Как работает энергосберегающая лампа?

Как устроена и работает энергосберегающая лампа?

Говоря на тему осветительных приборов для бытового использования, нельзя не отметить то, что на сегодняшний день самыми востребованными остаются компактные люминесцентные лампы, или, как их еще называют, энергосберегающие. В свое время подобные приборы произвели практически прорыв в своей области, что и понятно. Ведь по сравнению с их предшественниками – обычными люминесцентными лампами – они не требуют никакого дополнительного оборудования.

Для того чтобы заменить в квартире лампы накаливания (ЛН) на КЛЛ (компактная люминесцентная лампа), не потребуется никаких усилий, нужно всего лишь вывернуть ЛН и вкрутить на ее место энергосберегающую.

Конечно, стоимость компактных люминесцентных ламп несколько выше, но и экономия на электроэнергии получится значительной. Ведь мощность КЛЛ в 5 раз ниже, чем у ламп накаливания без какой-либо потери силы светового потока.

Но как устроена энергосберегающая лампа? В этом вопросе сейчас и попробуем разобраться.

  1. Из чего состоит КЛЛ?
  2. Принцип работы энергосберегающей лампы
  3. Преимущества и недостатки

Из чего состоит КЛЛ?

Современные энергосберегающие лампы состоят из трех основных частей:

  • колба – стеклянная трубка;
  • корпус, в котором находится электронный пускорегулирующий аппарат;
  • цоколь.

Но основные детали энергосберегающей лампы – это лишь то, что видно снаружи.

Внутри колбы, запаянной с обеих сторон, находятся электроды, на которые непосредственно и подается электроэнергия. Сама колба изнутри покрыта специальным веществом, называемым люминофор. Полость внутри стеклянной трубки заполнена инертным газом, смешанным с парами ртути.

Что касается электронного пускорегулирующего аппарата, тут все гораздо мудренее. ЭПРА представляет собой сложное устройство, выполняющее, по сути, ту же роль, что в старых люминесцентных лампах выполняли дроссель и стартер, т. е. управляет розжигом и поддержанием свечения в колбе.

Цоколи энергосберегающей лампы могут быть различными. Самый распространенный, конечно же, Е27. Он идентичен цоколю обычной лампы накаливания. Вообще, маркировка «Е» обозначает, что он резьбовой, а следующая за ним цифра – это его диаметр в миллиметрах. Также у компактных энергосберегающих ламп могут быть цоколи Е14 (14 мм) и Е40 (40 мм).

Еще одна маркировка – G – обозначает, что цоколь двухштырьковый, а цифра, которая следует за буквенным обозначением, означает размер между штырями.

Принцип работы энергосберегающей лампы

Как наверняка уже стало понятно, устройство и принцип действия КЛЛ и обычной люминесцентной лампы практически идентичны. Исключение лишь в том, что у энергосберегающего осветительного прибора пускорегулирующий аппарат уже встроен и называется балластом или ЭПРА.

Схема энергосберегающей лампы

Если говорить о конкретике, то принцип действия КЛЛ таков: электрический ток, поступая на электроды, создает пробой, в результате чего воспламеняется смесь паров ртути и инертного газа (аргон или ксенон). В результате возникает ультрафиолетовое свечение, которое человек увидеть не может. При помощи люминофора это свечение трансформируется в видимый свет. Вредное ультрафиолетовое излучение блокируется тем же люминофором и не наносит ущерба человеку.

Действительно, суть работы ЛДС и КЛЛ одинаковы. Что же касается электронного балласта, то разница видна даже несведущему в электротехнике человеку.

Работающей компактной люминесцентной лампы совершенно не слышно, исчезло гудение, издаваемое дросселем старых люминесцентных светильников. Да и зажигается она намного быстрее, имея задержку на каких-то полсекунды.

Ну, если то, из чего состоит и как работает энергосберегающая лампа более или менее понятно, то ее достоинства и недостатки следует рассмотреть подробнее.

Преимущества и недостатки

Конечно, не имей компактная люминесцентная лампа преимуществ, никто не стал бы переходить на подобное освещение, но все же попробуем в них разобраться. Из плюсов, конечно же, первое, что замечают – это ее компактность и малое энергопотребление не только в сравнении с «лампочкой Ильича», но и даже с обычной люминесцентной трубкой. Также отмечается тихая работа и быстрый запуск, о которых уже говорилось. И самое главное – это, конечно же, долгий срок службы. Вот, пожалуй, и все.

Из минусов – оставшиеся от предшественника «болячки». Энергосберегающая лампа плохо запускается и теряет в световом потоке на холоде, а после минус 30 вообще перестает работать.

