Последовательное соединение лампочек одинаковой мощности
Последовательное и параллельное соединение лампочек — схемы применения в быту.
Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.
Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.
В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.
-
две лампы вкрученные в патроны
-
два провода питания выходящие из патронов
Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.
Просто берете любой конец провода от каждой лампы и скручивает их между собой.
На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).
Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.
Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.
При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.
Соответственно и светить они будут менее чем в половину от своей изначальной мощности.
Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки.
Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт
Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.
Что это дает нам в практическом смысле при реализации данных схем?
Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.
Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.
Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.
Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.
При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.
Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.
Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.
Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.
Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.
Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.
Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.
У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.
Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.
В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая.
При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?
Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.
Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.
При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».
А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.
В то время как большей, практически потухнет. Все как и было описано выше.
Где же можно в быту, применить такую казалось бы не практичную схему?
Самое широко известное использование подобных конструкций — это елочные новогодние гирлянды.
Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.
Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход — включить последовательно еще одну.
Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически «вечно». Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.
Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.
Допустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?
Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.
Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.
При одноименных фазах, лампочки светиться не будут (например фА ввод№1 — фА ввод№2).
А при разных (фА ввод№1 — фВ ввод№2) — они загорятся.
Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В. А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы.
Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.
Что-то подобное зачастую применяется в инкубаторах.
Теперь давайте рассмотрим параллельную схему соединения.
При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.
Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.
В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.
На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.
Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.
Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.
И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.
Напряжение на них подается одновременно и всегда составляет номинальные 220В.
Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.
Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).
Как последовательно и параллельно соединить лампочки
Каждый день мы пользуемся источниками освещения. Лампы в источниках соединяются последовательно или параллельно. Каждый способ имеет особенности и эффективен в конкретных ситуациях.
Можно ли параллельно соединить лампочки
Этот тип подключения наиболее эффективен. Лампа соединяется с фазой и нулем. При подключении двух и более ламп подающие напряжение провода могут скручиваться.
Но чаще к общему кабелю крепят все нагрузки. Параллельное соединение бывает лучевым или шлейфовым. В первом варианте к каждой лампе подводится отдельный кабель. Во втором фаза и ноль подаются на первый источник освещения, остальные приборы подпитываются частично.
При использовании галогенных светильников с трансформатором необходимо помнить, что их подключают на вторичную обмотку преобразователя с помощью клеммных колодок.
Параллельным подключением можно несколько сгладить недостатки осветительного оборудования, снизить мерцание люминесцентных ламп. В схему добавляется конденсатор для сдвига фазы всех элементов цепи.
Правила соединения лампочек
При подключении ламп необходимо соблюдать правила. Рассмотрим последовательные и параллельные соединения.
Последовательное
Последовательное соединение предполагает подключение к сети 220 В так, что через все элементы в цепи будет течь одинаковый ток. При этом распределение падений напряжения пропорционально внутренним сопротивлениям нагрузок. Мощность также распределяется пропорционально.
При использовании соединения последовательно с общим выключателем осветители будут гореть не в полную силу. При подключении ламп разных мощностей более яркое свечение будет у прибора с большим сопротивлением.
Схема стандартного последовательного подключения представлена на рисунке ниже.
Параллельное
Оно отличается подачей на каждую лампу полного сетевого напряжения. Ток будет различным, в зависимости от сопротивления прибора.
Проводники подводятся к патронам ламп одинаково, иногда по принципу шины, когда к общей магистрали подключаются все нагрузки.
К одному подводу можно подключить сколько угодно лампочек. Выключатель работает так же, как при последовательном подключении.
Плюсы и минусы параллельного соединения
- если один элемент выйдет из строя, остальные продолжат работать;
- цепь дает максимально яркий свет, поскольку к каждому прибору подводится полное напряжение;
- от одной лампы можно отвести сколько угодно проводов для подключения дополнительных нагрузок (потребуется один ноль и конкретное количество фаз);
- подходит для энергосберегающих электрических устройств.
Недостатков практически нет, если не считать большого количества проводников в разветвленной системе с множеством ламп.
Применение
В быту параллельное соединение встречается очень часто. Например елочные гирлянды, где все лампочки имеют максимальную яркость свечения.
