Классификация диодов по мощности
Диоды и их разновидности
Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод — катод, один из которых обладает электропроводностью типа р, а другой — n.
Чтобы представить как работает диод, возьмем для примера ситуацию с накачиванием колеса при помощи насоса. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью – это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении (в обратном направлении тоже пропускает, но совсем маленький)
Внутреннее сопротивление диода (открытого) — величина непостоянная, она зависит от прямого напряжения приложенного к диоду. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом.
Отмечу сразу, что вдаваться в подробности и сильно углубляться, строить графики, писать формулы мы не будем – рассмотрим все поверхностно. В данной статье рассмотрим разновидности диодов, а именно светодиоды, стабилитроны, варикапы, диоды Шоттки и др.
Диоды
Обозначаются на схемах вот так:
Треугольная часть является АНОД’ом, а черточка это КАТОД. Анод это плюс, катод – минус. Диоды например, используют в блоках питания для выпрямления переменного тока, при помощи диодного моста можно превратить переменной ток в постоянный, применяются для защиты разных устройств от неправильной полярности включения и т. п.
Диодный мост представляет собой 4 диода, которые подключаются последовательно, причем два диода из этих четырех включены встречно, посмотрите на рисунки ниже.
Именно так и обозначается диодный мост, правда в некоторых схемах обозначают сокращенным вариантом:
подключаются к трансформатору, на схеме это будет выглядеть вот так:
Диодный мост предназначен для преобразования, чаще говорят для выпрямления переменного тока в постоянный. Такое выпрямление называется двухполупериодным. Принцип работы диодного моста заключается в пропускании положительной полуволны переменного напряжения положительными диодами и обрезании отрицательной полуволны отрицательными диодами. Поэтому на выходе выпрямителя образуется немного пульсирующее положительное напряжение с постоянной величиной.
Для того, чтобы этих пульсаций не было, ставят электролитические конденсаторы. после добавления конденсатора напряжение немного увеличивается, но отвлекаться не будем, про конденсаторы можете почитать здесь.
Диодные мосты применяют для питания радиоаппаратуры, применяются в блоках питания и зарядных устройствах. Как уже говорил, диодный мост можно составить из четырех одинаковых диодов, но продаются и готовые диодные мосты, выглядят они вот так:
Диод Шоттки
Диоды Шоттки имеют очень малое падение напряжения и обладают повышенным быстродействием по сравнению с обычными диодами.
Ставить вместо диода Шоттки обычный диод не рекомендуется, обычный диод может быстро выйти из строя. Обозначается на схемах такой диод так:
Стабилитрон
Стабилитрон препятствует превышению напряжения выше определённого порога на конкретном участке схемы. Может выполнять как защитные так и ограничительные функции, работают они только в цепях постоянного тока. При подключении следует соблюдать полярность. Однотипные стабилитроны можно соединять последовательно для повышения стабилизируемого напряжения или образования делителя напряжений.
Стабилитроны на схемах обозначаются следующим образом:
Основным параметром стабилитронов является напряжение стабилизации, стабилитроны имеют различные напряжения стабилизации, например 3в, 5в, 8.2в, 12в, 18в и т.п.
Варикап
Варикап (по другому емкостной диод) меняет своё сопротивление в зависимости от поданного на него напряжения. Применяется как управляемый конденсатор переменной емкости, например, для настройки высокочастотных колебательных контуров.
Тиристор
Тиристор имеет два устойчивых состояния: 1) закрытое, то есть состояние низкой проводимости, 2) открытое, то есть состояние высокой проводимости. Другими словами он способен под действием сигнала переходить из закрытого состояния в открытое.
Тиристор имеет три вывода, кроме Анода и Катода еще и управляющий электрод — используется для перевода тиристора во включенное состояние. Современные импортные тиристоры выпускаются и в корпусах ТО-220 и ТО-92.