Наличие ртути в трубке тоже радовать не может, а утилизация – процесс недешевый.

И вот что важно. Подобные осветительные приборы очень плохо переносят кратковременный цикл «включение-выключение». Дело в том, что после подачи питания на энергосберегающую лампу необходимо, чтобы она горела как минимум 3–4 минуты. Так же дело обстоит и с выключением. В противном случае резко сокращается ее срок службы и в итоге никакой экономии не получится, т. к. КЛЛ может выйти из строя, не отработав и половины заявленного производителем времени.

Ну а в основном, конечно, такая лампа вполне имеет право на существование, ведь главную задачу она выполняет – экономия электроэнергии налицо. К тому же она удобна в эксплуатации, не требует никакого дополнительного оборудования при установке, а значит, подобные осветительные приборы еще долго будут светить в домах и квартирах.

Как устроены энергосберегающие лампы

Успех энергосберегающих ламп на рынке объясняется их уникальным строением, благодаря которому они значительно превосходят по эффективности своих предшественников. Некоторые элементы и электронные узлы отличаются в зависимости от производителя, мощности и назначения, однако, в целом они все имеют аналогичную принципиальную схемотехнику.

Виды энергосберегающих ламп

Энергосберегающие устройства различают по двум основным признакам – цоколь и температура свечения.

Цоколь – элемент, который необходим для фиксации лампы в светильнике. При этом подключении соединяются электропроводящие контакты самой ЭСЛ и светильника. В зависимости от назначения цоколи делятся на два основных типа резьбовые и штырьковые.

  • Резьбовые чаще всего используются в быту, они предназначены для обычных патронов. Такие цоколи маркируются цифрами и буквами: E14, E27 и E40, где числа означают диаметр резьбы. Ими оснащаются ДРЛ или натриевые модели для уличного освещения. Такой цоколь имеют бытовые лампы марок Camelion, Delux, Feron, Luxel, Maxus, Osram, Космос, Навигатор, Uniel и т. д.
  • Штырьковые цоколи используются в специфических светильниках. Делятся на двухштырьковые и четырехштырьковые. Разъемы маркируются как 2D, G13, G23, G24, G27, G53. Применяются, чтобы подключить лампы в специализированных и высокомощных светильниках.

типы цоколей

Теплота свечения определяет цвет, которым будет светить ЭСЛ. Производители выпускают три основных типа, которые обозначаются в градусах Кельвина:

  • Теплый белый свет (2700 К) – желтый цвет, который очень похож на свечение нити вольфрама.
  • Естественный белый свет (4200 К) – цвет окружающей среды при солнечном освещении, самый нейтральный и благоприятный для глаза человека.
  • Холодный белый свет (6400 К) – цвет имеет уклон в синий спектр, отчего свечение принимает голубоватый оттенок. Обычно используется на предприятиях, устанавливается в лампочках на 65 и более Вт.

Шкала свечения

Некоторые производители подразделяют цвета на семь категорий, где маркировка выполняется кириллическими буквами, где Л – люминесцентная лампа (для отличия от С – светодиодной):

  • ЛБ – обычный белый цвет;
  • ЛТБ – белый теплый цвет;
  • ЛКБ – природный белый цвет;
  • ЛЕЦ – естественный свет, улучшенная передача цветов;
  • ЛД – дневной свет;
  • ЛДЦ – дневной свет, улучшенная передача цветов;
  • ЛХБ – холодный белый свет.

Дополнительно существует разделение по форме выпуска самих ламп: трубчатые (Т 4, Т5, Т8, Т10 и Т12, где цифры означают диаметр 1.27, 1.59, 2.54, 3.17 и 3.80 см соответственно), спиральные, прямые (pl-u11w). Трубчатые варианты предназначены для установки в специальные светильники, т. к. не имеют некоторых защитных элементов в схеме.

Принципы работы и устройства

Люминесцентные лампы представляют собой стеклянную полую колбу, которая наполнена ртутными парами. В момент включения в них создается электрический дуговой разряд между двумя электродами, устроенный пусковым конденсатором. Он приводит к возникновению ультрафиолетового излучения, невидимого для человеческого глаза. Для его преобразования в видимый свет на стенки колбы наносится люминофор (чаще всего используют соединения галофосфат кальция или ортофосфат кальция-цинка). При прохождении ультрафиолета через люминофор образуется яркий свет. Его светоотдача значительно превосходит свечение вольфрама в лампах накаливания при аналогичном энергопотреблении. Цвет зависит от состава люминофора.