Подключением можно создавать интерьерную подсветку любой длины. Замена сгоревшего элемента делается легко. Два прибора по 60 Вт можно поменять на одну лампу мощностью 10 Вт без ущерба для параметров освещенности. Это свойство цепи используется опытными электриками для выявления фазы в трехфазных сетях.
Галогенные лампы и приборы накаливания не только дают яркое свечение, но нагревают окружающую среду. По этой причине их часто используют в гаражах, ангарах или мастерских для отапливания помещений. Для этого подключают приборы к сети, размещая в металлическом блоке. Конструкция прогревается до 60 градусов и поддерживает комфортную температуру в помещении. Однако высокие мощности приводят к частому перегоранию ламп.
Видео по теме: ЧТО ТАКОЕ ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ
Параллельное подключение применяется в ленточных подсветках, люстрах, уличном освещении. Каждой лампой при этом можно управлять отдельно, что повышает удобство использования общей сети. Надо лишь вмонтировать в систему нужное количество выключателей.
В домах и квартирах параллельно подключаются к сети не только приборы освещения, но и различная аппаратура.
При создании осветительных приборов со светодиодными элементами нередко используется смешанное подключение на основе последовательной цепи нагрузок с последующим параллельным соединением ее с такой же цепочкой.
Советуем посмотреть: Как понять — последовательно или параллельно соединить лампы или нагрузку
Пример расчета соединения ламп разной мощности
Чтобы разобраться в различиях, достаточно знания закона Ома и других простых электрических законов.
Пусть имеется лампочка накаливания на напряжение 220 вольт. На частоте 50 Гц она представляет собой чисто активное сопротивление, поэтому с ней удобнее разбираться в начальных вопросах. Если лампа имеет мощность 100 Ватт, то при включении в сеть через нее пойдет ток I=P/U=100 ватт/220 вольт=0,5 А (приблизительно, достаточно для рассуждений). На ней будет падать полное напряжение сети 220 вольт. Можно вычислить сопротивление нити: R=U/I=220 вольт /0,5 ампер =400 Ом (приблизительно).
Если подключить вторую аналогичную лампочку параллельно первой, то очевидно, что все сетевое напряжение будет приложено к каждой лампе. Потребляемый ток Iпотр разветвится на два потока и через каждую лампочку пойдет ток I=U/R=220 вольт/400 Ом=0,5 ампер. Потребляемый ток будет равен сумме двух токов (так гласит первый закон Кирхгофа) и составит 1 А. В итоге обе лампы будут находиться под полным сетевым напряжением, через них потечет номинальный ток, и общий световой поток будет равен удвоенному потоку одного светильника.
Если два одинаковых светильника соединить последовательно, то сетевое напряжение разделится между ними, и на каждой будет падать около 110 вольт. Общее сопротивление цепи станет равным Rобщ=400+400=800 Ом, и ток через каждую лампу (при последовательном соединении он одинаков для каждого элемента) составит Iлампы=U/Rобщ=220 вольт/800 Ом = 0,25 А. В итоге получается:
- на каждой лампе падает только половина сетевого напряжения;
- через каждую лампу течет ток, уменьшенный от номинального в 2 раза.
Чтобы оценить световой поток ламп накаливания для данного случая, можно воспользоваться законом Джоуля-Ленца. Свечение ламп накаливания осуществляется за счет нагрева нити. За период времени t нить выделит количество теплоты Q=I 2 *R*t=U*I*t. Ток уменьшится в два раза, напряжение на одной лампе тоже в два раза. Значит можно ожидать уменьшение светового потока в 2*2=4 раза. Для двух ламп поток уменьшится в два раза относительно одной лампы в номинальном режиме. То есть, при последовательном соединении две лампочки будут светить примерно в два раза тусклее, чем одна.
Проблему можно решить применением ламп с рабочим напряжением в два раза ниже сетевого. Если применить два стоваттных источника света на напряжение 127 вольт, то 220 вольт разделятся пополам, и каждый светильник будет работать в номинальном режиме, световой поток по сравнению с одной лампой той же мощности удвоится. Но этим не избавиться от главного недостатка такой схемы – при выходе из строя одного осветительного прибора цепь разрывается, и вторая лампа также перестает светить.