Тиристоры часто используются в схемах для регулировки мощностей, для плавного пуска двигателей или включения лампочек. Тиристоры позволяют управлять большими токами. У некоторых типов тиристоров максимальный прямой ток достигает 5000 А и более, а значение напряжений в закрытом состоянии до 5 кВ. Мощные силовые тиристоры вида Т143(500-16) применяются в шкафах управления эл.двигателями, частотниках.
Симистор
Симистор используется в системах, питающихся переменным напряжением, его можно представить как два тиристора, которые включены встречно-параллельно. Симистор пропускает ток в обоих направлениях.
Светодиод
Светодиод излучает свет при пропускании через него электрического тока. Светодиоды применяются в устройствах индикации приборов, в электронных компонентах (оптронах), сотовых телефонах для подсветки дисплея и клавиатуры, мощные светодиоды используют как источник света в фонарях и т.д. Светодиоды бывают разного цвета свечения, RGB и т.д.
Обозначение на схемах:
Подробнее про светодиоды можно почитать здесь.
Инфракрасный диод
Инфракрасные светодиоды (сокращенно ИК диоды) излучают свет в инфракрасном диапазоне . Области применения инфракрасных светодиодов это оптические контрольно-измерительные приборы, устройства дистанционного управления, оптронные коммутационные устройства, беспроводные линии связи. Ик диоды обозначаются так же как и светодиоды.
Инфракрасные диоды излучают свет вне видимого диапазона, свечение ИК диода можно увидеть и посмотреть например через камеру сотового телефона, данные диоды так же применяют в камерах видеонаблюдения, особенно на уличных камерах чтобы в темное время суток была видна картинка.
Фотодиод
Фотодиод преобразует свет попавший на его фоточувствительную область, в электрический ток, находит применение в преобразовании света в электрический сигнал.
Фото диоды (а так же фоторезисторы, фототранзисторы) можно сравнить с солнечными батареями. Обозначаются на схемах так:
Полупроводниковые диоды: виды и характеристики
Для контроля направления электрического тока необходимо применять разные радио и электро детали. В частности, современная электроника использует с такой целью полупроводниковый диод, его применение обеспечивает ровный ток.
Устройство
Полупроводниковый электрический диод или диодный вентиль – это устройство, которое выполнено из полупроводниковых материалов (как правило, из кремния) и работает только с односторонним потоком заряженных частиц. Основным компонентом является кристаллическая часть, с p-n переходом, которая подключена к двум электрическими контактами. Трубки вакуумного диода имеют два электрода: пластину (анод) и нагретый катод.
Фото — полупроводниковый диод
Для создания полупроводниковых диодов используются германий и селен, как и более 100 лет назад. Их структура позволяет использовать детали для улучшения электронных схем, преобразования переменного и постоянного тока в однонаправленный пульсирующий и для совершенствования разных устройств. На схеме он выглядит так:
Фото — обозначение диода
Существуют разные виды полупроводниковых диодов, их классификация зависит от материала, принципа работы и области использования: стабилитроны, импульсные, сплавные, точечные, варикапы, лазер и прочие типы. Довольно часто используются аналоги мостов – это плоскостной и поликристаллический выпрямители. Их сообщение также производится при помощи двух контактов.
Основные преимущества полупроводникового диода:
- Полная взаимозаменяемость;
- Отличные пропускные параметры;
- Доступность. Их можно купить в любом магазине электро-товаров или снять бесплатно со старых схем. Цена начинается от 50 рублей. В наших магазинах представлены как отечественные марки (КД102, КД103, и т. д.), так и зарубежные.
Маркировка
Маркировка полупроводникового диода представляет собой аббревиатуру от основных параметров устройства. Например, КД196В – кремниевый диод с напряжением пробоя до 0,3 В, напряжением 9,6, модель третьей разработки.
Исходя из этого:
- Первая буква определяет материал, из которого изготовлен прибор;
- Наименование устройства;
- Цифра, определяющая назначение;
- Напряжение прибора;
- Число, которое определяет прочие параметры (зависит от типа детали).
