Стандартный ряд мощностей электродвигателей
Электродвигатель. Асинхронные и синхронные электродвигатели. Основные технические параметры, расшифровка обозначения асинхронных и синхронных электродвигателей.
Общие технические требования
Номинальные данные электродвигателей (P, U, I, n, cosφ и др.), следует относить к их работе на высоте до 1000 м над уровнем моря при температуре (t) газообразной охлаждающей среды 40 °С и охлаждающей воды 30 °С, если в стандартах или ТУ не установлена другая температура охлаждающей среды, но не более 33 °С.
Номинальные режимы работы:
а) продолжительный;
б) кратковременный с длительностью периода неизменной номинальной нагрузки 10; 30; 60; 90 мин;
в) повторно-кратковременный с продолжительностью включения (ПВ) 15; 25; 40; 60 %; продолжительность одного цикла 10 мин;
г) повторно-кратковременный с частыми пусками с ПВ 1 25; 40 и 60 %, числом включений в час 30; 60; 120; 240 при коэффициенте инерции (FI) 1,2; 1,6; 2; 2,5; 4; 6,3 и 10;
д) повторно-кратковременный с частыми пусками и электрическим торможением с ПВ 15; 25; 40 и 60 %, числом включен в час 30; 60; 120; 240 при FI 1,1; 1,6; 2; 2,5 и 4;
е) перемежающийся с продолжительностью нагрузки (НП) 15; 25; 40 и 60%; продолжительность одного цикла 10 мин;
ж) перемежающийся с частыми реверсами при эл. торможении с числом реверсов в час 30; 60; 120 и 240 при FI 1,2; 1,6; 2; 2,5; 4;’
з) перемежающийся в двумя или более частотами вращения числом циклов в час 30; 60; 120 и 240 при FI 1,2; 1,6; 2; 2,5 и 4.
Асинхронные электродвигатели
На промышленных предприятиях наибольшее распространение получили асинхронные двигатели с короткозамкнутьм ротором. Существенным недостатком асинхронных двигателей (АД) является довольно значительное и почти не зависящее от нагрузки потребление реактивной мощности, для снижения которой асинхронные двигатели выполняют с малым воздушным зазором между ротором и статором, что усложняет эксплуатацию асинхронных двигателей.
Условия работы асинхронных двигателей в режиме пуска значительно отличаются от условий его работы в нормальном режиме. В режиме пуска в обмотках ротора и статора проходят токи, намного превышающие токи, протекающие в этих обмотках в номинальном режиме.
Длительный ток приводит к перегреву обмоток асинхронных двигателей и может вызвать сгорание обмоток и аварию асинхронных двигателей. для исключения этого следует ограничить пусковой ток АД и уменьшить время его раз гона. Наиболее распространен прямой пуск асинхронных двигателей.
Вращающий момент асинхронного двигателя пропорционален квадрату напряжения, подводимого к обмотке статора АД. Работа АД при пониженном напряжении является ненормальным режимом не только из-за появления токов перегрузки, но и из-за резкого снижения вращающего момента АД, что может привести к останову асинхронного двигателя («опрокидыванию»).
Асинхронные двигатели широко применяют в приводах переменного тока, не требующих Регулирования скорости и работающих при длительной нагрузке (центробежные насосы, вентиляторы и др.), На выбор асинхронных двигателей влияет, в первую очередь, режим работы приводного механизма.
Основные технические данные асинхронных двигателей приведены ниже.
Двигатели трехфазные асинхронные короткозамкнутые серии 4А* с высотой оси вращения 50—355 мм
Основное исполнение: эл. дв. с короткозамкнутым ротором, , привод механизмов основного применения в условиях умеренного климата (У) категорий размещения 2 и З для Продолжительной работы. Электродвигатели изготовляют защищенными (IР2З) и закрытыми обдуваемыми (IР44). Со степенью Защиты IР23 выпускают электродвигатели только основного исполнения; все модификации имеют исполнение IР44.
Электродвигатели могут работать при температуре воздуха от -40 до +40 °С и относительной влажности до 98 % при 25 °С.
Шкала мощностей: 0,06—400 кВт.
Электродвигатели 0,06—0,37 кВт изготовляют на 220 и 380 В; 0,55—11 кВт — на 220, 380 и 660 В; 15—110 кВт — на 220/380 и 380/660 В; 132—400 кВт — на 380/660 В.
Количество выводных концов обмотки электродвигателя до 11 кВт — 3, схема соединения обмоток Δ или У, а для электродвигателя 15 кВт и выше — 6 и Δ/У.