В отличие от обычной лампы, энергосберегающие люминесцентные модели нельзя подсоединить напрямую к источнику тока 220 В. В выключенном состоянии пары ртути внутри колбы имеют очень большое сопротивление, поэтому для образования разряда необходимо подать импульс высокого напряжения. Кроме того, в момент запуска, сразу после возникновения разряда, лампа имеет большое отрицательное сопротивление, которое без защитных элементов в схеме может привести к короткому замыканию. Для трубчатых вариантов используется электромагнитный балласт, который устанавливается в сам светильник.

Составляющие схемы

Энергосберегающие лампы, создающие внутри помещения атмосферу дневного света, работают благодаря следующему строению. Помимо цоколя и колбы присутствует корпус, под которым скрывается электронная схема энергосберегающей лампы, она называется ЭПРА – электронный пускорегулирующий аппарат. На сегодняшний день он является наиболее надежным элементом для люминесцентных ламп, от его качества напрямую зависит ее долговечность. Подробная анатомия с описанием функций каждого элемента такова:

  • пусковой конденсатор – обеспечивает непосредственный старт лампы;
  • фильтры – поглощают радио- и прочие помехи, проникающие в схему вместе с электрическим током (предназначены для снижения мерцания и прочих сбоев в постоянной работе);
  • емкостный фильтр – отдельный фильтр, которые нейтрализует и сглаживает остаточные пульсации от выпрямления переменного тока (предназначен для устранения мерцания и обеспечения подачи в схему более стабильного тока, что значительно продлевает эксплуатационный срок лампы);
  • токоограничивающий дроссель – защищает электронную схему от чрезмерного тока, поддерживая его силу на постоянном уровне;
  • биполярные транзисторы;
  • плавковый предохранитель – предотвращает выход из строя и воспламенение электронной схемы при резком повышении напряжения в сети 220 В.

Из чего состоит ЭСЛ

Обратите внимание! Устройство энергосберегающих ламп аналогично, что на 15 Вт, что на 100 – 105 Вт и более. Промышленный 150-ваттный светильник имеет устойчивые к перепаду напряжения элементы, там может стоять более энергоэффективный пусковой механизм, компенсирующий большую мощность ЭСЛ.

Отличия люминесцентных ЭСЛ от ламп накаливания

  • У люминесцентных свечение люминофора значительно превосходит накал спирали вольфрама, поэтому при аналогичной мощности экономки будут светить гораздо ярче.
  • Почему лампы накаливания так греются? Их КПД очень малое, более 90% электроэнергии уходят на разогрев и поддержание накала вольфрамовой нити.
  • За счет возможности регулирования состава люминофора выбирают цвет свечения наиболее комфортный для человеческого глаза.
  • Из-за используемых веществ люминесцентные модели превосходят по сроку службы лампы накаливания почти в 20 раз.
  • Минимальная теплоотдача в экономках позволяет устанавливать их в компактные настольные светильники, декоративную подсветку и торшеры, для таких целей подойдут лампочки на 11 Вт, а также мощные на 20, 24 и 25 Вт. Их подключают даже от зарядного устройства или аккумулятора.
  • Максимальная яркость в лампах накаливания и светодиодных вариантах достигается сразу, а в экономках разогрев паров ртути может занять от 1 до 3 минут.
  • На морозе интенсивность свечения люминофора снижается почти в 2 раза.
  • Люминесцентные лампы не приспособлены к работе в помещениях, где часто пользуются выключателем, это грозит выходом из строя пускового конденсатора, и лампа может сгореть.
  • ЭСЛ не работают в схеме с диммерами, при падении напряжения они выключаются.

ЭСЛ и лампы накаливания к содержанию ↑

Ремонт энергосберегающих ламп своими руками

Если ЭСЛ перестала включаться, есть смысл попробовать самостоятельно восстановить ее работоспособность. Для этого необходимо выполнить разбор, аккуратно сняв цоколь и вытащив электронную схему из корпуса, затем нужно осмотреть ее на исправность. Разборка и ремонт выполняется путем замен вышедших из строя деталей.

  • Предохранитель. Является наиболее частой причиной поломки лампы. Его выгорание обычно определяется визуально. Проблема решается выпаиванием старого и установкой нового, аналогичной емкости.
  • Нити накала колбы. Для их проверки необходимо выпаять по одному выводу с каждого конца. Сопротивление каждой нити должно быть одинаковым. При обнаружении сгоревшей нити на параллельную спираль припаивается резистор с аналогичным сопротивлением, как у поврежденного участка.
  • С помощью мультимера или иного прибора необходимо проверить транзисторы, конденсаторы, диоды, триаки и стабилитроны. Они повреждаются во время сильной перегрузки или короткого замыкания. При обнаружении такого элемента – разобрать и перепаять на аналогичный, перед этим проверить заменяемую деталь.
  • При повреждении самой колбы необходимо правильно осуществить утилизацию – в обычных условиях ее восстановить невозможно.

