Магнитный усилитель мощности

Магнитный усилитель — схема, принцип действия, особенности работы, устройство. Как устроен и работает.

Как устроен и работает магнитный усилитель. Схема. (10+)

Магнитный усилитель позволяет управлять переменным током, проходящим через него, путем пропускания небольшого управляющего постоянного тока через управляющую обмотку.

Принцип действия магнитного усилителя

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

[Индуктивность, Гн] = 1.257E-9 * [Магнитная проницаемость сердечника] * [Площадь сечения магнитопровода, кв. мм] * [количество витков]^2 / [Длина средней магнитной линии сердечника, мм]

Принцип действия магнитного усилителя основан на интересном свойстве ферромагнитных материалов. Этим материалам свойственно насыщение. Это означает, что в ненамагниченном состоянии магнитная проницаемость может быть несколько тысяч или несколько десятков тысяч (для трансформаторного железа). При такой высокой магнитной проницаемости индуктивность катушки, намотанной на сердечнике, будет большой. Большим будет и модуль сопротивления переменному току. Путь переменному току будет практически перекрыт. Магнитный усилитель закрыт.

Но все меняется, если достаточно сильно (до насыщения) намагнитить сердечник. При этом его магнитная проницаемость приблизится к единице. Индуктивность, а значит модуль сопротивления, уменьшится в тысячи или десятки тысяч раз. Магнитный усилитель откроется.

Рисунок иллюстрирует описанный процесс. Магнитная индукция, характеризующая интенсивность магнитного поля, отложена по вертикальной оси. Сначала она быстро нарастает при небольшом росте электрического тока. Потом происходит перелом графика. Индукция уже растет намного медленнее по отношению к силе тока. Когда магнитный усилитель закрыт, сила тока располагается между точками 1 — 2. Сила тока через открытый магнитный усилитель находится между точками 3 — 4.

На этом рисунке мы видим график тока через магнитный усилитель в его разных режимах. A1 — усилитель открыт. A2 — усилитель закрыт. A3 — промежуточное состояние. Мы видим, что в открытом или закрытом состоянии магнитный усилитель практически не искажает сигнал. Но вот в промежуточном состоянии искажения очень существенные. Кроме того в промежуточном состоянии достаточно высоки потери на перемагничивание сердечника. В таком режиме магнитный усилитель используется только, если нагрузка не чувствительна к искажению формы сигнала или происходит последующая фильтрация. Замечу, что искажения, вносимые магнитным усилителем, довольно безобидные. В выходном сигнале нет высших гармоник.

Устройство, схема

Типичный магнитный усилитель состоит из двух совершенно одинаковых дросселей с двумя обмотками, соединенных, как показано на схеме.

Силовые обмотки L2 и L3 соединены параллельно. Выводы 1 — 2 предназначены для подвода переменного тока, которым мы хотим управлять. Они включаются последовательно с нагрузкой. Управляющие обмотки соединены последовательно навстречу друг другу, чтобы напряжение на одной равнялось минус напряжению на другой.

Очень важно, чтобы дроссели были максимально идентичными. Напряжение на обмотке L1, наводимое с обмотки L2, должно быть в точности равно напряжению на обмотке L4, наводимому с обмотки L3. Тогда на выводах 3 — 4 вообще не будет напряжения, что необходимо для правильной работы устройства.

Возможным вариантом является намотка обоих дросселей на одном Ш — образном сердечнике.

Здесь обмотка L1 подмагничивает оба дросселя. В обмотке L4 нет необходимости. Ниже мы рассчитаем количество витков для управляющих обмоток. Число витков обмотки L1 во втором исполнении равно числу витков обмотки L1 в первом исполнении. Может показаться, что второе исполнение экономит медь, ведь не нужно мотать вторую управляющую обмотку. Но на самом деле. Длина витка L1 во втором исполнении значительно больше, чем в первом. Экономия меди есть, но не очень большая.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Здравствуйте. Измерение постоянного тока. Токовые клещи Вы пробовали делать или это теоретические разработки? Если делали можно рабочую схему с данными. Хотелось ее сделать. Читать ответ.

Тиристорное переключение нагрузки, коммутация (включение / выключение).
Применение тиристоров в качестве реле (переключателей) напряжения переменного то.

