Для чего нужен дроссель в люминесцентных лампах?

Для чего нужен дроссель для люминесцентных ламп?

Электромагнитный дроссель находит применение в цепях коммутации люминесцентной лампы.

Назначение дросселя – формирование импульса для пробоя газонаполненной среды и поддержание необходимого напряжения и тока в схеме и на контактах элементов работающего светильника. Принцип работы дросселя основан на способности катушки индуктивности извлекать энергию из источника тока и сохранять ее в виде магнитного поля.

Чтобы выяснить, как работает дроссель, нужно рассмотреть свойства катушки индуктивности. Она плохо проводит переменный ток или совсем не проводит его. Индуктивность измеряется в Генри (Гн) и ее значение можно увеличить путем применения сердечника, оно таким образом повышается в несколько раз.

Во время замыкания контактов выключателя величина тока на катушке постепенно возрастает, а при размыкании сначала растет многократно, а затем плавно уменьшается. В соленоиде этот параметр не изменяется мгновенно.

Дроссель для люминесцентных ламп – это катушка индуктивности с ферромагнитным сердечником. Он находит применение только в электрических цепях, в которых предусмотрено наличие электромагнитного ПРА.

На картинках показана схема подключения газоразрядной лампы низкого давления с использованием электромагнитного дросселя.

  • 2 – электроды лампы;
  • 1 – колба (трубка);
  • Ст – стартер;
  • С1 – конденсатор, находящийся в одном корпусе со стартером;
  • С2 – конденсатор, повышающий коэффициент мощности;
  • Д – дроссель.

Механизм запуска лампы с электромагнитным балластом

При замыкании выключателя ток протекает по следующему пути: «дроссель – электрод лампы – стартер – второй электрод лампы – сеть».

Величины этого тока очень мало для зажигания лампы. Но его значения хватает для нагревания электродов стартера и появления в нем тлеющего разряда. Напряжение этого разряда меньше напряжения сети, но больше напряжения работающей лампы.

Разогретый биметаллический электрод в стартере замыкается со вторым, после чего тлеющий разряд между ними гаснет, электроды остывают и занимают первоначальное положение.

В момент замыкания электродов в стартере ток в схеме значительно возрастает и электроды люминесцентной лампы начинают нагреваться. В то же время при размыкании цепи на дросселе (в результате самоиндукции) происходит скачок напряжения, который, складываясь с входным напряжением сети, создает условия для включения лампы.

К этому моменту температура на электродах лампы успевает повыситься до значения, необходимого для эмиссии, а дросселирующее устройство создает высоковольтный импульс. Поэтому в лампе создаются условия для возникновения тлеющего разряда, который сначала происходит в аргоновой среде до тех пор, пока ртуть, помещенная в колбу, не перейдет полностью в парообразное состояние. После этого разряд будет происходить в ртутных парах, и лампа войдет в стабильный рабочий режим.

Напряжение на работающей лампе меньше сетевого за счет его падения на дросселе. Поскольку для срабатывания стартера напряжение на нем должно превышать величину напряжения на включенной лампе, повторно разряд в этом приборе не зажжется.

Зажигание лампы происходит при условии совпадения по фазе импульса дросселируемого напряжения и напряжения сети. Но поскольку совпадения этих значений относительно разбросаны по времени, стартер может срабатывать неоднократно перед тем, как лампа войдет в рабочий режим. В этом случае наблюдается мигание лампы в процессе включения. Одновременно в стартере создаются радиопомехи, для подавления которых служит конденсатор, находящийся в общем со стартером футляре.

Так выглядит электромагнитный дроссель

Это означает, что кроме зажигания этого осветительного прибора дроссель необходим для ограничения возрастания тока разряда до величины, при достижении которой лампа выходит из строя.

Все, изложенное выше, объясняет, для чего нужен дроссель.