Как устроена и работает энергосберегающая лампа

Энергосберегающие лампы сегодня все больше вымещают обычную лампочку накала практически во всех областях благодаря свой более экономной схеме потребления электроэнергии и долговечности.

Рассмотрим, какие разновидности подобного вида светильников существуют и чем они различаются, каким набор эксплуатационных параметров они характеризуются, каков принцип и устройство их работы, каковы основные составляющие схемы, а также как осуществляется процесс розжига в них.

Виды энергосберегающих ламп

К энергосберегающим бытовым лампам, как правило, относят люминесцентные приборы освещения. В большинстве случаев это компактные модели, оснащенные резьбовым цоколем Е27, Е14 и Е40 и характеризующиеся мощностью от 7 ватт и выше. Все виды светильников, попадающие в эту категорию, разделяются по двум основным признакам:

  1. Типу цоколя.
  2. Температуре цвета.

По типу фиксирующего в корпусе фонаря или люстры элемента энергосберегающие лампы подразделяются на резьбовые и штырьковые. Первые наиболее распространены в бытовых условиях и различаются по диаметру (14, 27, 40 мм и т. д.). В основном это изделия таких фирм, как Delux, Osram, Космос и др.

Для специфического вида светильников применяют двух- и четырехштырьковые энергосберегающие лампы. Они маркируются буквой D или G и цифровым значением. Основная сфера их применения – мощные схемы освещения в специфических условиях эксплуатации, например, для освещения стадиона.

По параметру температуры свечения энергосберегающие лампы работают в трех основных сегментах спектра:

  1. 2700К – тепло-белый. Отличается желтоватым оттенком, схожим с обычной лампой-накала.
  2. 4200К – естественно-белый. Прозрачный дневной свет. Является наиболее комфортным для зрительного восприятия.
  3. 6400К – холодно-белый. С примесью голубоватого свечения. Применяется в основном на мощных промышленных схемах подсветки.

Кроме того, существует градация энергосберегающих ламп по форме самой колбы – трубчатые, прямые, спиралеобразные, грушевидные, шарообразные, U-образные и другие. В маркировке таких моделей обязательно указывается диаметр трубки. Например, у Т12 поперечник соответствует значению в 38 мм.

Обратите внимание! Современные производители выпускают эконом-лампы в более широкой градуировке по температуре светового излучения. Сделано это для подборки наиболее комфортного варианта освещения с учетом специфики применения.

Основные эксплуатационные характеристики

При выборе энергосберегающих люминесцентных ламп большое влияние на сферу их дальнейшего применения оказывает следующие набор характеристик:

  1. Мощность. Варьируется в пределах от 7 до 100 Вт и свыше. Для бытовых условий достаточно моделей до 20 ватт (что сопоставимо по яркости с лампой накала в 5 раз сильнее!).
  2. Модификация цоколя. Выбирается, исходя из особенностей светильника.
  3. Геометрия колбы. Учитывается по параметрам прибора освещения и соответствия внешним условиям использования.
  4. Температура излучения. Зависит от назначения освещаемых предметов.
  5. Срок эксплуатации. Изменяется от 5 до 12 тыс. часов.

Важно! Энергосберегающая лампа в любой схеме освещения понижает энергопотребление на 80%. Отличается надежностью, долговечность, малыми размерами и небольшим коэффициентом теплообразования. Однако они имеют повышенную стоимость и могут легко выйти из строя при нарушении условий эксплуатации.

Принцип работы и устройство энергосберегающей лампы

Стеклянная колба люминесцентной лампы заполнена параобразной ртутью. Непосредственно в момент включения между двумя электродами на спирали образуется мощный плазменный разряд. В результате атомы газа-металла переходят в активное состояние и начинают излучать в ультрафиолетовом спектре. Последнее проходя через люминофор (светящееся вещество, нанесенное тонким слоем с обратной стороны стеклянной поверхности), трансформируется в световой поток (гораздо мощнее, чем от обычной лампы накала) в видимом спектре излучения.

На рисунке изображена схема трубчатой энергосберегающей люминесцентной лампы и ее основные компоненты.

При этом от обычного сетевого тока в 220В подобная инициация не происходит, так как пары ртути имеют сильное сопротивление и для их разгона требуется напряжение в несколько тысяч вольт. Поэтому в схеме лампы для этой цели всегда присутствует специальный модуль. Чтобы в результате такого сильного импульса не возникало короткое замыкание, применяется электромагнитный балласт.