Видео: применение диодов
Принцип работы
Полупроводниковые или выпрямительные диоды имеют довольно простой принцип работы. Как мы уже говорили, диод изготовлен из кремния таким образом, что один его конец p-типа, а другой конец типа n. Это означает, что оба контакта имеют различные характеристики. На одном наблюдается избыток электронов, в то время как другой имеет избыток отверстий. Естественно, в устройстве есть участок, в котором все электроны заполняют определенные пробелы. Это означает, что внешние заряды отсутствуют. В связи с тем, что эта область обедняется носителями заряда и известна как объединяющий участок.
Фото — принцип работы
Несмотря на то, что объединяющий участок очень мал, (часто его размер составляет несколько тысячных долей миллиметра), ток не может протекать в нем в обычном режиме. Если напряжение подается так, что площадь типа p становится положительной, а тип n, соответственно, отрицательной, отверстия переходят к отрицательному полюсу и помогают электронам перейти через объединяющий участок. Точно так же электроны движутся к положительному контакту и как бы обходят объединительный. Несмотря на то, что все частицы движутся с разным зарядом в разном направлении, в итоге они образуют однонаправленный ток, что помогает выпрямить сигнал и предупредить скачки напряжения на контактах диода.
Если напряжение прикладывается к полупроводниковому диоду в противоположном направлении, ток не будет проходить по нему. Причина заключается в том, что отверстия привлекаются отрицательным потенциалом, который находится в области р-типа. Аналогично электроны притягиваются к положительному потенциалу, который применяется к области n-типа. Это заставляет объединяющий участок увеличиваться в размере, из-за чего поток направленных частиц становится невозможным.
Фото — характеристики полупроводников
ВАХ-характеристики
Вольт амперная характеристика полупроводникового диода зависит от материала, из которого он изготовлен и некоторых параметров. Например, идеальный полупроводниковый выпрямитель или диод имеет следующие параметры:
- Сопротивление при прямом подключении – 0 Ом;
- Тепловой потенциал – VG = +-0,1 В.;
- На прямом участке RD > rD, т. е. прямое сопротивление больше, чем дифференциальное.
Если все параметры соответствуют, то получается такой график:
Фото — ВАХ идеального диода
Такой диод использует цифровая электротехника, лазерная индустрия, также его применяют при разработке медицинского оборудования. Он необходим при высоких требованиях к логическим функциям. Примеры – лазерный диод, фотодиод.
На практике, эти параметры очень отличаются от реальных. Многие приборы просто не способны работать с такой высокой точностью, либо такие требования не нужны. Эквивалентная схема характеристики реального полупроводника демонстрирует, что у него есть серьезные недостатки:
Фото — ВАХ в реальном полупроводниковом диоде
Данная ВАХ полупроводникового диода говорит о том, что во время прямого включения, контакты должны достигнуть максимального напряжения. Тогда полупроводник откроется для пропуска электронных заряженных частиц. Эти свойства также демонстрируют, что ток будет протекать нормально и без перебоев. Но до момента достижения соответствия всех параметров, диод не проводит ток. При этом у кремниевого выпрямителя вольтаж варьируется в пределах 0,7, а у германиевого – 0,3 Вольт.
Работа прибора очень зависит от уровня максимального прямого тока, который может пройти через диод. На схеме он определяется ID_MAX. Прибора так устроен, что во время включения прямым путем, он может выдержать только электрический ток ограниченной силы. В противном случае, выпрямитель перегреется и перегорит, как самый обычный светодиод. Для контроля температуры используются разные виды устройств. Естественно, некоторые из них влияют на проводимость, но зато продлевают работоспособность диода.
Еще одним недостатком является то, что при пропуске переменного тока, диод не является идеальным изолирующим устройством. Он работает только в одном направлении, но всегда нужно учитывать ток утечки. Его формула зависит от остальных параметров используемого диода. Чаще всего схемы его обозначают, как IOP. Исследование независимых экспертов установило, что германиевые пропускают до 200 µА, а кремниевые до 30 µА. При этом многие импортные модели ограничиваются утечкой в 0.5 µА.