Электродвигатели 4АН (IР2З) допускают запыленность воздуха не более 2 мг/м3, а 4А (IР44) — не более 10 мг/м3.
Изоляция по классам нагревостойкости выполняется для двигателей с высотами оси вращения 50—132 мм — класса В, 160—355 мм — класса F.
Электродвигатели со степенью защиты IР54 пылезащищенного исполнения предназначены для эксплуатации в помещениях классов В-IIа и П—II согласно ПУЭ.
Модификации основного исполнения:
1) с повышением пусковым моментом — привод механизмов с большой нагрузкой в момент пуска: компрессоры, дробилки и др.;
2) с повышенным скольжением — привод механизмов с большим моментом инерции, с нагрузкой пульсирующего характера с большой частотой пусков и реверсов;
3) с повышенными энергетическими показателями (η, cosφ) — привод механизмов с круглосуточной работой, при которой особое значение имеет повышение η;
4) с фазным ротором — по условиям пуска и плавного регулирования частоты вращения;
5) малошумные — повышенные требования по уровню шума;
6) многоскоростные — ступенчатое регулирование частоты вращения;
7) встраиваемые — для встраивания в станки и механизмы;
8) по условиям окружающей среды — пылезащищенные, химически стойкие и др.;
9) со встроенной защитой — охватывают весь диапазон высот осей вращения (56—355 мм);
10) повышенной точности — для особо точных станков.
Обозначения типоразмера электродвигателя:
Основное исполнение: 4АА56В2УЗ или 4АН2806У3; 4 — порядковый номер серии; А — асинхронный; Н — обозначение электродвигателя защищенного исполнения IР2З; отсутствие данного знака означает обдуваемое исполнение IР44; А — станина и щиты из алюминия; Х — станина алюминиевая, щиты чугунные; отсутствие знаков означает, что станина и щиту чугунные или стальные; 50— 355 — высота оси вращения, мм; S, L, М — установочные размеры по длине станины; А, В — обозначения длины сердечника (А — первая длина, В—вторая); 2, 4, 6, 8, 10, 12—число полюсов; У — климатическое исполнение электродвигателя; 3— категория размещения.
В обозначениях типоразмера в таблице опущены: индексы материалов станин и щитов (А, Х), число полюсов, климатическое исполнение У и категория размещен 3.
Серия асинхронных электродвигателей АИ более экономична по сравнению с серией 4А. Ряд мощностей электродвигателей этой серии, кВт: 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3; 4; 5,5; 7.5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75; 90; 110; 132; 160; 200; 250; 315; 400.
Синхронные электродвигатели
В системах промышленного электроснабжения наиболее целесообразна установка крупных синхронных двигателей (СД) напряжением выше 1 кВ. Они применяются в тех случаях, когда необходимо иметь строго постоянную частоту вращения или нужен мощный двигатель с малой частотой вращения. Имея такие эксплуатационные качества, как высокая перегрузочная способность, большие, чем у АД, КПД и повышенную устойчивость при снижении напряжения, синхронный двигатель успешно используется в мощных установках продолжительного режима (например, для привода насосов в системах водоснабжения и канализации). Когда синхронный двигатель по своей мощности могут обеспечить регулирование напряжения или режима реактивной мощности в узле нагрузки, они должны иметь автоматическое регулирование возбуждения.
Следует отметить, что у синхронных двигателей с тиристорным возбуждением быстро можно погасить поле ротора, что облегчает использование их в схемах электроснабжения с АВР, а также для быстрой ресинхронизации, которую осуществляют по необходимости при выпадении СД из синхронизма. Наиболее распространен прямой пуск синхронных двигателей с невозбужденным ротором. Синхронныех двигателеи имеют более высокую производительность рабочего агрегата, чем АД, поскольку скорость СД не зависит от нагрузки в нормальных режимах работы.
Основные технические данные синхронных двигателей напряжением выше 1 кВ приведены ниже.
Обозначение синхронных двигателей: С синхронный; Д — двигатель; Н — нормальный; З — закрытый; Т — трехфазный; УХЛЗ — климатическое исполнение и категория размещения. У всех двигателей серии СДН cosφ=0,9. Возбуждение, управление пуском и остановом электродвигателей серии СlН осуществляются от тиристорных возбудителей.
Что можно узнать о электродвигателе, зная его каталожные данные
Каталоги асинхронных двигателей содержат все необходимые данные для выбора двигателей.