Защита силового ключа от перенапряжения. Сброс скачков напряжения на т.
Как защитить силовой транзистор от пробоя броском высокого напряжения. Описание .

Бестрансформаторные источники питания, преобразователи напряжения без .
Расчет онлайн гасящего конденсатора бестрансформаторного источника питания.

Повышающие переменное, постоянное напряжение бестрансформаторные преоб.
Повышение напряжения без трансформатора. Умножители. Рассчитать онлайн. Преобраз.

Магнитные усилители в металлообрабатывающих станках

Магнитные усилители нашли широкое применение в электроприводах металлорежущих станков из-за их надежности и большого срока службы (он считается одним из самых надежных элементов систем автоматики), отсутствия подвижных частей, возможности исполнения магнитных усилителей мощностью от долей ватта до сотен киловатт, большой прочности и стойкости по отношению к вибрациям и ударной нагрузке. Кроме этого у благодаря магнитным усилителям можно легко осуществить суммирование сигналов. Они имеют большой коэффициент усиления. В магнитных усилителях отсутствует электрическая связь между входными и выходными цепями.

Принцип действия магнитного усилителя основан на использовании нелинейности кривой намагничивания ферромагнитного материала. При намагничивании постоянным током сердечник усилителя насыщается и индуктивность рабочих обмоток переменного тока усилителя уменьшается. Рабочие обмотки обычно включаются последовательно с нагрузкой. Поэтому напряжение, которое до насыщения сердечника было приложено к рабочим обмоткам усилителя в момент насыщения, прикладывается к нагрузке.

Ток нагрузки регулируют изменением тока в обмотке подмагничивания магнитного усилителя. Обмотка смещения служит для создания начального подмагничивания, необходимого для того чтобы ток в нагрузке изменялся различным образом в зависимости от знака полярности сигнала управления, а также для выбора точки на прямолинейном участке характеристики. Обмотка обратной связи предназначена для получения требуемой формы выходных характеристик.

Конструктивно магнитный усилитель представляет собой сердечник из листового ферромагнитного материала, на который намотаны обмотки переменного и постоянного тока. Для устранения наводок э. д. с. переменного тока цепи обмоток постоянного тока обмотки переменного ока намотаны отдельно на сердечниках, а обмотки постоянного тока охватывают оба сердечника.

Схема простейшего магнитного усилителя

Магнитный усилитель может иметь несколько обмоток управления. В этом случае в рабочем режиме ток в нагрузке будет определяться суммарным током управления. То есть он может быть использован как сумматор электрических сигналов не связанных между собой (суммируются постоянные сигналы).

Магнитные усилители могут быть как нереверсивные, так и реверсивные. В нереверсивных магнитных усилителях изменение полярности сигнала управления не вызывает изменения фазы и знака тока нагрузки.

Сердечники магнитных усилителей изготовляют как из трансформаторной стали, так и из пермаллоя, причем трансформаторную сталь применяют при мощности магнитного усилителя, большей 1 Вт. Величина магнитной индукции в сердечнике из трансформаторной стали достигает 0,8 — 1,0 Т. Коэффициент усиления таких магнитных усилителей составляет от 10 до 1000.

Пермаллой применяют в магнитных усилителях, мощность которых меньше 1 В. Прямоугольный характер петли гистерезиса для пермаллоя позволяет получить коэффициент усиления от 1000 до 10 000 и выше.

Сердечник магнитного усилителя шихтуют из отдельных пластин, как сердечники дросселей или трансформаторов. Широкое распространение получили магнитные усилители на тороидальных сердечниках, которые, несмотря на технологические трудности их изготовления, обладают целым рядом преимуществ и первое из них — отсутствие воздушных зазоров, что улучшает характеристики магнитного усилителя.

Широко распространены следующие схемы магнитных усилителей: однотактные и двухтактные, реверсивные и нереверсивные, однофазные и многофазные.

В металлорежущих (и не только металлорежущих) станках можно встретить очень большое разнообразие конструкций магнитных усилителей: однофазные серии УМ-1П, трехфазные серии УМ-ЗП, собранные на шести П-образных сердечниках из стали марки Э310, однофазные серии ТУМ на тороидальном сердечнике, блоки магнитных усилителей серии БД, содержащие, кроме магнитных усилителей, понижающие трансформаторы, диоды и резисторы, собранные на одной панели. Системы электропривода могут быть построены на любых усилителях из этих серий.