Фото — отечественные диоды
Все разновидности диодов поддаются напряжению пробой. Это свойство сети, которое характеризуется ограниченным напряжением. Любой стабилизирующий прибор должен его выдерживать (стабилитрон, транзистор, тиристор, диодный мост и конденсатор). Когда внешняя разница потенциалов контактов выпрямительного полупроводникового диода значительно выше ограниченного напряжения, то диод становится проводником, в одну секунду снижая сопротивление до минимума. Назначение устройства не позволяет ему делать такие резкие скачки, иначе это исказить ВАХ.
ДИОДЫ
До 1948 г. (года изобретения биполярного транзистора) существовал лишь один полупроводниковый прибор — кристаллический детектор, который использовался в высокочастотной аппаратуре. Название этого прибора — кристадин; это первый полупроводниковый прибор — диод. Если дать краткое определение диода, то можно сказать, что диод — это полупроводниковый прибор с одним р-п-переходом.
Классификация диодов
По назначению диоды можно разделить на выпрямительные, универсальные, импульсные, сверхвысокочастотные (СВЧ), стабилитроны, варикапы и т. д. Более грубая классификация включает в себя выпрямительные, высокочастотные и специальные диоды, к которым можно отнести все остальные виды диодов.
По частотному диапазону: низкочастотные (выпрямительные) /шах 10 4 Гц, высокочастотные (в том числе и импульсные диоды) /шах >104 Гц> ДИОДЫ СВЧ.
По мощности рассеяния: маломощные Р 10 Вт (1пр ср тах > 10 А).
По принципу действия: лавинно-пролетный; туннельный; диод Шот- тки; излучающий диод; фотодиод; диод Ганна.
По технологии изготовления: точечные; плоскостные; сплавные; диффузионные; эпитаксиальные; мезадиоды.
По исходному материалу различают — германиевые (буква Г, рабочий диапазон температур от -60 до +60 °С, либо цифра 1, рабочий диапазон температур от -60 до +75 °С); кремневые (буква К, рабочий диапазон температур от -60 до +85 °С, либо цифра 2, рабочий диапазон температур от -60 до +125 °С)); арсенид-галлиевые (буква А, рабочий диапазон температур от -60 до +200 °С, либо цифра 3, рабочий диапазон температур от -60 до +800 °С); антимонид-галлиевые и индиевые и др.
Исходный полупроводниковый материал является первой буквой (или цифрой) при маркировке приборов. Далее приведем маркировку современных диодов и приборов более позднего периода в хронологическом порядке.
С 1981 г. маркировка российских диодов содержит пять элементов:
- • 1 — цифра или буква — материал 1, 2, 3, 4 (Г, К, А, И).
- • 2 — Д — выпрямительные, универсальные, импульсные;
Н — диодные тиристоры;
У — триодные тиристоры;
Г — генераторы шума;
К — стабилизаторы тока;
Ц — столбы (маломощные 101—199, средней мощности 201—299) и блоки (маломощные 301—399, средней мощности 401—499, мощные 501—599).
- • 3 — цифра от 1 до 9 в пределах каждого подкласса, описывающая прибор в данном подклассе.
- • 4 — порядковый номер разработки 01—99. Допускается использовать трехзначные цифры от 101 до 999 — расширено.
- • 5 — А — Я — кроме букв, сходных с цифрами 0, 3, 4 — разновидности параметров прибора.
Буква «С» после «2» — сборка.
Цифра 1—6 — после «5» — для бескорпусных приборов — модификация конструкции. Буква «Р» после «5» — для СВЧ-диодов с парным подбором, «Г» — с четверками, «К» — с шестерками.
Примеры маркировки диодов:
ГД412А — германиевый (Г), диод (Д), универсальный (4), номер разработки 12, группа А;
КД215А — кремниевый (К), диод (Д), выпрямительный (2), номер разработки 15, группа А;
КС 196В — кремниевый (К), стабилитрон (С), мощность рассеяния не более 0,3 Вт (1), номинальное напряжение стабилизации 9,6 В (96), третья разработка (В).
Для полупроводниковых диодов с малыми размерами корпуса используется цветная маркировка в виде меток, наносимых на корпус прибора. Условные графические обозначения диодов даны на рис. 2.1.