В каталогах указываются: типоразмер двигателя, номинальная мощность для режима S1 (длительный режим), частота вращения при номинальной мощности, ток статора при номинальной мощности, коэффициент полезного действия при номинальной мощности, коэффициент мощности при номинальной мощности, кратность начального пускового тока, т. е. отношение начального пускового тока к номинальному, или кратность пусковой мощности, т. е. отношение полной мощности при пуске к номинальной мощности, кратность начального пускового момента, кратности минимального момента, динамический момент инерции ротора.
Кроме этих данных, относящихся к номинальному или пусковому режимам, в каталогах сообщаются более подробные данные об изменении КПД и коэффициента мощности при изменении нагрузки на валу электродвигателя. Эти данные приводятся в табличной или графической форме. Пользуясь этими данными, можно рассчитать также ток статора и скольжение при различных значениях нагрузки на валу.
В каталогах указываются также размеры, необходимые для установки двигателя на объекте и присоединения его к питающей сети.
На различных этапах создания, распределения, установки, эксплуатации и ремонта двигателей требуется различная детальность описания. Для большинства целей достаточна детализация на уровне типоразмера. Каталожное описание типоразмера двигателей серий 4А и АИ содержит признаки, обозначаемые максимально 24 символами.
Примеры. 4А160М4УЗ — асинхронный двигатель серии 4А, со степенью защиты IP44, станина и щиты чугунные, высота оси вращения 160 мм, выполнен в станине средней длины М, четырехполюсный, предназначен для эксплуатации в умеренном климате, категория размещения 3.
4АА56В4СХУ1 — асинхронный двигатель серии 4А со степенью защиты IP44, станина и щиты алюминиевые, высота оси вращения 56 мм, имеет длинный сердечник, четырехполюсный, сельскохозяйственная модификация по условиям окружающей среды, предназначен для эксплуатации в умеренном климате, категория размещения 1.
Номинальной мощностью двигателя называют механическую мощность на валу в режиме работы, для которого он предназначен предприятием-изготовителем.
Ряд номинальных мощностей электродвигателей: 0,06; 0,09; 0,12; 0,18; 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,7; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75; 90; 110; 132; 160; 200; 250; 315; 400 кВт.
Предельно допустимая мощность двигателя может изменяться при изменении режима работы, температуры охлаждающего агента и высоты установки над уровнем моря.
Двигатели должны сохранять номинальную мощность при отклонениях напряжения сети от номинального значения в пределах ±5 % при номинальной частоте сети и при отклонениях частоты сети в пределах ±2,5 % при номинальном напряжении. При одновременном отклонении напряжения и частоты сети от номинальных значений двигатели должны сохранять номинальную мощность, если сумма абсолютных отклонений не превосходит 6 % и каждое из отклонений не превышает нормы.
Синхронная частота вращения электродвигателя
Ряд синхронных частот вращения асинхронных двигателей установлен ГОСТ и при частоте сети 50 Гц имеет следующие значения: 500, 600, 750, 1000, 1500 и 3000 об/мин.
Динамический момент инерции ротора электродвигателя
Мерой инерционности тела при вращательном движении является момент инерции, равный сумме произведений масс всех точечных элементов на квадрат их расстояний от оси вращения. Момент инерции ротора асинхронного двигателя равен сумме моментов инерции многоступенчатого вала, сердечника, обмотки, вентилятора, шпонки, вращающихся частей подшипников качения, обмоткодержателей и нажимных шайб для фазного ротора и т. д.
Крепление электрических электродвигателей на объекте производится посредством лап, фланцев или лап и фланцев одновременно.
Установочные размеры асинхронных электродвигателей с короткозамкнутым ротором на лампах (а) и с флянцем (б)
Электрические электродвигатели на лапах имеют четыре главных установочных размера:
h(H) — расстояние от оси вала до опорной поверхности лап (основной размер),
b10 (A) — расстояние между осями крепительных отверстий,
l10 (B) — расстояние между осями крепительных отверстий (боковой вид),
l31 (C) — расстояние от опорного торца свободного конца вала до оси ближайших крепительных отверстий в лапах.
Электрические электродвигатели с фланцами имеют четыре главных установочных размера:
d(M) — диаметр окружности центров крепительных отверстий,
d25(N) — диаметр центрирующей заточки,
d24(P) — внешний диаметр фланца,
l 39(R) — расстояние от опорной поверхности фланца до опорной поверхности свободного конца вала.