Составляющие схемы

Стандартные бытовые энергосберегающий лампы любой мощности имеют одну схему работы и включают следующие элементы со своими особыми функциями:

  1. На пусковом конденсаторе происходит зажигание лампы.
  2. Фильтр электромагнитных помех предотвращает мерцание и прочие сбои, идущие из сети.
  3. Стабилизирующий фильтр-емкость обеспечивает подачу тока заданных параметров, тем самым продлевая срок эксплуатации прибора.
  4. Токоограничитель защищает схему от избытка напряжения и поддерживает его постоянное значение.
  5. Транзисторы биполярные.
  6. Предохранитель-резистор предотвращается электронику от резкого повышения напряжения в сети.

Основные компоненты энергосберегающей лампы показаны на рисунке ниже:

Если энергосберегающая лампа вдруг перестала светить, ее можно попытаться восстановить своими руками. Необходимо сделать ремонт колбы или электронной схемы. Для доступа запчастей потребуются другие аналогичные лампочки, для разборки – плоская отвертка, а для прозвонки компонентов – мультиметр. Особую осторожность нужно проявлять при контакте с колбой. Ни в коем случае нельзя ее повреждать, так как выход находящихся в ней паров ртути опасен для здоровья!

Как происходит зажигание

Процесс зажигания газа в колбе энергосберегающей лампы протекает по следующей схеме:

  1. После подачи тока на динистор, происходит разряд на транзистор, который его и открывает.
  2. Запускающий этап прошел – отрезок цепи закрывается диодом.
  3. Происходит разрядка конденсатора, что препятствует повторному открытию динистора.
  4. Транзисторы воздействуют на выполненного в виде кольца из фиррита с тремя обмотками трансформатор. При этом напряжение на них подается через конденсатор от повышающего резонансного контура.
  5. Излучение в колбе происходит на резонансной частоте, формируемой большеемкостным конденсатором.
  6. Во время зажигания значение напряжение составляет порядка 600 В. Целостность, прочность и герметичность колбы обеспечивает во время этого процесса защиту транзисторов.
  7. Как только процесс ионизации газа произошел во всем объеме, конденсатор с максимальной емкостью, определявший частоту светового потока, подвергается шунтированию.
  8. Процесс управления переходит ко второму конденсатору.
  9. Значение напряжения спадает до уровня, необходимого для поддержки горения.

Особенностью энергосберегающих ламп является универсальность электродов – они могут быть поочередно и катодом, и анодом. Такая схема позволяет сохранить бесперебойность функционирования всей электроцепи и облегчает починку, если она потребуется.

Основные выводы

Энергосберегающие лампы различаются по типу цоколя на резьбовые и штырьковые, по температуре цвета светового потока, а также по геометрическим параметрам и форме колбы. При этом среди ее основных эксплуатационных характеристик выделяются:

  1. Мощность.
  2. Вид цоколя.
  3. Форма колбы.
  4. Цветовая температура.
  5. Срок эксплуатации.

Работа энергосберегающей люминесцентной лампы основана на схеме розжига свечения паров ртути под действием высоковольтного напряжения, проходящего через спираль накала. Ее главными особенностями являются долговечность, экономия, равномерное яркое свечение и возможность самостоятельного ремонта.

Если вам известна иная схема энергосберегающей лампы или вы просто хотите поделиться полезной информацией, обязательно напишите об этом в комментариях.

Устройство энергосберегающей лампы. Схема и ремонт.

Схема и ремонт люминесцентных энергосберегающих ламп

В настоящее время всё большее распространение получают так называемые люминесцентные энергосберегающие лампы. В отличие от обычных люминесцентных ламп с электромагнитным балластом, в энергосберегающих лампах с электронным балластом используется специальная схема.

Благодаря этому такие лампы легко установить в патрон взамен обычной лампочки накаливания со стандартным цоколем E27 и E14. Именно о бытовых люминесцентных лампах с электронным балластом далее и пойдёт речь.

Отличительные особенности люминесцентных ламп от обычных ламп накаливания.

Люминесцентные лампы не зря называют энергосберегающими, так как их применение позволяет снизить энергопотребление на 20 – 25 % . Их спектр излучения более соответствует естественному дневному свету. В зависимости от состава применяемого люминофора можно изготавливать лампы с разным оттенком свечения, как более тёплых тонов, так и холодных. Следует отметить, что люминесцентные лампы более долговечны, чем лампы накаливания. Конечно, многое зависит от качества конструкции и технологии изготовления.

Устройство компактной люминесцентной лампы (КЛЛ).