Импортные диоды обозначаются по одной из трех систем: американской — PRO electron, европейской — JEDEC и японской — JIS.
Рис. 2.1. Условные графические обозначения полупроводниковых
- 1 — выпрямительный и импульсный диод; 2 — стабилитрон и стабистор;
- 3 — симметричный стабилитрон; 4 — диод Шоттки; 5 — варикап;
- 6 — туннельный диод; 7 — излучающий диод (светодиод); 8 — фотодиод.
Характеристики диодов, конструкции и особенности применения
Характеристики диодов, конструкции и особенности применения
В предыдущей статье мы начали знакомство с полупроводниковым диодом. В этой статье мы рассмотрим свойства диодов, их достоинства и недостатки, различные конструкции и особенности применения в электронных схемах.
Вольтамперная характеристика диода
Вольтамперная характеристика (ВАХ) полупроводникового диода показана на рисунке 1.
Здесь в одном рисунке показаны ВАХ германиевого (синим цветом) и кремниевого (черным цветом) диодов. Нетрудно заметить, что характеристики очень похожи. На координатных осях нет никаких цифр, поскольку для разных типов диодов они могут существенно различаться: мощный диод может пропустить прямой ток в несколько десятков ампер, в то время как маломощный всего несколько десятков или сотен миллиампер.
Диодов разных моделей великое множество, и все они могут иметь разное назначение, хотя основной их задачей, основным свойством является обеспечение односторонней проводимости тока. Именно это свойство позволяет использовать диоды в выпрямителях и детекторных устройствах. Следует, однако, заметить, что в настоящее время германиевые диоды, равно как и транзисторы вышли из употребления.
Рисунок 1. Вольтамперная характеристика диода
Прямая ветвь ВАХ
В первом квадранте системы координат расположена прямая ветвь характеристики, когда диод находится в прямом включении, — к аноду подключен положительный вывод источника тока, соответственно отрицательный вывод к катоду.
По мере увеличения прямого напряжения Uпр, начинает возрастать и прямой ток Iпр. Но пока это возрастание незначительно, линия графика имеет незначительный подъем, напряжение растет значительно быстрее, чем ток. Другими словами, несмотря на то, что диод включен в прямом направлении, ток через него не идет, диод практически заперт.
При достижении определенного уровня напряжения на характеристике появляется излом: напряжение практически не меняется, а ток стремительно растет. Это напряжение называется прямым падением напряжения на диоде, на характеристике обозначено как Uд. Для большинства современных диодов это напряжение находится в пределах 0,5…1В.
На рисунке видно, что для германиевого диода прямое напряжение несколько меньше (0,3…0,4В), чем для кремниевого (0,7…1,1В). Если прямой ток через диод умножить на прямое напряжение, то полученный результат будет не что иное, как мощность, рассеиваемая на диоде Pд = Uд * I.
Если эта мощность будет превышена относительно допустимой, то может произойти перегрев и разрушение p-n перехода. Именно поэтому в справочниках ограничивается максимальный прямой ток, а не мощность (считается, что прямое напряжение известно). Для отведения излишнего тепла мощные диоды устанавливаются на теплоотводы — радиаторы.
Мощность, рассеиваемая на диоде
Сказанное поясняет рисунок 2, на котором показано включение нагрузки, в данном случае лампочки, через диод.
Рисунок 2. Включение нагрузки через диод
Представьте себе, что номинальное напряжение батарейки и лампочки 4,5В. При таком включении на диоде упадет 1В, тогда до лампочки дойдет лишь 3,5В. Конечно, такую схему никто практически собирать не будет, это просто для иллюстрации, как и на что влияет прямое напряжение на диоде.
Предположим, что лампочка ограничила ток в цепи на уровне ровно в 1А. Это для простоты расчета. Также не будем принимать во внимание то, что лампочка является элементом нелинейным, и закону Ома не подчиняется (сопротивление спирали зависит от температуры).