Все вышесказанное касается ламп с одинаковой мощностью. Если мощность светильников заметно отличается, то в схемах возникают следующие эффекты. Пусть одна лампа на 220 вольт имеет мощность 70 ватт, другая 140.
Тогда номинальный ток первой I1=P/U=70/220=0,3 ампера (округленно), второй – I2=140/220=0,7 ампера. Сопротивление нити менее мощного светильника R1=U/I=220/0,3=700 ом, второй – R2=220/0,7=300 ом.
Лампе с большей мощностью соответствует меньшее сопротивление нити.
При параллельном соединении напряжение на обоих приборах будет равным, через каждую лампу пойдет свой ток. Общий ток потребления равен сумме двух токов Iпотр=0,3+0,7=1 ампер. Каждая лампа работает в номинальном режиме и потребляет свой ток.
При последовательном соединении ток будет ограничен сопротивлением Rобщ=300+700=1000 Ом и будет равен I=U/R=220/1000=0,2 А. Напряжение распределится пропорционально сопротивлению нити (мощности). На лампе в 140 ватт оно составит 1/3 от 220 вольт – приблизительно 70 вольт. На маломощной лампе — 2/3 от 220 вольт. То есть, около 140 вольт. Обе лампы будут светить с недокалом из-за снижения напряжения и тока, но режим для них будет облегченным. Другое дело, если используются лампы на половину сетевого напряжения. На лампе меньшей мощности напряжение будет выше допустимого, и разница будет тем больше, чем больше разница в мощностях. Такая лампа скоро выйдет из строя. И это еще один недостаток последовательного включения ламп. Поэтому такое подключение на практике используется крайне редко. Исключение – последовательное соединение люминесцентных ламп. Считается, что при такой схеме они работают более устойчиво.
Подытоживая отличия параллельного включения от последовательного:
- при параллельном включении напряжение на всех потребителях одинаково, ток распределяется пропорционально мощности светильников (если мощность одинакова, то токи будут равными), общий ток потребления равен сумме токов всех ламп;
- при последовательном соединении ток через все лампы будет одинаковый, он определяется общим сопротивлением цепи (и будет меньше тока самой маломощной лампы), напряжение на потребителях распределится пропорционально мощности ламп (если она одинакова, то напряжения будут равными).
Пользуясь этими принципами, можно проанализировать работу любой схемы.
Как избежать ошибок
Подключать электроприборы к сети необходимо с соблюдением правил электротехники. Особенности подключения не очевидны и могут быть непонятны далеким от тематики людям.
- Каждый тип подключения имеет особенности, связанные с законом Ома. В последовательном соединении ток равен на всех участках цепи, тогда как напряжение зависит от сопротивления. В параллельном соединении одинаковым оказывается напряжение, а общая сила тока складывается из величин отдельных участков.
- Любую цепь не стоит перегружать, это может привести к нестабильной работе приборов и повреждению проводников.
- В параллельном соединении сечение проводов должно соответствовать подаваемой нагрузке, иначе неизбежен перегрев проводников с последующим расплавлением обмотки и коротким замыканием.
- В выключатель подводится фаза, ноль уходит на осветительный прибор. Пренебрежение правилом может привести к поражению током при замене лампы, поскольку даже в выключенном состоянии устройство находится под напряжением.
- Основной провод от светильника подсоединяется к общему контакту. Если его подключить к отводу, будет работать только часть цепи.
- Перед установкой выключателя лучше заранее промаркировать провода. При монтаже будет просто соединить между собой одноименные проводники.
Отказ от рекомендаций может стать причиной нестабильной работы осветительного оборудования, быстрого перегорания ламп и повлечь серьезные травмы с риском для жизни.
Как лучше подключить лампочки последовательно или параллельно
При размещении сетевых осветительных приборов (ламп или светодиодных лент) сомнений в том, как подключать их между собой, как правило, не возникает. Если они рассчитаны на напряжение 220 Вольт, традиционно применяемый способ включения – соединение в параллель. Последовательное подключение лампочек используется лишь в редких случаях, когда на их основе делаются гирлянды, например. Другая распространенная причина применения этого способа – желание повысить срок эксплуатации осветительных изделий, используя их на неполную рабочую мощность.