Обмоточная схема магнитного усилителя УМ-1П

Кроме этого часто на различных станках применяются комплектные приводы с магнитными усилителями и двигателями постоянного тока, например очень распространенный привод с магнитными усилителями ПМУ. Но об этом мы обязательно поговорим следующий раз. Кроме этого, в следующем посте остановимся на методах наладки магнитных усилителей, затронем и ряд других вопросов, интересных всем кто постоянно сталкивается или собирается в будущем столкнуться в работе с магнитными усилителями.

Комплектные электроприводы с магнитными усилителями

Несмотря на то, что в современном электроприводе с успехом используются статические преобразователи (тиристоры, силовые транзисторы, IGBT-модули), на наших промышленных предприятиях все еще очень часто можно встретить электродвигатели и генераторы постоянного тока, работающие в комплекте с магнитными усилителями.

Магнитные усилители самое широкое распространение получили в промышленном оборудовании еще в 50-х годах. В целом, в эпоху дополупроводниковой техники существовала следующая тенденция – асинхронный и синхронный (для больших мощностей) привод применялся в нерегулируемом электроприводе и привод постоянного тока с электромашинным или статическим (тиритронный или ртутный выпрямители, магнитный усилитель) для регулируемого.

В настоящее время наиболее часто можно на отечественных предприятиях в схемах электрооборудования станков, машин и установок можно встретить комплектные электроприводы постоянного тока с магнитными усилителями серии ПМУ.

ПМУ — привод с магнитными усилителями и селеновыми выпрямителями. Диапазон регулирования скорости двигателя 10:1. Регулирование производится изменением напряжения на якоре вниз от номинальной частоты вращения двигателя. Система регулирования автоматическая с обратной связью по э. д с. двигателя, без тахогенератора и промежуточного усилителя. Мощность привода от 0,1 до 2 кВт. Привод предназначен для выпрямленное напряжение на выходе моста составляет от 340 до 380 В. Для получения достаточно жестких характеристик привода в схему введены отрицательные обратные связи по току и напряжению.

Каждый привод серии ПМУ представляет собой комплект, состоящий из блока питания, выпрямителей, магнитных усилителей, двигателя постоянного тока и задатчика скорости.

Привод работает следующим образом. Напряжение, подводимое к двигателю, автоматически следует за сигналом, зависящим от изменения его частоты вращения. При снижении частоты вращения двигателя напряжение возрастает и наоборот: напряжение поддерживает с заданной точностью величину частоты вращения независимо от изменения нагрузки и других возмущающих факторов.

Влияние различных возмущающих факторов на частоту вращения компенсирует реактивное сопротивление рабочей обмотки магнитного усилителя: при возрастании нагрузки ток в цепи якоря увеличивается, что вызывает уменьшение сопротивления рабочей обмотки магнитного усилителя. Вследствие снижения сопротивления рабочей обмотки напряжение на якоре двигателя возрастает, ток в обмотках увеличивается, что еще больше уменьшает полное сопротивление рабочих обмоток усилителя. В результате суммарного снижения сопротивления рабочей обмотки напряжение на якоре двигателя возрастает, что компенсирует снижение частоты вращения двигателя. Необходимая частота вращения двигателя устанавливается с помощью задатчика Р и резисторов R1 — R4.

ПМУ-М аналогична серии ПМУ, но магнитные усилители собраны на П-образных сердечниках. Мощность привода ПМУ-М от 0,1 до 7 кВт.

В приводах серии ПМУ-М применена система автоматического регулирования частоты вращения с обратными связями по напряжению и току якоря двигателя. Магнитный усилитель имеет две группы обмоток управления. По одной из них протекает ток управления, являющийся алгебраической суммой тока задатчика и токов обратных связей, другая (обмотка смещения) — служит для выбора рабочей точки на прямолинейном участке характеристики магнитного усилителя.

Для защиты от недопустимо больших значений тока якоря приводы ПМУ-М габаритов с 8 по 11 снабжены узлом ограничения тока. При превышении током якоря допустимых значений срабатывает реле максимального тока, его размыкающий контакт размыкается и обрывает цепь питания обмотки управления. Так как обмотка смещения остается замкнутой, то магнитный усилитель запирается и ток якоря снижается. Действие схемы привода ПМУ-М аналогично действию схемы привода ПМУ.