Нетрудно подсчитать, что при таких напряжениях и токах на диоде рассеивается мощность P = Uд * I или 1В * 1А = 1Вт. В то же время мощность на нагрузке всего 3,5В * 1А = 3,5Вт. Получается, что бесполезно расходуется 28 с лишним процентов энергии, больше, чем четвертая часть.
Если прямой ток через диод будет 10…20А, то бесполезно будет расходоваться до 20Вт мощности! Такую мощность имеет маленький паяльник. В описанном случае таким паяльником будет диод.
Диоды Шоттки
Совершенно очевидно, что избавиться от таких потерь можно, если снизить прямое падение напряжения на диоде Uд. Такие диоды получили название диодов Шоттки по имени изобретателя немецкого физика Вальтера Шоттки. Вместо p-n перехода в них используется переход металл – полупроводник. Эти диоды имеют прямое падение напряжения 0,2…0,4В, что значительно снижает мощность, выделяющуюся на диоде.
Единственным, пожалуй, недостатком диодов Шоттки является низкое обратное напряжение, — всего несколько десятков вольт. Максимальное значение обратного напряжения 250В имеет промышленный образец MBR40250 и его аналоги. Практически все блоки питания современной электронной аппаратуры имеют выпрямители на диодах Шоттки.
Обратная ветвь ВАХ
Одним из недостатков следует считать то, что даже при включении диода в обратном направлении через него все равно протекает обратный ток, ведь идеальных изоляторов в природе не бывает. В зависимости от модели диода он может варьироваться от наноампер до единиц микроампер.
Вместе с обратным током на диоде выделяется некоторая мощность, численно равная произведению обратного тока на обратное напряжение. Если эта мощность будет превышена, то возможен пробой p-n перехода, диод превращается в обычный резистор или даже проводник. На обратной ветви ВАХ этой точке соответствует загиб характеристики вниз.
Обычно в справочниках указывается не мощность, а некоторое предельно допустимое обратное напряжение. Примерно так же, как ограничение прямого тока, о котором было сказано чуть выше.
Собственно зачастую именно эти два параметра, а именно прямой ток и обратное напряжение и являются определяющими факторами при выборе конкретного диода. Это на тот случай, когда диод предназначается для работы на низкой частоте, например выпрямитель напряжения с частотой промышленной сети 50…60Гц.
Электрическая емкость p-n перехода
При использовании диодов в высокочастотных цепях приходится помнить о том, что p-n переход, подобно конденсатору имеет электрическую емкость, к тому же зависящую от напряжения, приложенного к p-n переходу. Это свойство p-n перехода используется в специальных диодах – варикапах, применяемых для настройки колебательных контуров в приемниках. Наверно, это единственный случай, когда эта емкость используется во благо.
В остальных случаях эта емкость оказывает мешающее воздействие, замедляет переключение диода, снижает его быстродействие. Такая емкость часто называется паразитной. Она показана на рисунке 3.
Рисунок 3. Паразитная емкость
Конструкция диодов.
Плоскостные и точечные диоды
Чтобы избавиться от вредного воздействия паразитной емкости, применяются специальные высокочастотные диоды, например точечные. Конструкция такого диода показана на рисунке 25.
Рисунок 4. Точечный диод
Особенностью точечного диода является конструкция его электродов, один из которых является металлической иглой. В процессе производства эта игла, содержащая примесь (донор или акцептор), вплавляется в кристалл полупроводника, в результате чего получается p-n переход требуемой проводимости. Такой переход имеет малую площадь, а, следовательно, малую паразитную емкость. Благодаря этому рабочая частота точечных диодов достигает нескольких сотен мегагерц.
В случае, если используется более острая игла, полученная без электроформовки, рабочая частота может достигать нескольких десятков гигагерц. Правда, обратное напряжение таких диодов не более 3…5В, да и прямой ток ограничен несколькими миллиамперами. Но ведь эти диоды и не являются выпрямительными, для этих целей, как правило, применяются плоскостные диоды. Устройство плоскостного диода показано на рисунке
Рисунок 5. Плоскостный диод
Нетрудно видеть, что у такого диода площадь p-n перехода намного больше, чем у точечного. У мощных диодов эта площадь может достигать до 100 и более квадратных миллиметров, поэтому их прямой ток намного больше, чем у точечных. Именно плоскостные диоды используются в выпрямителях, работающих на низких частотах, как правило, не свыше нескольких десятков килогерц.