Механические характеристики и пусковые свойства двигателя
Механическая характеристика представляет зависимость вращающего момента двигателя от его частоты вращения при неизменных напряжении, частоте питающей сети и внешних сопротивлениях в цепях обмоток двигателя.
Пусковые свойства характеризуются значениями пускового момента Мп, минимального момента М min , максимального (критического) момента Мкр, пускового тока I п или пусковой мощности Рп или их кратностями. Зависимость момента, отнесенного к номинальному моменту, от скольжения называется относительной механической характеристикой электродвигателя .
Номинальный вращающий момент электродвигателя , Н/м, определяется по формуле
Мном = 9550 (Рном / n ном)
где Рном — номинальная мощность, кВт; n ном — номинальная частота вращения, об/мин.
Разновидности механических характеристик для различных модификаций асинхронных двигателей показаны на рисунке.
Механические характеристики асинхронных электродвигателей с короткозамкнутым ротором: 1 — базового рада, 2 — с повышенным пусковым моментом, 3 — с повышенным скольжением.
Механические характеристики группы двигателей, представляющих отрезок серии, укладываются в некоторую зону. Среднюю линию этой зоны назовем групповой механической характеристикой отрезка серии. Ширина зоны групповой характеристики не превышает поля допуска на моменты.
Рабочие характеристики электродвигателей
Рабочие характеристики — это зависимости подводимой мощности P1, тока в обмотке статора I , вращающего момента М, КПД, коэффициента мощности cos ф и скольжения s от полезной мощности двигателя Р2 при неизменных напряжении на выводах обмотки статора, частоте сети и внешних сопротивлениях в цепях обмоток двигателя. Если такие зависимости отсутствуют, то значения КПД и cos ф могут быть приближенно определены по рисункам.
Типовые рабочие характеристики асинхронных электродвигателей
Коэффициент полезного действия электродвигателя при частичных нагрузках: 1 — Р2 / Р2ном = 0,5, 2 — Р2 / Р2ном = 0,75, 3 — Р2 / Р2ном = 1,25
Коэффициент мощности электродвигателя при частичных нагрузках: 1 — Р2 / Р2ном = 0,5, 2 — Р2 / Р2ном = 0,75, 3 — Р2 / Р2ном = 1,25
Скольжениение электродвигателя приближенно может быть определено по формуле:
s ном = s2 (P2 / P ном),
а линейный ток статора электродвигателя — по формуле:
где I — ток статора, А, cos ф — коэффициент мощности, U ном — номинальное линейное напряжение, В.
Частота вращения ротора электродвигателя :
где nc — синхронная частота вращения электродвигателя, об/мин.
Степень защиты электродвигателей
Степень защиты для электрических электродвигателей установлена в ГОСТ 17494-72. Характеристики степеней защиты и их обозначения определены в ГОСТ 14254-80. Этот стандарт устанавливает степени защиты персонала от соприкосновения с находящимися под напряжением или движущимися частями, находящимися внутри электродвигателей, и от попадания твердых посторонних тел и воды внутрь электродвигателей.
Степени защиты обозначаются двумя латинскими буквами IP (International Protection) и двумя цифрами. Первая цифра обозначает степень защиты персонала от соприкосновения с движущимися или находящимися под напряжением частями, а также степень защиты от попадания внутрь электродвигателей твердых посторонних тел. Вторая цифра обозначает степень защиты от проникновения воды внутрь электродвигателей
Способы охлаждения электродвигателей
Способы охлаждения обозначаются двумя латинскими буквами 1С (International Cooling) и характеристикой цепи охлаждения.
Каждая цепь охлаждения электродвигателей имеет характеристику, обозначаемую латинской буквой, указывающей вид хладагента, и двумя цифрами. Первая цифра обозначает устройство цепи для циркуляции хладагента, вторая — способ подвода энергии для циркуляции хладагента. Если электродвигатель имеет две или более цепи охлаждения, то в обозначении указываются характеристики всех цепей охлаждения. Если воздух является единственным хладагентом электродвигателя, то разрешается опускать букву, обозначающую природу газа.
В асинхронных двигателях применяются следующие способы охлаждения: IC01 —двигатели со степенями защиты IP20, IP22, IP23 с вентилятором, расположенным на валу двигателя, IC05 —двигатели со степенями защиты IP20, IP22, IP23 с пристроенным вентилятором, имеющим независимый привод, IC0041 —двигатели со степенями защиты IP43, IP44, IP54 с естественным охлаждением; IC0141 —двигатели со степенями защиты IP43, IP44, IP54 с наружным вентилятором, расположенным на валу двигателя, IC0541 —двигатели со степенями защиты IP43, IP44, IP54 с пристроенным вентилятором, имеющим независимый привод.