ПМУ-П — приводы повышенной точности и расширенного диапазона регулирования 100 : 1. Система регулирования автоматическая с обратной связью по частоте вращения, которая осуществляется с помощью тахогенератора и промежуточного полупроводникового усилителя. Частота вращения двигателя регулируется изменением напряжения на якоре.

Кстати, магнитные усилители могут быть также использованы для регулирования напряжения на зажимах асинхронного двигателя, а также в качестве бесконтактных пускателей.

Система магнитный усилитель-асинхронный двигатель

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

МАГНИТНЫЙ УСИЛИТЕЛЬ

Магнитные усилители широко применяются на отечественных тепловозах в системах регулирования мощности дизель-генераторов и в других устройствах автоматики.
Работа магнитных усилителей основана на использовании законов прохождения переменного тока в электрических цепях и физических свойств ферромагнитных материалов. Магнитный усилитель имеет сердечник, на который надеты катушки обмоток (рис. 222).

Рис. 222 Схема магнитного усилителя

Сердечник изготавливают из электротехнической стали или других ферромагнитных материалов, например из пермаллоя. Катушки Р1 и Р2 рабочей обмотки усилителя включены в цепь переменного тока. В обмотку управления У1 подводится постоянный ток. Рабочая обмотка магнитного усилителя представляет собой индуктивное сопротивление.
При описании возбудителей с расщепленными полюсами подробно рассматривался процесс намагничивания ферромагнитных сердечников. Если вначале с увеличением магнитодвижущей силы пропорционально ей возрастают магнитный поток и магнитная индукция, то при наступлении магнитного насыщения материала сердечника практически прекращается изменение магнитной индукции, как бы ни увеличивали мы магнитодвижущую силу за счет повышения величины тока в обмотке. Явление магнитного насыщения ферромагнитных материалов использовано в магнитном усилителе.
Вследствие большого индуктивного сопротивления рабочей обмотки при отсутствии тока в обмотке управления сила тока в цепи рабочей обмотки будет весьма невелика. Если по обмотке управления пропустить постоянный ток и довести сердечник до магнитного насыщения, то переменный ток рабочих обмоток уже не будет создавать дополнительного изменяющегося магнитного потока. Индуктивное сопротивление рабочих обмоток резко снизится, и в соответствии с законом Ома ток, протекающий по этим обмоткам, значительно увеличится. При постепенном увеличении тока в обмотке управления также постепенно снижается переменный магнитный поток, создаваемый рабочими обмотками, и нарастает ток в цепи этих обмоток.
В магнитных усилителях устанавливаются две катушки Р1 и Р2 рабочей обмотки (см. рис. 222). Ими создаются согласные по направлению магнитные потоки, замыкающиеся во внешнем кольце магнитопровода усилителя. В среднем стержне с обмоткой управления магнитные потоки рабочих обмоток имеют противоположное направление, взаимокомпенсируются и не индуктируют э. д. с. в обмотке управления. Появление трансформаторной э. д. с. в управляющей обмотке могло бы привести к нарушению работы цепей управления.
Обмотка управления потребляет небольшую мощность. Благодаря этому с помощью небольшого тока, затрачивая незначительную мощность, можно регулировать в широких пределах достаточно большую по величине мощность нагрузки. Отсюда такие аппараты получили свое наименование усилителей.
Магнитный усилитель можно рассматривать и как регулируемый резистор в цепи переменного тока, изменение сопротивления которого производится с помощью управляющего постоянного тока.
Нагрузка Rн т. е. объект, в котором ток регулируется с помощью магнитного усилителя, включается в цепь рабочих обмоток. Нагрузкой магнитных усилителей часто являются обмотки возбуждения генераторов. Чтобы через нагрузку проходил постоянный, а не переменный ток, в цепь включается выпрямительный мост В.
Отношение тока нагрузки к току в обмотке управления называют коэффициентом усиления магнитного усилителя по току, а отношение мощностей нагрузки и управления — коэффициентом усиления по мощности. Коэффициенты усиления обычных магнитных усилителей обычно лежат в пределах от 50 до 200.
Увеличения коэффициентов усиления магнитных усилителей достигают применением обратной связи. Схемы таких усилителей показаны на рис. 223.