В результате того, что он ограничивает ток в схеме работающей лампы, он представляет собой дополнительную нагрузку (балласт) и на нем теряется какая-то часть мощности. По уровню этих потерь дроссели делятся на следующие классы: D – с обычными; C – с пониженными; B – с особо низкими.

Потери мощности в дросселях

Особенности дросселя для люминесцентных ламп

Все люминесцентные лампы имеют в конструкции элемент, ограничивающий силу тока — дроссель, или балласт. Он стабилизирует сеть от неконтролируемого нарастания показателей, исключая пульсации.

Что такое дроссель

Дроссель представляет собой катушку индуктивности (если быть точным в терминах, то в данном случае индуктивную катушку), расположенную на ферромагнитном сердечнике (обычно из магнитомягкого сплава). Эта катушка, как любой проводник, обладает омическим сопротивлением, а также реактивным сопротивлением индуктивного характера, которое проявляется в цепях переменного тока. Конструкция дросселя (балласта) такова, что реактивное сопротивление преобладает над активным. Вся конструкция помещена в корпус из металла или пластика.

Классификация дросселей

В люминесцентных лампах применяются дроссели электронного или электромагнитного типа (ЭмПРА). Оба вида обладают своими особенностями.

Электромагнитный дроссель представляет собой катушку с металлическим сердечником и обмоткой из медного или алюминиевого провода. Диаметр провода влияет на функциональность светильника. Модель достаточно надежна, однако потери мощности до 50% ставят под сомнение ее эффективность.

Лампы с электромагнитными дросселями дешевые и не требуют специальной настройки перед использованием. Но они чувствительны к перепадам напряжения и даже незначительные колебания могут привести к мерцаниям или неприятному гудению.

Электромагнитные конструкции не синхронизируются с частотой сети. Это приводит к появлению вспышек непосредственно перед зажиганием лампы. Вспышки практически не мешают комфортно использовать светильник, однако негативно воздействуют на пускорегулирующий аппарат.

Несовершенство электромагнитных технологий и значительные потери мощности при их использовании приводят к тому, что на смену таким приборам приходят электронные пускорегулирующие аппараты.

Электронные дроссели конструктивно сложнее и включают в себя:

  • Фильтр для устранения электромагнитных помех. Эффективно гасит все нежелательные колебания внешней среды и самой лампы.
  • Устройство для изменения коэффициента мощности. Контролирует сдвиг переменного тока по фазе.
  • Сглаживающий фильтр, снижающий уровень пульсаций переменного тока в системе.
  • Инвертор. Преобразовывает постоянный ток в переменный.
  • Балласт. Катушка индукции, которая подавляет нежелательные помехи и плавно регулирует яркость свечения.

Иногда в современных ЭПРА можно встретить встроенную защиту от перепадов напряжения.

Для чего он нужен

Любой дроссель выполняет функции последовательного резистора. Однако в отличие от обычного сопротивления он обеспечивает лучшую фильтрацию без пульсаций переменного тока или гудения электроприбора.

В современной технике используются две конфигурации питания: конденсаторная и дроссельная. В первом случае дроссель не обязателен для подачи напряжения, однако в качестве дополнительного фильтра ему нет равных.

Как подбирать электромагнитный дроссель

При выборе электромагнитного дросселя обращайте внимание на параметры:

  1. Рабочее напряжение. Для стандартных домашних сетей требуются устройства на 220 – 240 В с частотой 50 Гц.
  2. Мощность. Должна соответствовать мощности лампы. Если требуется подключить две или более лампы, мощность дросселя должна соответствовать сумме их мощностей.
  3. Ток. Допустимый показатель указывается в Амперах на корпусе.
  4. Коэффициент мощности. Желательно подбирать устройства с максимальными значениями параметра. Для ЭмПРА он обычно не превышает 0,5, так что потребуется дополнительный конденсатор.
  5. Рабочая температура. Диапазон температур окружающей среды и дросселя, при котором все элементы оставются исправными.
  6. Энергетическая эффективность. Определяется классом в соответствии с принятой градацией. Для ЭмПРА характерны средние классы B1 и B2.
  7. Параметры конденсатора. Рабочее напряжение и емкость конденсатора, который подключается параллельно к питающей сети.

