повреждения кабеля

Обозначения:

  • R1, R2, R3 – регулируемые резисторы.
  • Cэ – эталонный высоковольтный конденсатор.
  • L – расстояние до места обрыва.
  • Lк – общая длина КЛ.
  • 1 – токоведущие элементы кабеля.
  • 2 – защитная оболочка.
  • 3 – место обрыва.

Подбирая сопротивление переменных резисторов, добиваются минимального отклонения стрелки прибора Г, что указывает на равновесие между плечами моста, что говорит о следующем соотношении R1 / R2 = Сx / Сэ , это позволяет установить емкость поврежденной жилы Сx = Сэ* (R1 / R2) .

Подобным способом производим определение емкости на другом конце КЛ, то есть, подключаем к нему генератор и повторяем измерения. В результате, вычисляем расстояние до поврежденной зоны: L = Lk * С1 / ( C1 + C2 ), где С1 и С2 – емкости поврежденных токоведущих элементов кабеля, измеренные в начале и конце КЛ.

Метод колебательного разряда

Данный способ позволяет более эффективно определить расстояние до дефекта кабеля, известного, как заплывающий пробой. Для этой цели в поврежденную линию подаются импульсные колебательные разряды, после чего на экран спецприбора (например, ЭМКС58) выводятся данные о расстоянии до дефектного места.

Экран прибора РЕЙС-305 с указанием расстояния до поврежденного участка кабеля

Принципа работы данного метода во многом напоминает импульсный способ дефектоскопии.

Метод петли

Данный способ хорошо работает в тех случаях, когда в месте нарушения изоляции нет обрыва токоведущих элементов кабеля, а переходное сопротивление в месте дефекта не более 5,0 кОм. При несоответствии последнего условия может быть выполнен прожиг кабеля (прожигание изоляции для уменьшения переходного сопротивления). Упрощенный пример электрической схемы для метода петли показан ниже.

Устройство для поиска повреждения кабеля методом петли

Обозначения:

  • Г – гальванометр.
  • R1 и R2 – переменные резисторы, измерение сопротивления которых осуществляется после уравновешивания моста.
  • Lk – длина КЛ.
  • L – расстояние до дефектного участка.
  • 1 – токопроводящие элементы кабеля.
  • 2 – перемычка между целой и дефектной жилой.

После уравновешивания моста, расстояние до обрыва вычисляется по формуле: .

Метод накладной рамки

Данный вариант поиска повреждения в КЛ можно рассматривать в качестве одной из разновидностей индукционного способа, когда необходимо найти пробой между токоведущим элементом кабеля и его металлической оболочкой (броней). Данная технология рассчитана на поиск дефектных мест при открытой прокладке кабельных трасс, но ее можно успешно использовать и КЛ уложенных в грунт. В последнем случае требуется выкопать шурфы в зоне локализации дефекта.

Локализация повреждения кабеля методом накладной рамки

Обозначения:

  1. Накладные рамки.
  2. Место пробоя изоляции.

Поиск обрыва кабеля в бетонной стене и под гипсокартоном с помощью трассоискателя

Онлайн помощник домашнего мастера

Как найти место повреждения кабеля: методы определения места, поиск причины поломки и лучшие способы устранения

Соединение источника электричества с потребителями электроэнергии в большинстве случаев осуществляется путем прокладывания кабельных линий в земле. Это предусматривает расположение трассы кабеля по кратчайшему расстоянию, нет необходимости сооружать громоздкие металлоконструкции, доступ посторонних к линии невозможен (за исключением случаев несанкционированного доступа).

Однако, одним из основных недостатков такого вида соединений является сложность установления места неисправности.

Краткое содержимое статьи:

Причины повреждения

Основные причины заключаются в следующем:

  • ошибки проектирования (занижение сечения, неправильный подбор защитной аппаратуры);
  • дефекты, допущенные на производстве: сквозные отверстия, трещины и заусенцы на проволоке;
  • крутые изгибы и механические поломки, допущенные в процессе прокладки кабеля;
  • порча, допущенная при эксплуатации: старение изоляции, коррозия металлов, разрывы при производстве земляных работ

В зависимости от вида проложенного кабеля, способа его прокладки и уровня напряжения, выбирается метод, с использованием которого будет устанавливаться участок повреждения. Основными, наиболее эффективными способами установления места неисправности являются рассмотренные ниже методы.