Рис. 223. Схемы магнитных усилителей с обратными связями: а) внешней; б)внутренней

Усилитель оборудуется дополнительной обмоткой обратной связи ОС (рис. 223, а), которая устанавливается вместе с обмоткой управления и включается последовательно с внешней нагрузкой Rн. Через обмотку обратной связи проходит уже выпрямленный выходной ток рабочих обмоток. Создаваемый ею магнитный поток усиливает магнитный поток обмотки управления У1. В процессе работы магнитного усилителя при увеличении тока в обмотке управления увеличивается ток рабочих обмоток и одновременно возрастает ток в обмотке обратной связи, так как она включена последовательно с нагрузкой. Поэтому обмотка обратной связи усиливает действие обмотки управления. При небольшом увеличении тока управления происходит резкое изменение тока нагрузки. В рассмотренном усилителе была применена специальная обмотка обратной связи. Такие магнитные усилители называют усилителями с внешней обратной связью. В качестве обмоток обратной связи могут быть использованы и рабочие обмотки (рис. 223, б). В этом случае они как бы берут на себя дополнительную роль, а специальной обмотки обратной связи не имеется. Последовательно с каждой рабочей обмотки включается выпрямитель. Поэтому через катушки рабочих обмоток ток проходит только в одном направлении. Каждая катушка работает лишь в течение полупериода изменения величины переменного тока. В результате рабочие катушки создают магнитный поток одного направления, совпадающего с направлением магнитного потока управляющей (регулировочной) обмотки. Таким образом, рабочие обмотки усиливают действие регулировочной обмотки, увеличивая коэффициент усиления. Такая система обратной связи получила название внутренней. Внутренняя обратная связь упрощает устройство магнитного усилителя, так как не требует установки дополнительной обмотки.
Рассмотренные выше обратные связи являются положительными, приводящими к увеличению коэффициента усиления магнитного усилителя. Могут применяться при необходимости и отрицательные обратные связи, снижающие коэффициент усиления.
Магнитные усилители, используемые в электрических схемах тепловозов для регулирования мощности тяговых генераторов, имеют внутреннюю положительную обратную связь. Они получили название амплистатов.
Само слово амплистат состоит из двух частей: ампли — происходит от латинского слова amplificatio — усиление (увеличение) и стат -— от греческого слова statos — стоящий (неподвижный). Таким образом, в переводе амплистат.— это статический (неподвижный, без вращающихся частей) усилитель. Коэффициент усиления по мощности магнитных усилителей с обратной связью очень велик. У тепловозных амплистатов он составляет около 50 000.
При наличии обратной связи даже в случае отсутствия тока в обмотке управления магнитный усилитель подмагничивается рабочими обмотками, и ток нагрузки достигает значительной величины. Если теперь пропускать ток по обмотке управления в том направлении, при котором создаваемый ею магнитный поток будет усиливать намагничивающее действие рабочих обмоток, то выходной ток усилителя возрастет.
Изменение направления тока в обмотке управления вызовет размагничивание усилителя и снижение выходного тока вплоть до определенной наименьшей величины- Отношение наибольшего выходного тока магнитного усилителя к наименьшему называют кратностью выходного тока усилителя. Большая кратность выходного тока — очень важное достоинство магнитных усилителей.
В магнитных усилителях часто применяется несколько обмоток управления. При этом ток нагрузки усилителя могут независимо регулировать ряд различных автоматических устройств. Величина тока нагрузки будет определяться алгебраической суммой магнитодвижущих сил обмоток управления.
Показанные на рис. 222 и 223 магнитные усилители работают на однофазном переменном токе. Кроме того, применяются трехфазные магнитные усилители, состоящие как бы из трех однофазных усилителей. Трехфазные магнитные усилители были использованы в электросхемах тепловозов ТЭ10 для регулирования тока в обмотке независимого возбуждения тягового генератора.
На тепловозах 2ТЭ10Л, 2ТЭ10В и ТЭП60 однофазные амплистаты применены в качестве основного аппарата управления мощностью тягового генератора.