Как происходит запуск и работа ламп

Люминесцентная лампа, в отличие от обычной, включается в сеть не напрямую. Это связано с ее устройством и принципом работы.

Для ее зажигания надо:

  • обеспечить эмиссию электронов из катодов, выполненных в виде нитей накаливания;
  • ионизировать межэлектродный промежуток, заполненный парами ртути, с помощью высоковольтного импульса.

Дальше работа лампы будет продолжаться до снятия питания за счет дугового разряда между электродами. В исходном положении выключатель питания разомкнут, контакты стартера также разомкнуты.

В первый момент, после подачи напряжения на схему небольшой ток (в пределах 50 мА) течет по цепи дроссель – нить 1 лампы – тлеющий разряд в колбе стартера – нить 2 лампы. За счет этого слабого тока нагреваются и замыкаются контакты стартера, и ток течет через нити накаливания, нагревая их и создавая эмиссию электронов.

Читайте также  Какую лампочку выбрать для настольной лампы?

Этот ток ограничивается сопротивлением дросселя. Без такого ограничения нити накаливания сгорят от сверхтока.

После остывания контактов стартера они размыкаются. За счет разрыва цепи с большой индуктивностью формируется импульс напряжения (до 1000 вольт), который ионизирует разрядный промежуток между двумя нитями лампы. Через ионизированный газ начинает течь ток, который вызывает свечение паров ртути. Это свечение инициирует зажигание люминофора. Этот ток также ограничивается комплексным сопротивлением стартера. А стартер на дальнейшую работу светильника влияния не оказывает.

Очевидно, что стартер играет в процессе работы светильника важную роль:

  • ограничивает ток при разогреве нитей лампы;
  • формирует зажигающий импульс высокого напряжения;
  • ограничивает ток газового разряда.

Для выполнения этих функций балласт должен обладать достаточной индуктивностью, чтобы создать положенное реактивное сопротивление переменному току и чтобы сформировать высоковольтный импульс за счет явления самоиндукции.

В некоторых случаях стартер не может с первого раза зажечь газ в колбе лампы и повторяет процедуру подачи тока около 5-6 раз. При этом наблюдается эффект моргания при включении.

Дроссель помогает избавиться от этого эффекта. Он превращает переменное низкочастотное напряжение бытовой сети в постоянное, а затем инвертирует его обратно в переменное, но уже на высокой частоте и пульсации исчезают.

Схема подключения к лампе

Схема подключения проста: цепь с последовательно соединенным дросселем и лампой. Система подключается к сети 220 В на частоте 50 Гц. Дроссель выполняет функции корректировщика и стабилизатора напряжения.

Неполадки дросселя и их диагностика

Люминесцентные лампы иногда выходят из строя. Причины разные: от заводского брака до неправильной эксплуатации. В ряде случаев ремонт можно сделать своими силами и простыми инструментами.

Рекомендуем к просмотру: Ремонт электронного балласта люминесцентной лампы

Перед ремонтом необходимо точно идентифицировать узел поломки. Для этого лампу и всю сопутствующую аппаратуру придется разобрать.

  • набор отверток с полностью изолированными рукоятками;
  • монтажный нож;
  • кусачки;
  • пассатижи;
  • мультиметр;
  • индикаторная отвертка;
  • моток медного провода (сечением от 0,75 до 1,5 мм²).

Дополнительно может потребоваться новый стартер, исправная лампа или дроссель. Все зависит от того, какой именно узел вышел из строя.