- Последовательное соединение
- Параллельное включение
- Законы смешанного соединения
- Типы ламп и схемы подключения
- Люминесцентные лампы
- Галогенные источники и светодиодные лампы
Последовательное соединение
Последовательная схема подключения
Нетиповое последовательное подключение лампочек к сети 220 Вольт отличается следующими характеристиками:
- через все включенные в цепь осветительные элементы течет одинаковый ток;
- распределение падений напряжений на них будет пропорционально внутренним сопротивлениям;
- соответственно этому распределяется мощность, расходуемая на каждом осветителе.
При последовательном соединении лампочек в схеме с общим выключателем рассчитанные на 220 Вольт осветители будут гореть не в полную силу.
При установке в цепочку двух лампочек накаливания с различной мощностью P ярче горит та из них, что обладает большим сопротивлением, то есть менее энергоемкая. Объясняется это очень просто: из-за большего внутреннего сопротивления напряжение на ней будет более значительным по величине. Поскольку в формулу для P этот параметр входит в квадрате P=U2/R – то при фиксированном сопротивлении на ней рассеивается большая мощность (она горит ярче).
Преимуществом последовательного включения ламп является более щадящий режим работы из-за меньшей мощности, потребляемой на каждой из них. Во всех остальных отношениях такой способ подсоединения нежелателен, поскольку его отличают следующие характерные недостатки:
- при выходе из строя одной лампы обесточивается вся цепь, так что осветительная линия полностью перестает работать;
- при установке различных по мощности лампочек они дают разное свечение;
- невозможность использования последовательной схемы при соединении энергосберегающих ламп (для них нужно полное напряжение 220 Вольт).
Последовательный вариант оптимально подойдет для создания «мягкого света» в светильниках-бра или при изготовлении гирлянд из низковольтных светодиодных элементов.
Параллельное включение
Параллельное соединение лампочек
Классическое параллельное подключение ламп отличается от последовательного способа тем, что в этом случае ко всем осветителям прикладывается полное сетевое напряжение.
При параллельном подключении лампочек через каждое из ответвлений протекает «свой» ток, зависящий от сопротивления данной цепочки.
Проводники, подводимые к цоколям и патронам ламп, подсоединяются к одному проводу в виде параллельной сборки. К бесспорным преимуществам этого метода относят следующие его особенности:
- при перегорании одной из лампочек остальные продолжают работать;
- в каждой из ветвей они горят в полную мощность, поскольку ко всем одновременно приложено полное напряжение;
- допускается использовать энергосберегающие лампочки;
- для подключения к сети достаточно вывести из комнатной люстры нужное количество фазных проводников и оформить их в виде коммутируемой группы.
Законы смешанного соединения
Смешанное включение осветителей описывается следующим образом:
- В его основе лежит параллельное соединение нескольких электрических ветвей.
- В некоторых из ответвлений нагрузки включаются последовательно в виде ряда лампочек, располагающихся одна за другой.
В отдельные параллельные ветви допускается подключать различные типы потребителей, включая лампы накаливания, а также галогенные или светодиодные источники.
При рассмотрении особенностей смешанного соединения обязательно учитываются следующие закономерности:
- Через каждый из последовательно включенных участков цепи протекает один и тот же ток.
- При прохождении через звено с параллельно включенными потребителями он разветвляется, а на выходе снова становится однолинейным.
- С увеличением количества элементов в рабочей цепи абсолютная величина тока в ней уменьшается.
- Напряжение на одном звене равно произведению токовой составляющей на общее сопротивление ветви (закон Ома).
- При росте числа элементов в цепи напряжение на каждом из них соответственно уменьшается.
Рекомендуется при использовании смешанной схемы группировать в последовательные цепи лампы одинаковой мощности, а в параллельные ветви ставить осветители с различным энергопотреблением.