Рис. 224. Амплистат возбуждения тепловоза 2ТЭ10Л а) общий вид; б) электрическая схема

Амплистат выполнен с двумя магнитными сердечниками (магнитопро-водами), набранными из листов электротехнической стали толщиной 0,35 мм (рис. 224). На каждом сердечнике расположено по одной катушке Н1-К1 и Н2-К2 рабочей обмотки. Четыре обмотки подмагничивания (управления) — задающая, управляющая, регулировочная и стабилизирующая—охватывают оба сердечника. Рабочая обмотка амплнста-та включена последовательно с выпрямителем в цепь питания обмотки независимого возбуждения от подвоз-будителя переменного тока. Обмотки подмагничивания питаются постоянным током от источников:

  • задающая обмотка НЗ — КЗ — от бесконтактного тахометрического блока или тахогенератвра на тепловозах первых лет постройки;
  • управляющая обмотка НУ — КУ—от распределительного трансформатора через трансформаторы постоянного тока и напряжения и селективный узел электрической схемы;
  • регулировочная обмотка HP — КР — от распределительного трансформатора через индуктивный датчик объединенного регулятора и выпрямитель;
  • стабилизирующая обмотка НС — КС — от стабилизирующего трансформатора через выпрямитель.

При этом задающая обмотка создает основную положительную магнитодвижущую силу подмагничивания- Регулировочная обмотка усиливает подмагничивание амплистата. Магнитодвижущая сила управляющей обмотки направлена встречно магнитодвижущей силе задающей и регулировочной обмоток, поэтому управляющая обмотка размагничивает амплистат. Стабилизирующая обмотка получает питание только при переходных процессах возбудителя для сглаживания этих процессов и повышения устойчивости работы схемы.
Следовательно, рабочие обмотки амплистата являются регулируемым индуктивным сопротивлением в цепи возбуждения возбудителя. Величина сопротивления изменяется в результате совместного действия четырех обмоток управления. Чем больше ток в задающей и регулировочной обмотках (ток уставки), тем значительнее выходной ток амплистата и выше» напряжение возбудителя и тягового генератора. С увеличением тока в управляющей обмотке вследствие ее размагничивающего действия уменьшается выходной ток амплистата, соответственно снижается напряжение возбудителя и тягового генератора.
При работе дизеля с заданной частотой вращения коленчатого вала напряжение тахометрического блока сохраняется постоянным, поэтому остается постоянной и магнитодвижущая сила задающей обмотки. С увеличением частоты вращения вала дизеля по позициям контроллера пропорционально повышаются выходное напряжение тахометрического блока, ток в задающей обмотке амплистата, ток возбуждения возбудителя, его напряжение и напряжение тягового генератора. Схема питания управляющей обмотки обеспечивает регулирование тока в ней в зависимости от силы тока и напряжения тягового генератора с целью получения его селективной характеристики.
Ток в регулировочной обмотке амплистата изменяется с помощью индуктивного датчика объединенного регулятора частоты вращения и мощности дизеля таким образом, чтобы мощность тягового генератора сохранялась постоянной на гиперболическом участке его внешней характеристики. Следовательно, магнитный поток регулировочной обмотки корректирует суммарное подмагничивание сердечника амплистата, преобразуя линейный участок селективной характеристики тягового генератора и гиперболический.
Рабочая обмотка амплистата выполнена из 236 витков медного провода диаметром 1,35 мм. Номинальная величина напряжения питания цепи рабочей обмотки равна 60 В, ток продолжительного режима достигает 8,5 А. Обмотки управления рассчитаны на номинальный ток до 1,4 -— 1,5 А, изготовлены из более тонкого медного провода диаметром 0,8 мм. Число витков задающей- и управляющей обмоток равняется 500, а корректирующей регулировочной — 200. В рабочей части характеристики (рис. 225) внешний ток амплистата изменяется от 0,2 до 9 А, т.е. кратность выходного тока равна 45 и является вполне достаточной для регулирования возбуждения тягового генератора в необходимых пределах.

Рис. 225. Характеристика аплистата возбуждения

Магнитный усилитель

Магнитный усилитель — это статический аппарат, предназначенный для управления величиной переменного тока посредством слабого постоянного тока. Применяется в схемах автоматического регулирования электродвигателей переменного тока.