Наиболее распространенные проблемы:

  • Лампа не включается и не реагирует на стартер. Причина может быть в любом из элементов, поэтому нужно поменять сначала стартер, затем лампу, попутно проверяя работоспособность схемы. Если не помогло, значит проблема в дросселе.
  • Наличие в колбе небольшого разряда в виде змейки говорит о неконтролируемом возрастании тока. Причина неисправности точно в дросселе, который надо заменить. Иначе лампа быстро перегорит.
  • Пульсации и мерцания во время работы. Замените последовательно сначала лампу, затем стартер. Чаще виновником оказывается дроссель, который перестает стабилизировать напряжение.

Обычно неисправность дросселя устраняется его заменой. Однако при желании можно разобрать элемент и попытаться восстановить работоспособность. Здесь нужны серьезные познания в электротехнике и много времени. Учитывая небольшую стоимость нового дросселя, это нецелесообразно.

Дроссель для люминесцентных ламп: зачем нужен, принцип работы

Важным условием комфортного проживания современного человека является качественное освещение. Существует несколько видов электрических источников света. Одним из экономичных источников являются люминесцентные лампы (ЛЛ). Хотя такие излучатели и проигрывают по некоторым параметрам светодиодным устройствам, тем не менее, они широко используются как на производстве, так и в быту.

Принцип работы

В классическом виде ЛЛ (люминесцентная лампа) представляет собой стеклянную трубку с нанесенным на ее внутреннюю поверхность люминофором. Внутри трубки при пониженном давлении помещают инертный газ, смешанный с парами ртути. На концах изделия впаиваются электроды (катоды) из вольфрама.

В рабочем состоянии после пробоя газа высоким напряжением через лампу протекает ток, в результате воздействия которого появляется невидимое для человеческого глаза УФ излучение. Под воздействием этого излучения люминофор генерирует световой поток в видимом диапазоне, цветовые оттенки которого может меняться в зависимости от типа люминофора.

Ток при газовом разряде меняется лавинообразно и для его ограничения используется последовательно включенная нагрузка.

Примечание! Для запуска и поддержания рабочего режима ЛЛ используется специальная пускорегулирующая аппаратура (ПРА). Такая аппаратура часто называется балластом.

Виды ПРА

В качестве балласта могут быть использованы как электромагнитные устройства (дроссель, стартер), так и электронные приборы (ЭПРА).

Электромагнитные ПРА существует многие годы и постепенно вытесняются новыми электронными устройствами созданными на новой элементной базе. Каждая из этих видов аппаратуры имеют свои достоинства и недостатки.

ПРА электромагнитного типа

Электрическая схема питания ЛЛ с использованием обычной ПРА приведена на рис. 1.

Стартер представляет собой устройство, предназначенное для кратковременного автоматического включения и выключения электроцепи.

Существуют различные конструкции стартеров – тлеющего разряда, тепловые, электронные, электромагнитные. Наиболее распространенными являются стартеры тлеющего разряда, в которых используются биметаллические пластины.

Такие пластины при возникновении в стартере тлеющего разряда нагреваются и замыкают цепь. После замыкания разряд прекращается, электроды остывают и размыкаются. Параметры стартера выбираются таким образом, чтобы напряжение тлеющего разряда было выше рабочего напряжения ЛЛ и ниже минимального сетевого напряжения.

Цены на стартер для люминесцентных ламп

Дроссель представляет собой обычную катушку индуктивности, намотанную на сердечник. Для предотвращения появления в сердечнике вихревых токов он собран из отдельных тонких пластин. Допустимая мощность дросселя должна соответствовать мощности ЛЛ. В противном случае лампа не включится.

При кратковременном замыкании стартера через электроды ЛЛ проходит большой ток, нагревающий нити этих электродов. и вызывающий термоэлектронную эмиссию. В результате этой эмиссии около электродов образуются электронные облачка, способствующие пробою и появлению разряда.

При размыкании контактов стартера согласно явлению самоиндукции в цепи генерируется мощный импульс напряжения, величина которого пропорциональна индуктивности дросселя. Под действием этого импульса происходит пробой газа и возникает тлеющий разряд, который может перейти в дуговой. Но наличие балансного сопротивления в виде дросселя ограничивает величину протекающего через прибор тока.