Компактная люминесцентная лампа с электронным балластом (сокращённо КЛЛ) состоит из колбы, электронной платы и цоколя E27 (E14), с помощью которого она устанавливается в стандартном патроне.

Внутри корпуса размещается круглая печатная плата, на которой собран высокочастотный преобразователь. Преобразователь при номинальной нагрузке имеет частоту 40 – 60 кГц . В результате того, что используется довольно высокая частота преобразования, устраняется “моргание”, свойственное люминесцентным лампам с электромагнитным балластом (на основе дросселя), которые работают на частоте электросети 50 Гц. Принципиальная схема КЛЛ показана на рисунке.

По данной принципиальной схеме собираются в основном достаточно дешёвые модели, к примеру, выпускаемые под брендом Navigator и ERA. Если вы используете компактные люминесцентные лампы, то, скорее всего они собраны по приведённой схеме. Разброс указанных на схеме значений параметров резисторов и конденсаторов реально существует. Это связано с тем, что для ламп разной мощности применяются элементы с разными параметрами. В остальном схемотехника таких ламп мало чем отличается.

Разберёмся подробнее в назначении радиоэлементов, показанных на схеме. На транзисторах VT1 и VT2 собран высокочастотный генератор. В качестве транзисторов VT1 и VT2 используются кремниевые высоковольтные n-p-n транзисторы серии MJE13003 в корпусе TO-126. Обычно на корпусе этих транзисторов указываются только цифровой индекс 13003 . Также могут применяться транзисторы MPSA42 в более миниатюрном корпусе формата TO-92 или аналогичные высоковольтные транзисторы.

Миниатюрный симметричный динистор DB3 (VS1) служит для автозапуска преобразователя в момент подачи питания. Внешне динистор DB3 выглядит как миниатюрный диод. Схема автозапуска необходима, т.к преобразователь собран по схеме с обратной связью по току и поэтому сам не запускается. В маломощных лампах динистор может отсутствовать вообще.

Диодный мост, выполненный на элементах VD1 – VD4 служит для выпрямления переменного тока. Электролитический конденсатор С2 сглаживает пульсации выпрямленного напряжения. Диодный мост и конденсатор С2 являются простейшим сетевым выпрямителем. С конденсатора C2 постоянное напряжение поступает на преобразователь. Диодный мост может выполняться как на отдельных элементах (4 диодах), либо может применяться диодная сборка.

При своей работе преобразователь генерирует высокочастотные помехи, которые нежелательны. Конденсатор С1, дроссель (катушка индуктивности) L1 и резистор R1 препятствуют распространению высокочастотных помех по электросети. В некоторых лампах, видимо из экономии 🙂 вместо L1 устанавливают проволочную перемычку. Также, во многих моделях нет предохранителя FU1, который указан на схеме. В таких случаях, разрывной резистор R1 также играет роль простейшего предохранителя. В случае неисправности электронной схемы потребляемый ток превышает определённое значение, и резистор сгорает, разрывая цепь.

Дроссель L2 обычно собран на Ш-образном ферритовом магнитопроводе и внешне выглядит как миниатюрный броневой трансформатор. На печатной плате этот дроссель занимает довольно внушительное пространство. Обмотка дросселя L2 содержит 200 – 400 витков провода диаметром 0,2 мм. Также на печатной плате можно найти трансформатор, который указан на схеме как T1. Трансформатор T1 собран на кольцевом магнитопроводе с наружным диаметром около 10 мм. На трансформаторе намотаны 3 обмотки монтажным или обмоточным проводом диаметром 0,3 – 0,4 мм. Число витков каждой обмотки колеблется от 2 – 3 до 6 – 10.

Колба люминесцентной лампы имеет 4 вывода от 2 спиралей. Выводы спиралей подключаются к электронной плате методом холодной скрутки, т.е без пайки и прикручены на жёсткие проволочные штыри, которые впаяны в плату. В лампах малой мощности, имеющих малые габариты, выводы спиралей запаиваются непосредственно в электронную плату.

Ремонт бытовых люминесцентных ламп с электронным балластом.

Производители компактных люминесцентных ламп заявляют, что их ресурс в несколько раз больше, чем обычных ламп накаливания. Но, несмотря на это бытовые люминесцентные лампы с электронным балластом выходят из строя довольно часто.

Связано это с тем, что в них применяются электронные компоненты, не рассчитанные на перегрузки. Также стоит отметить высокий процент бракованных изделий и невысокое качество изготовления. По сравнению с лампами накаливания стоимость люминесцентных довольно высока, поэтому ремонт таких ламп оправдан хотя бы в личных целях. Практика показывает, что причиной выхода из строя служит в основном неисправность электронной части (преобразователя). После несложного ремонта работоспособность КЛЛ полностью восстанавливается и это позволяет сократить денежные расходы.