Работа магнитного усилителя основана на нелинейности характеристики намагничивания магнитопровода. На крайних стержнях магнитного усилителя находится рабочая обмотка, которая состоит из двух катушек, соединённых последовательно. На среднем стержне размещается обмотка управления из большого количества витков W=. Если ток в неё не подаётся, а к рабочей обмотке, соединённой последовательно с нагрузкой, подведено переменное напряжение U

, то из-за малого количества витков W

магнитопровод не насыщается, и почти всё напряжение падает на реактивном сопротивлении рабочих обмоток Z

. На нагрузке в этом случае выделяется малая мощность.

Если теперь пропустить по обмотке управления ток Iу, то даже при небольшом его значении (из-за большого W=), возникает насыщение магнитопровода. В результате реактивное сопротивление рабочей обмотки резко уменьшается, а величина тока в цепи — увеличивается. Таким образом, посредством малых сигналов в обмотке управления можно управлять значительной величиной мощности в рабочей цепи магнитного усилителя.

В простейшем случае магнитный усилитель — это управляемая постоянным током индуктивность, которая включается в цепь переменного тока последовательно с нагрузкой. При большой индуктивности ток в последовательной цепи и в нагрузке маленький, при малой индуктивности ток в последовательной цепи и в нагрузке большой. Существует целый ряд разработок, в которых магнитный усилитель используется для удвоения частоты, бесконтактного переключения токов (бесконтактные реле), для стабилизации напряжения питания, для модуляции сигналов ВЧ сигналами НЧ.

В последнее время магнитный усилитель был частично потеснён полупроводниковыми приборами, но в ряде применений по-прежнему не имеет конкурентов.

Основное назначение — управление силовым электроприводом (распространены в строительной технике), По-прежнему магнитные усилители используются в системах, измеряющих постоянные токи от тензодатчиков. Магнитный усилитель позволяет бесконтактно измерять постоянные токи в линиях электропередач. В последнее время для этого всё чаще применяют более компактные датчики Холла.

Схема магнитного усилителя

Сердечник изготавливают из электротехнической стали или других ферромагнитных материалов, например из пермаллоя. Катушки Р1 и Р2 рабочей обмотки усилителя включены в цепь переменного тока. В обмотку управления У1 подводится постоянный ток. Рабочая обмотка магнитного усилителя представляет собой индуктивное сопротивление.
При описании возбудителей с расщепленными полюсами подробно рассматривался процесс намагничивания ферромагнитных сердечников. Если вначале с увеличением магнитодвижущей силы пропорционально ей возрастают магнитный поток и магнитная индукция, то при наступлении магнитного насыщения материала сердечника практически прекращается изменение магнитной индукции, как бы ни увеличивали мы магнитодвижущую силу за счет повышения величины тока в обмотке. Явление магнитного насыщения ферромагнитных материалов использовано в магнитном усилителе.
Вследствие большого индуктивного сопротивления рабочей обмотки при отсутствии тока в обмотке управления сила тока в цепи рабочей обмотки будет весьма невелика. Если по обмотке управления пропустить постоянный ток и довести сердечник до магнитного насыщения, то переменный ток рабочих обмоток уже не будет создавать дополнительного изменяющегося магнитного потока. Индуктивное сопротивление рабочих обмоток резко снизится, и в соответствии с законом Ома ток, протекающий по этим обмоткам, значительно увеличится. При постепенном увеличении тока в обмотке управления также постепенно снижается переменный магнитный поток, создаваемый рабочими обмотками, и нарастает ток в цепи этих обмоток.
Магнитный усилитель можно рассматривать и как регулируемый резистор в цепи переменного тока, изменение сопротивления которого производится с помощью управляющего постоянного тока.
Нагрузка Rн т. е. объект, в котором ток регулируется с помощью магнитного усилителя, включается в цепь рабочих обмоток. Нагрузкой магнитных усилителей часто являются обмотки возбуждения генераторов. Чтобы через нагрузку проходил постоянный, а не переменный ток, в цепь включается выпрямительный мост В.
Отношение тока нагрузки к току в обмотке управления называют коэффициентом усиления магнитного усилителя по току, а отношение мощностей нагрузки и управления — коэффициентом усиления по мощности. Коэффициенты усиления обычных магнитных усилителей обычно лежат в пределах от 50 до 200.

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

26.03.2015

Что такое магнитный усилитель?