Типы ламп и схемы подключения
Перед монтажом различных видов осветительных приборов желательно ознакомиться с принципом работы и их внутренним устройством, а также с особенностями схемы включения в питающую сеть. Также важно знать, что каждая из разновидностей способна работать длительное время лишь при строгом соблюдении правил эксплуатации.
Люминесцентные лампы
Люминесцентные лампы часто устанавливают в служебных помещениях
Помимо традиционных ламп накаливания для освещения служебных и частично бытовых пространств нередко применяются их люминесцентные трубчатые аналоги. Они чаще всего устанавливаются на следующих объектах:
- в цехах и на конвейерных линиях промышленных производств;
- в административных зданиях и в различных боксах;
- в гаражах, торговых залах и подобных им местах общественного пользования.
Значительно реже они используются в домашних условиях – иногда ставят на кухне для организации подсветки рабочей зоны.
Особенностью люминесцентных осветителей является невозможность прямого подключения к сети 220 Вольт, так как для пробоя газового столба требуется высокое напряжение. Для их включения используется особая электронная схема, в состав которой входят такие элементы запуска как дроссель, стартер и высоковольтный конденсатор (в некоторых случаях он не обязателен).
В последние годы неэкономичные и сильно гудящие во время работы дроссельные преобразователи заменяются так называемым «электронным балластом». Порядок его подключения обычно указывается в виде схемы, изображенной на корпусе прибора.
При использовании электронного адаптера подключается одна газоразрядная лампа, либо устанавливается сразу две штуки, соединенные последовательно.
Галогенные источники и светодиодные лампы
При монтаже подвесных потолков традиционно устанавливают галогенные лампы
Осветители первого типа традиционно устанавливаются при монтаже подвесных и натяжных потолков. Они также идеально подходят при необходимости освещения зон с повышенной влажностью, так как выпускаются в нескольких модификациях. Одно из них рассчитано на работу от 12-ти Вольт. Для их получения в районе потолочных перекрытий устанавливается преобразователь, рассчитанный на соответствующее выходное напряжение.
Для светодиодных ламп характерно наличие встроенного драйвера, позволяющего получать нужное напряжение питания (12 или 24 Вольта). Образцы светодиодных осветителей, рассчитанные на работу от 220 Вольт, включаются подобно лампам накаливания. Но в отличие от обычных осветителей включать их в виде последовательной цепочки не рекомендуется.
Важно правильно подбирать тип ламп для определения нужного порядка их подключения. Не допускается соединять в последовательную цепочку энергосберегающие осветители, при монтаже люминесцентных и галогенных светильников руководствуются схемами их включения. При пониженном сетевом напряжении энергосберегающие лампы быстро выходят из строя, а люминесцентные осветители могут совсем не загореться.
Последовательное и параллельное соединение лампочек
Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:
- на каких схемах лампы соединены параллельно;
- на каких – последовательно;
- и в чем суть различных соединений ламп.
Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.
Люстра с большим числом лампочек
- Электрическая цепь с последовательным соединением
- Чем слабее, тем ярче
- Перед последовательным соединением
- Лучше соединять параллельно
Электрическая цепь с последовательным соединением
Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.
Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.
Сделаем последовательное соединение лампочек:
- укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
- выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
- скручиваем концы двух выбранных проводов.
Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.
На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.
Чем слабее, тем ярче
При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.
Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.
- При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.
Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.
Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.
Последовательное соединение и разная яркость лампочек 40 Вт и 60 Вт
Перед последовательным соединением
Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.
- Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.
Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.
Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.
Параллельное соединение лампочек
Лучше соединять параллельно
Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.
- Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
- Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.
Maksollo › Blog › Маленький ликбез любителям пересветки, часть 2
И снова всем привет!
Как и обещал, в этот раз я в двух словах расскажу о правилах включения светодиодов в электрическую цепь, о расчете режима работы светодиодов, выборе токоограничительных резисторов для них, а также о расшифровке цветового кода выводных резисторов.
О питании светодиодов в интернете информации масса, но, к сожалению, многие авторы собственных конструкций часто допускают ошибки, главная из которых допускается при включении в общую цепь нескольких светодиодов одновременно. Для начала разберем включение одного светодиода для работы от напряжения 12В, но перед этим определимся в терминологии.