Таким образом, дроссель играет двойную роль:

  1. Образуемый дросселем при размыкании стартером электрической цепи высоковольтный импульс напряжения обеспечивает пробой газа и зажигание лампы.
  2. В режиме горения ЛЛ индуктивное сопротивление дросселя обеспечивает поддержание на электродах лампы рабочего напряжения, обеспечивающего тлеющий разряд.

На рис.1 компенсирующий конденсатор С1, включенный на входе схемы питания ЛЛ, предназначен для повышения коэффициента мощности (cos φ ). Для уменьшения влияния радиопомех параллельно контактам стартера включен конденсатор небольшой емкости (С2). Этот конденсатор позволяет также изменить переходный процесс в схеме и увеличить мощность импульса напряжения.

Электронный балласт (ЭПРА) является сложным устройством со множеством электронных элементов. Блок – схема такого устройства приведена на рис. 4.

Основное отличие ЭПРА от обычного ПРА – это наличие инвертора, который с помощью транзисторных ключей преобразует сетевое напряжение 50 Гц в напряжение с частотой в 30- 40 кГц. Благодаря этому уменьшаются размеры и габариты этого устройства. При включении схемы происходит прогрев катодов ЛЛ, образование вблизи них электронных «облаков», а на конденсаторе, включенном параллельно лампе, возникает резонансное напряжение около 600 В, которого достаточно для поджига лампы.

После включения ЛЛ напряжение на ней падает до рабочего, а ток ограничивается балансным дросселем.

Достоинства и недостатки

Сравнительные характеристики двух видов ПРА приведены в таблице.

ПРА ЭПРА
1 Простая понятная конструкция Сложная схема
2 Малая цена Относительно высокая цена
3 Большие масса и габариты Компактное устройство
4 Наличие мерцания (100 Гц) Мерцание отсутствует
5 Большое время пуска Мгновенный запуск
6 Трудности при запуске на низкой температуре Трудностей нет
7 Малый кпд и cos φ Высокий кпд
8 Не работает при низком напряжении Широкий диапазон напряжений
9 Быстро изнашиваются ЛЛ ЛЛ работают полный срок

Цены на Электронные ПРА для люминесцентных ламп

Ремонт

При выходе из строя светильника с ЛЛ, питаемого с помощью ПРА, наряду с другими элементами схемы необходимо проверить работоспособность дросселя. При этом возможны следующие неисправности:

  • перегрев;
  • обрыв обмотки;
  • замыкание (полное или межвитковое).

Для проверки дросселя надо собрать схему, приведенную на рис. 6.

При включении схемы возможны три варианта – лампа горит, лампа не горит, лампа моргает.

В первом случае, по-видимому, в дросселе имеется короткое замыкание. Во втором случае, очевидно, имеется обрыв в обмотке. В третьем случае, возможно, что дроссель цел и надо искать неисправность в другом элементе схемы. Для полной уверенности необходимо дать схеме поработать в течение 0,5 часа. Если при этом окажется, что дроссель сильно нагрелся, то это свидетельствует о замыкании между витками обмотки.

Запуск ЛЛ без дросселя

Схемы для включения ЛЛ без дросселя, как правило, представляют собой источник питания постоянного тока в виде умножителя. Одна из схем такого источника приведена на рис.7. В качестве ограничителя тока в схеме используется обыкновенная лампа накаливания.

В такой схеме напряжение на ЛЛ достигает 700 В приблизительно за 25 мс.

Сравнение дросселей для различных типов ламп

Дроссели применяются в газоразрядных лампах различного типа. В любом случае они служат для ограничения рабочего тока светильника. При этом такие дроссели не всегда взаимозаменяемы.

Так лампы Днат и ДРЛ работают в режиме дугового разряда, тогда как ЛЛ работают при тлеющем разряде. Разные режимы работы требуют разных характеристик дросселей. Кроме того, отличие состоит в том, что дроссель в качестве источника напряжения для поджига используется только в ЛЛ.