Магнитный усилитель (МУ) представляет собой статический электромагнитный аппарат, позволяющий при помощи управляющего сигнала постоянного тока небольшой мощности управлять значительными мощностями в цепи переменного тока. Благодаря простоте конструкции, высокой надежности в работе и другим достоинствам, по сравнению с электронными и электромашинными усилителями, магнитные усилители нашли довольно широкое применение в различных судовых системах автоматического регулирования.

По конструкции МУ напоминает трансформатор, у которого одна обмотка (управляющая ОУ) получает питание от источника постоянного тока, а другая (рабочая ОР) включена последовательно с нагрузкой Rн в цепь переменного тока.

Простейшим МУ является дроссель насыщения (рис. 1,а,б), работа которого заключается в следующем.

где Rp, Хp — активное и индуктивное сопротивления обмотки ОР.

Если теперь включить обмотку ОУ на напряжение Uу источника постоянного тока и с помощью резистора увеличивать ток управления Iу, то одновременно будет увеличиваться и ток в рабочей обмотке Iн. Увеличение тока в обмотке ОР объясняется тем, что при прохождении по обмотке ОУ постоянного тока Iу возникает магнитный поток Фу, изменяющий насыщение сердечника дросселя.

На рис. 1, б показана электрическая схема магнитного усилителя. От степени насыщения сердечника зависит магнитная проницаемость μ стали, которая резко уменьшается при насыщении (рис. 1,в). Магнитная проницаемость непосредственно влияет на индуктивность рабочей обмотки:

где k— постоянный коэффициент,

а следовательно, и на ее индуктивное сопротивление:

Таким образом, увеличение тока Iу и потока Фу приводит к уменьшению магнитной проницаемости μ сердечника (происходит вытеснение переменного потока рабочей обмотки из сердечника), уменьшению индуктивного сопротивления рабочей обмотки Хр и к увеличению тока нагрузки Iн. Увеличение тока нагрузки будет происходить с увеличением тока управления до насыщения сердечника. С насыщением стали дальнейшее увеличение тока управления практически не изменяет ток нагрузки.

Зависимость тока нагрузки МУ от тока управления называется статической нагрузочной характеристикой (рис. 1,г). Из характеристики видно, что изменение тока нагрузки не зависит от полярности входного сигнала.

Переменный ток рабочей обмотки создает в сердечнике переменный магнитный поток, который наводит в обмотке управления переменную э. д. с., в результате чего работа дросселя насыщения в режиме МУ будет неустойчива.

Реальный МУ состоит из двух дросселей насыщения, обмотки которых соединены между собой таким образом, что устраняется вредное влияние переменной э. д. с.

На рис. 2 показан МУ с встречно-последовательным включением рабочих обмоток ОР1 и ОР2 и общей обмоткой управления ОУ, размещенных на двух Ш-образных сердечниках. Встречное включение рабочих обмоток позволяет скомпенсировать переменные э. д. с., наводимыми в обмотке ОУ. Существуют и другие схемы соединения обмоток МУ.

Степень усиления МУ характеризуется коэффициентами усиления, которые относятся к числу основных показателей МУ. Коэффициент усиления по мощности представляет собой отношение мощности на выходе Рн к мощности на входе Ру, т. е.:

Для увеличения коэффициента усиления применяются МУ с положительными внутренними или внешними обратными связями.

Внутренняя обратная связь получается за счет намагничивания сердечника постоянной составляющей тока нагрузки при включении рабочей обмотки через выпрямитель. Внешняя обратная связь получается за счет применения в МУ дополнительной обмотки управления, подключаемой на выпрямленное напряжение, пропорциональное току нагрузки. Применяют также отрицательные обратные связи, уменьшающие коэффициент усиления. Для изменения коэффициента усиления и пределов регулирования в МУ часто применяют положительное и отрицательное смещения.

В схемах, где требуется изменение полярности выходного сигнала с изменением полярности сигнала управления, применяют реверсивные (двухтактные) МУ. Реверсивный МУ состоит из двух простых МУ, выходы которых включены на общую нагрузку встречно. При положительном сигнале управления преобладает выход одного МУ, а при отрицательном — другого. Результирующий выход реверсивного МУ определяют суммированием сигналов выхода простых МУ; при отсутствии управляющего сигнала он равен нулю.