Применение диодов
Не следует думать, что диоды применяются лишь как выпрямительные и детекторные приборы. Кроме этого можно выделить еще множество их профессий. ВАХ диодов позволяет использовать их там, где требуется нелинейная обработка аналоговых сигналов.
Это преобразователи частоты, логарифмические усилители, детекторы и другие устройства. Диоды в таких устройствах используются либо непосредственно как преобразователь, либо формируют характеристики устройства, будучи включенными в цепь обратной связи.
Широкое применение диоды находят в стабилизированных источниках питания, как источники опорного напряжения (стабилитроны), либо как коммутирующие элементы накопительной катушки индуктивности (импульсные стабилизаторы напряжения).
С помощью диодов очень просто создать ограничители сигнала: два диода включенные встречно – параллельно служат прекрасной защитой входа усилителя, например, микрофонного, от подачи повышенного уровня сигнала.
Кроме перечисленных устройств диоды очень часто используются в коммутаторах сигналов, а также в логических устройствах. Достаточно вспомнить логические операции И, ИЛИ и их сочетания.
Одной из разновидностей диодов являются светодиоды. Когда-то они применялись лишь как индикаторы в различных устройствах. Теперь они везде и повсюду от простейших фонариков до телевизоров с LED — подсветкой, не заметить их просто невозможно.
7.3. Классификация и основные параметры полупроводниковых диодов
Полупроводниковые диоды (выпрямительные, стабилитроны, туннельные, обращенные и т.д.) относятся к обширному классу полупроводниковых приборов, применяющихся при построении электронных устройств, систем управления, радиотехнических и вычислительных комплексов.
Полупроводниковые диоды являются простейшими полупроводниковыми приборами. Их работа основана на процессах протекания тока в p—n-переходе. Полупроводниковый диод имеет два вывода (один от p— области, другой от n-области). Они соответственно называются анодом и катодом. Диод представляет собой пассивный нелинейный элемент (двухполюсник).
На условном графическом обозначении направление стрелки диода совпадает с направлением прямого тока. Классификация и условные графические обозначения полупроводниковых диодов приведены на рис. 7.8.
Выпрямительный диод – полупроводниковый диод, в котором используется свойство p—n-перехода – односторонняя проводимость. Выпрямительные диоды применяются для выпрямления переменного тока.
Полупроводниковый стабилитрон – полупроводниковый диод, напряжение на котором в области электрического пробоя на обратной ветви ВАХ p—n-перехода слабо зависит от тока. Он служит для стабилизации напряжения.
Помимо выпрямительных диодов широко применяются импульсные диоды, у которых площадь p—n-перехода значительно меньше, чем у выпрямительных диодов, в связи с чем они имеют малую длительность переходных процессов. Они используются в качестве ключевых элементов в схемах импульсной техники.
Еще одной разновидностью диодов являются диоды Шоттки. Диод Шоттки – это полупроводниковый диод, выпрямительные свойства которого основаны на использовании выпрямляющего электрического перехода между металлом и полупроводником. На основе выпрямляющего перехода Шоттки создаются выпрямительные, импульсные и сверхвысокочастотные полупроводниковые диоды, отличающиеся от диодов с p—n-переходом лучшими частотными свойствами.
Сверхвысокочастотные (СВЧ) диоды предназначены для преобразования и обработки сверхвысокочастотного сигнала (более 300 МГц).
Туннельный диод – это полупроводниковый диод, в котором благодаря использованию высокой концентрации примесей возникает очень узкий барьер и наблюдается туннельный механизм переноса зарядов через p—n-переход. Характеристика туннельного диода имеет область отрицательного сопротивления, т.е. область, в которой положительному приращению напряжения соответствует отрицательное приращение тока. Это свойство может быть использовано для генерации и усиления электромагнитных колебаний. Туннельные диоды способны работать на частотах до сотен ГГц.