Примечание! В лампах Днат для запуска применяется специальное импульсное устройство (ИЗУ), а лампы ДРЛ запускаются непосредственно от сети 220 В.

Цены на дроссель для люминесцентных ламп

Видео – Проверка дросселя лампы дневного света

Дроссель для люминесцентных ламп: устройство, назначение + схема для подключения

Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?

Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.

В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.

Назначение и устройство дросселя

Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.

Назначение балласта в схеме включения

Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.

Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.

Его роль могут выполнять различные электротехнические компоненты:

  • в случае постоянного тока – это резисторы;
  • при переменном – дроссель, конденсатор и резистор.

Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.

Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:

  • способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
  • импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
  • обеспечивает стабилизацию разряда при номинальном значении электротока;
  • способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.

Важное значение для функционирования люминесцентных источников света имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.

Из чего состоит пускорегулятор?

Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».

Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.

Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.

Дроссель состоит из следующих элементов:

  • проволока в изоляционном материале;
  • сердечник – чаще всего ферритового типа или из прочего материала;
  • заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
  • корпус, в который помещена намотка – его производят из термоустойчивых полимеров.

Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.

Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного стартера привели к изобретению более совершенной версии пускорегулятора – электронной.

ЭПРА в процессе функционирования способствуют снижению мощности по­терь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.

Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.

Схема + самостоятельное подключение

Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.

А для более габаритных изделий потребуется пускорегулирующая аппаратура, которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.

Правда имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.

Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.

Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.

А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.

Зачем используют дроссель для люминесцентных ламп?

Дроссель для люминесцентных ламп

Люминесцентные лампы в качестве источника света достаточно часто можно встретить как в просторных общественных местах, так и в квартирах. Столь большой спрос на них обусловлен, прежде всего, их экономичными свойствами. Если провести их сравнение с лампами накаливания, то, безусловно, они выигрывают практически по всем параметрам (высокий КПД и высокая светоотдача, долговечность). Но есть одно но, которое в некоторой степени может, является как преимуществом, так и недостатком. Это наличие дросселя и стартера. В данной статье речь пойдет как раз о дросселе. Попробуем разобраться, для чего нужен дроссель для люминесцентных ламп, какой у него принцип работы, уделим внимание техническим характеристикам, составным компонентам, видам дросселей, а также рассмотрим другие не менее важные вопросы.

Для чего нужен

Для нормальной работоспособности источника света, чего нельзя сказать про обычные разрядные лампы, нужен дроссель, роль которого будет заключаться в выполнении пускорегулирующей функции в люминесцентных лампах.

Такой светильник при помощи одного электроснабжения включить не получится. Для него требуется вспомогательный пускорегулирующий элемент – дроссель.Поэтому в модель включения обязательно в качестве балласта добавляют сопротивление. Роль сопротивления заключается в ограничении тока. При излишнем нагревании светильника, у дросселя срабатывает реактивное сопротивление, которое как раз и ограничивает подачу тока. Сопротивление дросселя, можно сказать, сбавляет обороты лавинообразного нарастания тепла при включении источника света в электросеть.

Дроссель является неотъемлемым элементом люминесцентного устройства, функции которого состоят в следующем:

  • создает безопасное и достаточное поступления тока, для дальнейшего разогрева электродов лампочки при ее включении;
  • за счет импульса высокого напряжения, который образуется в обмотке, появляется разряд в колбе люминесцента;
  • стабилизирует разряд электротока;
  • предоставляет бесперебойное функционирование лампы даже в ситуации периодические случающихся отклонений напряжения в сети.

Одной из важнейших характеристик дросселя является его индуктивность или индуктивное сопротивление, благодаря которому функционируют люминесцентные источники света. При покупке ограничителя необходимо внимательно ознакомиться с его техническими характеристиками, которые полностью должны отвечать характеристикам лампы.