Как я успел заметить, народ часто путает последовательное и параллельное соединение каких-либо элементов электрической цепи. Рассмотрим, ху из ху.
1. Последовательное соединение
Последовательно — это цепочкой, друг за другом, когда один вывод предыдущей детали соединен только с одним выводом следующей. Наглядный пример — хоровод:)
Главные особенности такого соединения:
— в случае с лампочками или светодиодами, они должны быть одинаковыми, рассчитанными на одно и то же напряжение и ток, иначе одни из них гореть не будут, а другие станут гореть слишком ярко, вплоть до перегорания;
— сумма напряжений, на которые рассчитана каждая лампочка, должна быть равна (в идеале) или примерно равна (на практике) напряжению батареи. Или же, с другой стороны, на каждой лампочке будет напряжение, равное напряжению батареи, деленному на число лампочек. Или же с третьей стороны: сумма напряжений на всех элементах последовательной цепи равна напряжению питания;
— в любом участке цепи будет протекать один и тот же ток;
— при перегорании любой лампочки погаснут все сразу, потому как цепь разорвется.
2. Параллельное соединение — все элементы цепи соединены так, что из двух выводов одни соединяются в один проводник, другие в другой. Наглядный пример — девушка и молодой человек держат друг друга за руки, стоя лицом к лицу:))) Ну, или дети, играющие в «паровозик».
Главные особенности:
— лампочки могут быть разной мощности, на разные токи, но на одинаковое напряжение, равное (в идеале) или примерно равное (на практике) напряжению батареи;
— на любом элементе будет одно и то же напряжение;
— ток, потребляемый от батареи равен сумме токов всех лампочек;
— при перегорании любой лампочки остальные продолжат гореть.
Есть еще и третий вариант соединения — соединение смешанное, когда несколько последовательных цепей соединены параллельно и наоборот.
В таком соединении каждый тип цепи имеет те же главные особенности, что и по отдельности. Кстати, если присмотреться, то цепь, показанная на рисунке 1, тоже является примером смешанного соединения: последовательная цепь лампочек подключена параллельно батарее:)))
Переходим к главному — к светодиодам. Лампочки в подсветке, например, приборной панели VDO 2110, соединены параллельно, каждая лампа рассчитана на напряжение 12В (для лампочки ее рабочее напряжение — определяющий параметр, мощность и число их зависит только от мощности источника питания) и может подключаться к питанию напрямую. Со светодиодом все иначе. При работе светодиода в расчетном, штатном режиме напряжение на нем обычно равно 3…3,3В, но определяющим параметром для него является не напряжение, а ток. Свойства полупроводника таково, что при плавном подъеме напряжения на нем, скажем, с помощью реостата регулировки подсветки, оно начинает расти от нуля до определенной величины (для светодиода это упомянутые 3…3,3В), после чего напряжение остается практически неизменным, дальше растет только ток. И когда он превысит некоторую величину, светодиод перегорает. Если подать на светодиод напряжение прямо с аккумулятора, оно-таки будет составлять 12 вольт, но срок жизни диода будет определяться секундами, если не долями секунд.
Чтобы светодиод стал работать от 12В, необходимо ограничить его ток, чтобы он не превышал максимально допустимого для светодиода значения. Это можно сделать несколькими способами: с помощью токоограничивающего резистора, стабилизатора тока, широтно-импульсной модуляции. Так как все это я пишу в расчете на начинающих, два последних способа мы опустим — тем, кто «в танке», это все уже не нужно — и рассмотрим метод расчета токоограничивающего резистора.
Для того, чтобы уменьшить, ограничить ток в цепи светодиода, нам нужно увеличить сопротивление этой цепи. Вспоминаем закон господина Ома:
где: I — ток, U — напряжение, R — сопротивление
Напряжение у нас всегда одно — 12В. Кто-то возразит — не 12, а 14,4В. Скажем, так: напряжение у нас всегда равно напряжению бортовой сети автомобиля, но чтобы уберечь светодиоды от выхода из строя, все расчеты будем делать для максимального напряжения — 14,4В. Так вот, напряжение у нас всегда одно и то же — 14,4В. Номинальный ток современных светодиодов обычно составляет 10…20 мА. Это (как, впрочем, и рабочее прямое падение напряжения на светодиоде — 3…3,3В величина, усредненная для основной массы белых-синих-красных-зеленых-RGB светодиодов в SMD исполнении) лучше уточнить по даташиту, если известен тип светодиода. Если же тип неизвестен, лучше принять значение 10 мА — светить будет послабее, зато точно не сгорит от перегрузки по току.