Обращенным называют диод на основе полупроводника с критической концентрацией примесей, в котором проводимость при обратном напряжении вследствие туннельного эффекта значительно больше, чем при прямом напряжении. Из принципа действия обращенных диодов ясно, что они, во-первых, способны работать при очень малых сигналах. Во-вторых, они обладают очень хорошими частотными свойствами, так как в них имеет место туннельный эффект.
Варикап – это полупроводниковый диод, действие которого основано на использовании зависимости емкости от обратного напряжения и который предназначен для применения в качестве элемента с электрически управляемой емкостью.
Светодиод – полупроводниковый диод с относительно большой шириной запрещенной зоны. Излучение квантов видимого света вызвано самопроизвольной рекомбинацией носителей заряда при прохождении прямого тока через выпрямляющий электрический переход.
Фотодиод – полупроводниковый диод, обратный ток которого зависит от освещенности. Обычно в качестве фотодиодов используют полупроводниковые диоды с p—n-переходом, смещенным в обратном направлении внешним источником питания. При поглощении квантов света в p—n-переходе образуются новые носители заряда. Неосновные носители, возникшие в прилегающих к p—n-переходу областях, диффундируют к p—n-переходу и проходят через него под действием электрического поля. В результате при освещении фотодиода обратный ток через него возрастает на величину, называемую фототоком.
Очень важным с точки зрения предоставляемых им возможностей полупроводниковым прибором является оптопара. Оптопара – это полупроводниковый прибор, состоящий из в общем случае из излучающего и фотоприемного элементов, между которыми имеется оптическая связь и обеспечена электрическая изоляция.
В частном случае в качестве одного элемента оптопары – излучателя – может быть использован светодиод, а в качестве второго элемента – фотоприемника может быть использован фотодиод (рис. 7.9).
Эти элементы помещаются в общий корпус оптопары. Основным достоинством применения оптопар является почти идеальная гальваническая развязка управляющих цепей от исполнительных при сохранении сильной функциональной оптической связи. Можно отметить также однонаправленность оптической связи и отсутствие обратной реакции приемника излучения на излучатель.
После краткого рассмотрения предложенной классификации полупроводниковых диодов остановимся более подробно на параметрах и характеристиках двух типов, которые нашли наиболее массовое применение: выпрямительного диода и стабилитрона.
Вольт — амперные характеристики германиевых и кремниевых выпрямительных диодов показаны на рис. 7.10.
Обратный ток для диодов широкого применения измеряется в микроамперах (обратите внимание на разный масштаб измерений по оси ординат для прямого и обратного тока), и его, как правило, можно не принимать во внимание до тех пор, пока обратное напряжение на диоде не достигнет значения напряжения пробоя.
Прямое падение напряжения, обусловленное прямым током через диод, составляет от 0.2 до 0.8 В. Таким падением напряжения можно пренебречь, и тогда диод можно рассматривать как проводник, пропускающий ток только в одном направлении.
Параметры выпрямительного диода:
— постоянный прямой ток, протекающий через диод в прямом направлении;
— постоянный обратный ток;
— максимально допустимый средний выпрямленный ток, который может длительно проходить через диод, не вызывая изменения его параметров;
— максимальный выпрямленный прямой ток;
— постоянное прямое напряжение;
— максимально допустимое обратное постоянное напряжение;
— общая емкость диода;
— рассеиваемая мощность при прямом включении диода;
— статическое сопротивление открытого диода в заданной точке ВАХ с координатами и;
— статическое сопротивление закрытого диода в заданной точке ВАХ с координатами и;
— коэффициент выпрямления.
Значения параметров зависят от типа диода. Для сравнения в табл. 7.1 приведены значения указанных параметров для маломощных германиевого и кремниевого диодов. Приведенные в табл. 7.1 параметры определены при значениях прямого тока до 1 мА.
,
,
,
,
,
,