Принцип работы

Основной принцип работы устройства заключается в фазном смещении переменного тока во время перехода через ноль на девяноста градусов. За счет такого смещения происходит удержание нужного тока, чтобы пары металла в светильнике могли гореть.

Обозначение катушки индуктивности в цепи подключения выглядит как косинус угла фи. Это то самое значение, на которое и отстает сила тока от напряжения. Число, на которое, сила тока остается позади от напряжения часто называют еще значением мощности либо коэффициентом. Для того, что найти активную мощность, надо перемножить значение напряжения, силу переменного тока и коэффициент мощности.

Ели значение мощности небольшое, то это приведет к возрастанию показателей реактивной энергии, что в свою очередь создаст добавочную нагрузку на проводящие кабельные провода и трансформаторы.

Чтобы увеличить значение косинуса фи в схему функционирования люминесцентного устройства вдобавок подключается параллельно самому устройству компенсационный конденсатор. Так, при подключении к схеме функционирования лампы, мощность которой от 18 до 36 Вт, конденсатора емкостью 3-5 мкФ, косинус фи увеличиться до 0,85. Шум дросселя, который функционирует при частоте 50 Гц, может быть различной интенсивности.

Дроссели по интенсивности шума бывают следующих уровней:

  • Н-уровня (средней интенсивности);
  • П-уровня (пониженной интенсивности);
  • С-уровня (очень низкой интенсивности);
  • А-уровня (особо низкой интенсивности).

Чтобы избежать преждевременного выхода светильников из строя, необходимо обратить внимание на то, чтобы их мощность отвечала номинальной мощности катушки индуктивности.

Технические характеристики

Технические особенности дросселей, на которые стоит обязательно обращать внимание при выборе источника света, следующие:

  • Назначение. В люминесцентном устройстве катушка индуктивности создает нужный импульс для того, чтобы пары металла могли в устройстве гореть, также она поддерживает нужное значение мощности во время функционирования устройства.
  • Мощность. Главным техническим параметром ограничителя является значение его мощности. Именно от него зависит работоспособность всех других параметров и лампы в целом. Исходя из показателей мощности, эти параметры у каждого ограничителя светильника будут разные. По уровню мощности ограничители разделяются на три больших категории: B, C, и D. От того, к какой категории они относятся, зависит наименование ограничителей.
  • Коэффициент самоиндукции. За счет индуктивности дросселя мощность электроэнергии, которая приходиться на проводящие контакты лампы.

Разделение ограничителей проходит по такому же принципу, что разделение источников света, к которым в последующем подключается соответствующий ограничитель. Как упоминалось выше, если ограничитель подключить к источнику света, технические параметры которого не подходят под данный ограничитель, в таком случае источник света очень быстро выйдет из строя. Итак, катушки индуктивности по мощности бывают следующие:

  • 9 вольтовый – для сберегающих источников света;
  • 11 вольтовый – для маленьких светильников;
  • 15 вольтовый – подходит для настольных светильников;
  • 18 вольтовый – для установки на столах в офисах;
  • 36 вольтовый – устанавливается в люминесцентные устройства низкой мощности;
  • 58 вольтовый – используется для потолочных светильников;
  • 65 вольтовый – для установки светильников на потолке, состоящих из большого количества ламп;
  • 80 вольтовый – устанавливается в люминесцентные устройства высокой мощности;
  • электронный дроссель может быть предназначен для сразу 2-х ламп либо быть просто рассчитан под мощность 2-х ламп;
  • ограничитель со стартером, предназначен для люминесцентных устройств;
  • преобразователь без катушки индуктивности используется для холодного розжига люминесцентных устройств. За счет трансформатора горение происходит без мерцания, однако в данном случае количество включений светильника должно быть минимальным.

Устройство

Устройство дросселя для люминесцентных ламп включает в себя следующее составляющие: сердечник, сделанный из электротехнического сплава, медный провод и кожух. Выглядит это следующим образом: на сердечник наматывается медный провод, а кожух служит для них окантовкой.