Чтобы увеличить сопротивление цепи светодиода, последовательно с ним включается токоограничивающий резистор:
Для определения его номинала узнаем, сколько вольт должно упасть на резисторе. Вспоминаем правило последовательной цепи: сумма напряжений на всех элементах равна напряжению питания. Питание у нас 14,4В. Номинальное напряжение на светодиоде — 3,3В.
14,4В — 3,3В = 11,1В
Именно такое напряжение должно быть на резисторе — 11,1В. Ток, протекающий в цепи (в том числе, и через светодиод) равен 10…20 мА. Например, для SMD-светодиода типоразмера 3528 номинальный ток равен обычно 20 мА, но для пущей сохранности возьмем немного меньше — 15мА. Выведем сопротивление из формулы закона Ома:
Напряжение на резисторе мы посчитали — 11,1В, ток через светодиод, а следовательно, и через резистор, мы выбрали — 15мА. Сопротивление резистора R = 11,1В / 15мА = 0,74 кОм. Вообще, если делать все по всем правилам, ток должен быть задан в амперах, при этом значение сопротивления получится в омах: 11,1В / 0,015А = 740 Ом. Что, по сути, то же самое:) Ближайший стандартный номинал к рассчитанной величине — 750 Ом. Расчет закончен.
Полезно бывает посчитать мощность резистора для уверенности, что он выдержит. Для этого нужно ток через резистор (на этот раз удобнее уже в амперах:) ) умножить на напряжение на нем: 11,1В * 0,015А = 0,17 Вт (округленно). Теперь расчет совсем закончен — чтобы запитать один светодиод, нам нужен резистор мощностью 0,25 Вт (ближайшее вверх стандартное значение) сопротивлением 750 Ом.
Для удобства сведу все в одну кучу, пусть шпаргалка будет:
Вместо резистора в цепь можно включить стабилизатор тока, простых схем сейчас много в сети. Может быть, когда-нибудь руки дойдут до их описания.
Чаще всего при пересветке всяческих панелей (приборных, печек и т.п.) светодиоды объединяют в группы (обычно по три, реже — по два), при этом экономятся резисторы. И вот тут самое главное правило: светодиоды в группе необходимо соединять только последовательно!
Почему? Все просто. В последовательной цепи через все элементы течет один и тот же ток, который мы можем точно определить и задать с помощью резистора. В параллельной же мы можем задать только общий ток всей цепи, он будет равен сумме токов через светодиоды. Идеального на свете ничего нет, светодиоды тоже имеют разброс параметров: одни потребляют меньший ток, другие больший и может получиться так, что при токе через три «неправильных» светодиода 45 мА (по 15 мА на каждого — вроде справедливо, правда?), но сильном разбросе их параметров на два из диодов может прийтись по 10 мА, а вот третьему достанутся оставшиеся 25, он обидится один раз — и все. А в сумме получатся те же 45 мА.
Так что вот оно, самое железное правило: несколько светодиодов с одним резистором — только последовательно. А вот эти группы между собой соединяем уже параллельно, потому как каждая из них будет рассчитана на 14,4В.
Расчет для группы из двух-трех диодов ничем не отличается от приведенного, только при расчете напряжения на резисторе из напряжения питания нужно вычитать сумму напряжений всех светодиодов в группе (6,6В — для двух, 9,9 — для трех). Сопротивление и мощность вычисляются одинаково.
На этом, собственно, все:)
Ну и напоследок, обещанная таблица цветовой кодировки резисторов и онлайн-сервис для ее расшифровки.
Спасибо за внимание! Всем правильных схем и хорошего настроения:) До новых встреч в эфире!