Перед тем, как начать рассказ о ремонте КЛЛ, затронем тему экологии и безопасности.

Опасность люминесцентных ламп и рекомендации по использованию.

Несмотря на свои положительные качества люминесцентные лампы вредны как для окружающей среды, так и для здоровья человека. Дело в том, что в колбе присутствуют пары ртути. Если её разбить, то опасные пары ртути попадут в окружающую среду и, возможно, в организм человека. Ртуть относят к веществам 1-ого класса опасности .

При повреждении колбы необходимо покинуть на 15 – 20 минут помещение и сразу же провести принудительное проветривание комнаты. Необходимо внимательно относиться к эксплуатации любых люминесцентных ламп. Следует помнить, что соединения ртути, применяемые в энергосберегающих лампах опаснее обычной металлической ртути. Ртуть способна оставаться в организме человека и наносить вред здоровью .

Кроме указанного недостатка необходимо отметить, что в спектре излучения люминесцентной лампы присутствует вредное ультрафиолетовое излучение. При длительном нахождении близко с включенной люминесцентной лампой возможно раздражение кожи, так как она чувствительна к ультрафиолету.

Наличие в колбе высокотоксичных соединений ртути является главным мотивом экологов, которые призывают сократить производство люминесцентных ламп и переходить к более безопасным светодиодным.

Разборка люминесцентной лампы с электронным балластом.

Несмотря на простоту разборки компактной люминесцентной лампы, следует быть аккуратным и не допускать разбития колбы. Как уже говорилось, внутри колбы присутствуют пары ртути, опасные для здоровья. К сожалению, прочность стеклянных колб невысока и оставляет желать лучшего.

Для того чтобы вскрыть корпус где размещена электронная схема преобразователя, необходимо острым предметом (узкой отвёрткой) разжать пластмассовую защёлку, которая скрепляет две пластмассовые части корпуса.

Далее следует отсоединить выводы спиралей от основной электронной схемы. Делать это лучше узкими плоскогубцами подхватив конец вывода провода спирали и отмотать витки с проволочных штырей. После этого стеклянную колбу лучше поместить в надёжное место, чтобы не допустить её разбития.

Оставшаяся электронная плата соединена двумя проводниками со второй частью корпуса, на которой смонтирован стандартный цоколь E27 (E14).

Восстановление работоспособности ламп с электронным балластом.

При восстановлении КЛЛ первым делом следует проверить целостность нитей накала (спиралей) внутри стеклянной колбы. Целостность нитей накала просто проверить с помощью обычного омметра. Если сопротивление нитей мало (единицы Ом), то нить исправна. Если же при замере сопротивление бесконечно велико, то нить накала перегорела и применить колбу в данном случае невозможно.

Наиболее уязвимыми компонентами электронного преобразователя, выполненного на основе уже описанной схемы (см. принципиальную схему), являются конденсаторы.

Если люминесцентная лампа не включается, то следует проверить на пробой конденсаторы C3, C4, C5. При перегрузках эти конденсаторы выходят из строя, т.к приложенное напряжение превосходит напряжение, на которое они рассчитаны. Если лампа не включается, но колба светиться в районе электродов, то возможно пробит конденсатор C5.

В таком случае преобразователь исправен, но поскольку конденсатор пробит, то в колбе не возникает разряд. Конденсатор C5 входит в колебательный контур, в котором в момент запуска возникает высоковольтный импульс, приводящий к появлению разряда. Поэтому если конденсатор пробит, то лампа не сможет нормально перейти в рабочий режим, а в районе спиралей будет наблюдаться свечение, вызываемое разогревом спиралей.

Холодный и горячий режим запуска люминесцентных ламп.

Бытовые люминесцентные лампы бывают двух типов:

С холодным запуском

С горячим запуском

Если КЛЛ загорается сразу после включения, то в ней реализован холодный запуск. Данный режим плох тем, что в таком режиме катоды лампы предварительно не прогреваются. Это может привести к перегоранию нитей накала вследствие протекания импульса тока.

Для люминесцентных ламп более предпочтителен горячий запуск. При горячем запуске лампа загорается плавно, в течение 1-3 секунд. В течение этих несколько секунд происходит разогрев нитей накала. Известно, что холодная нить накала имеет меньшее сопротивление, чем разогретая. Поэтому, при холодном запуске через нить накала проходит значительный импульс тока, который может со временем вызвать её перегорание.

Для обычных ламп накаливания холодный запуск является стандартным, поэтому многие знают, что они сгорают как раз в момент включения.