Механизм разбора ограничителя на составные части, сводить к следующим простым действиям:

  • убирается окантовка;
  • раскручивается провод;
  • в результате остается только сердечник, состоящий из пластин.

Производить расчёт катушки индуктивности нужно только тогда, когда идет подключение сразу нескольких источников света либо если дроссель люминесцентной лампы составляется согласно установленным показателям.

Подключение

Ответственность за подключение к электросети люминесцентных ламп с дросселем лучше всего предоставить профессиональному электрику. В самом подключении нет ничего трудного.

Итак, запуск огрничителя, а точнее схема подключения люминесцентной лампы выглядит следующим образом:

  • Поступление напряжения начинается с конденсатора и постепенно переходит ко всем точкам сборки;
  • После переходит на катушку индуктивности;
  • Затем, покидая ее, с определенной последовательностью объединяет
  • все зажимы светильника;
  • И только после объединения всех зажимов переходит ко 2-му контакту сети.

Ограничитель запуститься только в том случае, если его мощность будет полностью отвечать значению мощности источника света. В таком случае свечение будет чистым, без мерцаний.

Схема подключения люминесцентной лампы с дросселем и стартером:

Как зажечь без дросселя

На практике бывают случаи, когда катушка индуктивности выходит из строя. Возникает вопрос: «Как можно подключить люминесцентную лампу через дроссель?» Однако, здесь есть выход – с помощью постоянного тока повышенного номинала люминесцентная лампа может быть включена и без дросселя либо стартера. У такого способа есть, конечно, свои недостатки, однако, для экстренной ситуации вариант неплохой.Подключение люминесцентной лампы без дросселя приведено ниже.

Чтобы разобраться, как работает подключение светильника без ограничителя необходимо понять механизм розжига самого источника света.Такой тип подключения производиться с заранее замкнутыми попарно контактами светильника с обеих сторон. Целая спираль либо нет, значения не имеет.

На один контакт светильника подается положительный электрический заряд, а на другой контакт – отрицательный заряд. Долговечность от такого способа так называемой «реинкарнации» конечно снижается. Но в основном таким способом подключают уже сгоревшие источники света.Особо сильным разнообразием данный тип подключение газоразрядных ламп без катушки индуктивности похвастаться не может. Разве что, для такого способа подключения необходима будет большое поступление повышенного напряжения во время запуска источника света. То насколько напряжение будет повышенным, зависит от технических параметров самой лампы и электросети, в которую она будет подключать

Как проверить исправность

Принцип проверки ограничителя достаточно прост. Все, что нужно сделать, это достать его из люминесцентной лампы и проверить сопротивление дросселя при помощи тестера либо мультиметра.У ограничителя, находящегося в исправном состоянии, сопротивление на тестере покажет определенное постоянное значение. Если ограничитель все же неисправен, то тестер покажет значение, которое будет значительно отличаться от нормальных показателей, выходить за норму.Таким образом, сбой в работе дросселя может быть обусловлен обрывом либо перегоранием окантовки, а также может произойти ввиду того, что нарушена изоляция между витками провода.

Причиной сбоя может служить обрыв либо перегорание окантовки, если значение напряжения на тестере будет бесконечно высоким. О перегорании также свидетельствует неприятный запах, который особенно ощутим во время включенной лампы.Если же значение напряжение на тестере слишком низкое, то в данном случае подозрение о нарушении изоляции провода полностью находит свое подтверждение.

Как заменить

Заменить дроссель в люминесцентной лампе, благодаря его компактности, очень легко. Прежде чем приступать к демонтажу дросселя, нужно отключить электричество в помещении, поскольку простого выключения лампы будет не достаточно, для того, чтобы напряжение в лампе спало. Достаточно просто снять крепеж и отсоединить провода, поставить новый дроссель и вновь подсоединить провода в том же порядке, в каком они были соединены изначально.