Методы поиска места повреждения кабеля

Разработаны и успешно применяются следующие способы для поиска мест повреждения.

Импульсный способ

Импульсный способ исключен к применению при заплывающих пробоях ввиду того, что причиной таких повреждений служит высокая влажность, соответственно сопротивление проводника превышает 150 Ом, а это недопустимо для данного метода.

Проверка осуществляется в соответствии с предусмотренной инструкцией как найти место повреждения, с использованием измерителя ИКЛ-5 или ИКЛ-4 путем ввода через переменный ток импульса к области неисправности и получении ответного сигнала. Прибор производит замер времени между периодом подачи и возвращением импульса.

Акустический метод

Акустический метод предусматривает использование приемника и электрогенератора мощных ударных импульсов. Конденсатор генератора присоединяют к кабелю, и когда разрядник срабатывает, напряжение в линии создаёт электромагнитную волну, происходит сильнейшее пробивание, сопровождающееся щелчком в области неисправности. Оператор улавливает щелчки при помощи акустического прибора.

Зона распространения звука распложена в границах от двух до пятнадцати метров. Точка неисправности кабеля устанавливается присутствием максимально громкого звука.

Метод петли

Неисправности устанавливается путем сравнения сопротивлений нарушенной и целой кабельной жилы при использовании метода петли. Порядок поиска повреждений в этом случае требует формирование из кабеля моста типа Р 334 или Р 333, так же требуется наличие моста сопротивления МВУ-49.

Применяется в том случае, если одна жила кабеля не повреждена, если все жилы неисправны, рекомендуется использование неповреждённой жилы находящегося рядом кабельного канала.

Исправная и поврежденная жилы соединяются на одной стороне кабеля петлей. На противоположной стороне кабеля устанавливают мост, регулирующий электросопротивление. Производятся замеры, и, используя формулы соотношения сопротивления, устанавливается дистанция до точки расположения неисправности.

Минусом такого способа является неточность установления точки нахождения неисправности и огромные временные затраты.

Индукционный метод

Рассмотрим теперь, как определяют участок повреждения кабеля индукционным методом, который является более точным и дает шанс установить отрезок неисправности прямо в КЛ, погрешность этого способа не превышает 50 сантиметров.

Применение индукционного метода допустимо в случае, если в месте неисправности сопротивление переходное в кабельной линии составляет не более от двадцати до пятидесяти ОМ.

Содержание способа состоит в улавливании и фиксации над трассой кабельного канала колебаний электромагнитного поля, образованного за счет пропускании по неисправной жиле электричества с частотой звука от 800 до 1000 Гц. Оператор двигается по ходу трассы кабеля и с использованием антенны, усилителя и наушников определяет характер передачи электромагнитного поля. Звучание заметно увеличивается в точке неисправности и теряет силу на расстоянии 50 сантиметров от точки пробоя.

Метод накладной рамки

Если кабель проложен открытым способом или в открытых шурфах, в случае однофазного замыкания кабельной жилы на оболочку, с целью установления отрезка неисправности, специалисты советуют применение метода накладной рамки.

Рамка представляет собой катушку из 1000 витков проволоки и имеет форму прямоугольника, в этом методе используется в роли антенны, выглядит, как указано на фото с места повреждения кабеля.

При определении места неисправности оператор использует телефон для прослушивания изменений звуков, которые издают жила и оболочка кабеля при подключении к ним генератора звуковой частоты. Прослушивается пара максимума и пара минимума звучания, в случае, если рамка установлена и вращается вокруг оси кабеля перед местом расположения повреждения кабельной линии.

Подобный звук говорит о том, что в кабеле протекает пара токов, по жиле и по оболочке. Монотонное звучание вызвано током протекающем только по оболочке и слышится, в случае если рамка установлена и вращается за местом неисправности кабеля.

Такой способ эффективен, если длина кабеля не превышает одного километра за местом повреждения.

Во всех случаях отыскания места повреждения кабельной линии необходимо произвести огромный комплекс работ с использованием приборов для поиска повреждения кабеля.