Для реализации горячего запуска в лампах с электронным балластом применяется следующая схема. Последовательно с нитями накала включается позистор (PTC — терморезистор). На принципиальной схеме этот позистор будет подключен параллельно конденсатору С5.

В момент включения в результате резонанса на конденсаторе С5, а, следовательно, и на электродах лампы возникает высокое напряжение, необходимое для её зажжения. Но в таком случае нити накала плохо прогреты. Лампа включается мгновенно. В данном случае параллельно С5 подключен позистор. В момент запуска позистор имеет низкое сопротивление и добротность контура L2C5 значительно меньше.

В результате напряжение резонанса ниже порога зажжения. В течение нескольких секунд позистор разогревается и его сопротивление увеличивается. В это же время разогреваются и нити накала. Добротность контура возрастает и, следовательно, растёт напряжение на электродах. Происходит плавный горячий запуск лампы. В рабочем режиме позистор имеет высокое сопротивление и не влияет на рабочий режим.

Нередки случаи, что выходит из строя как раз этот позистор, и лампа попросту не включается. Поэтому при ремонте ламп с балластом следует обратить на него внимание.

Довольно часто сгорает низкоомный резистор R1, который, как уже говорилось, играет роль предохранителя.

Активные элементы, такие как транзисторы VT1, VT2, диоды выпрямительного моста VD1 –VD4 также стоит проверить. Как правило, причиной их неисправности служит электрический пробой p-n переходов. Динистор VS1 и электролитический конденсатор С2 на практике редко выходят из строя.

Энергосберегающие лампы устройство и принцип действия

Устройство энергосберегающих ламп

Конструкция энергосберегающей лампы похожа на люминесцентные лампы, они также имеют газовую трубку и электронную пускорегулирующую аппаратуру. Такая же газовая колба с люминофором излучает свет. Внутри трубки по краям впаяны нити накала. Сама люминесцентная трубка наполнена парами ртути и инертным газом, а внутренние стенки покрыты слоями люминофора, излучающий видимый свет.

Устройство энергосберегающей лампы

Газоразрядная трубка скручена в спираль для уменьшения размера и встроена в термостойкий пластиковый корпус, содержащий электронную пускорегулирующую схему с источником питание (электронный балласт). Энергосберегающие лампы выпускаются со стандартными типами цоколя. Самыми распространенными из которых является цоколи типа E27 с диаметром резьбы 27 мм, E14 c резьбой 14 мм и 40мм для мощных ламп с диаметром резьбы 40 мм.

Типы цоколей энергосберегающих ламп

В корпусе лампы экономки установлена круглая электронная печатная плата, трансформатор, транзисторы, диоды, а также предохранитель. Предохранитель может быть заменен на низкоомный резистор в изоляционной трубке, и идущий от цоколя лампы.

Такой низкоомный резистор работает также, как и предохранитель, при превышении тока потребления в аварийных случаях, он перегорает. На плате имеются штыри, к которым прикручены вывода от нитей накала, без пайки.

Принцип действия энергосберегающей лампы

При подаче напряжения на экономку, нити накала нагреваются до 1000°C и создают поток электронов, который сталкиваясь с молекулами инертного газа и парами ртути, разогревает их, пары ртути начинают светиться в ультрафиолете, невидимом для человека.

В свою очередь излучение ультрафиолета вызывает свечение люминофора, но уже в видимым для человека диапазоне. Цвет свечения лампы зависит от типа люминофора.

Электронная плата экономки

Колба лампы содержит опасные пары ртути, поэтому осколки лампы и место ее падения нужно тщательно убрать и утилизировать все остатки лампы. Энергосберегающие лампы могут загораться сразу после включения или разгораться в течении нескольких секунд.

Такой тип включения экономок зависит от электронной схемы. Вариант плавного включения накала предпочтителен, так при постепенном разогреве нити накала, она меньше разрушается и срок эксплуатации лампы увеличивается.

Обычные люминесцентные лампы с дроссельным запуском моргают с частотой 100 Гц. Человеку такое мигание незаметно, потому что зрение имеет инерционность. Однако это мигание света с частотой 100 Гц вызывает усталость глаз, слезоточивость.

Принцип действия энергосберегающей лампы

У лампы экономки на накал подается напряжение с преобразователя, частотой 30 – 100 кГц, что не является вредным для глаз. На нить накала энергосберегающих ламп поступает переменное напряжение, что значительно увеличивает их срок службы.

При постоянном напряжении накала за счет эмиссии происходит истощение оксидного слоя катода и его разрушение. Поэтому выбрано переменное напряжение питания нити накала, когда полярность накала меняется с частотой преобразователя и срок эксплуатации ламп значительно увеличивается.