Закрытый обдуваемый электродвигатель (степень защиты IP44)
Классы нагревостойкости системы изоляции электродвигателей
Изоляционные материалы, применяемые в электрических электродвигателях, разделяются по нагревостойкости на классы.
Изоляционный материал относится к тому или иному классу в зависимости от максимальной допустимой температуры. Двигатели работают при различных температурах окружающего воздуха.
За номинальную температуру окружающего воздуха для умеренного климата, если не оговорено противное принимают температуру 40 °С. Предельно допустимое превышение температуры обмотки двигателя получается вычитанием из температурного индекса системы изоляции числа 40.
При выборе более высокого класса нагревостойкости (например, F вместо В) могут быть достигнуты на выбор две цели:
1) увеличение мощности двигателя при неизменном теоретическом сроке службы,
2) увеличение срока службы и надежности при неизменной мощности. В большинстве случаев применение более нагревостойкой изоляции имеет целью повысить надежность двигателя в тяжелых условиях работы.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Техническая информация об электродвигателях
1 Обозначение электродвигателя
1.1 Структура обозначения, базовые стандарты, термины и определения
Двигатели имеют следующую структуру обозначения:
XXXX
(X)
-XXX
-X
X
-X
-XX
1
(2)
3
4
5
6
7
1. Обозначение серий (АИР, АИМ, 5А, 4А, ДАЗО, ВАО, ВАСО);
2. Признак модификации с повышенным скольжением ( С );
3. Габарит (высота оси вращения, мм);
4. Установочный размер по длине станины (S, M, L);
5. Вариант длины сердечника при сохранении установочного размера (А, В);
6. Число полюсов;
7. Климатическое исполнение по ГОСТ 15150.
Асинхронные взрывозащищенные двигатели удовлетворяют требованиям стандартов, приведенных в таблице 1.
ГОСТ 183
Машины электрические вращающиеся. Общие технические требования.
ГОСТ Р 51330.0
Электрооборудование взрывозащищенное. Часть 0. Общие требования.
ГОСТ Р 51330.1
Электрооборудование взрывозащищенное. Часть 1.
МЭП — минимальная энергия, требуемая для поджигания смеси воздуха и топлива при наиболее неблагоприятной концентрации.
МЕП — это фактор, на котором основан метод взрывозащиты искробезопасная электрическая цепь.
БЭМЗ — максимальный зазор между фланцами оболочки, через который не проходит передача взрыва из оболочки в окружающую среду при любой концентрации смеси.
МТВ — отношение между минимальным током самовоспламенения смеси и минимальным током самовоспламенения метана.
Взрывонепроницаемая оболочка — Вид взрывозащиты электрооборудования, в котором его части, способные воспламенить взрывоопасную смесь, заключены в оболочку, способную выдерживать давление взрыва воспламенившейся смеси без повреждения и передачи воспламенения в окружающую взрывоопасную смесь, для которой она предназначена. Взрывозащита этого вида обозначается — «d» — «взрывонепроницаемая оболочка» по ГОСТ Р 51330.5. при температурах взрывоопасной смеси и окружающей среды от -20 ºС до +60 ºС. При температуре ниже окружающей среды ниже -20 ºС может потребоваться более прочная оболочка, так как при низких температурах может увеличится давление взрыва и ухудшится механические свойства материала оболочки. При температуре окружающей среды выше +60 ºС потребуется уменьшить ширину взрывонепроницаемых соединений, так как безопасный экспериментальный максимальный зазор снижается с увеличением температуры взрывоопасной смеси.
Свободный объем оболочки V — Внутренний объем оболочки за вычетом объема, занимаемого встроенными элементами.
Взрывонепроницаемые соединения — Соединения частей оболочки, через щель которых взрыв внутри оболочки не распространяется в окружающую взрывоопасную смесь с установленным коэффициентом безопасности.
Взрывозащитная поверхность — Поверхность части оболочки, которая совместно с соответствующей ей поверхностью другой части образуют щель взрывонепроницаемого соединения.
Длина щели — Кратчайший путь по взрывозащитной поверхности из оболочки в окружающую среду или из одного отделения в другое на участке, где отсутствует отверстие для болта или другого элемента крепления.
Ширина щели — Расстояние между соответствующими поверхностями взрывозащищенного соединения. При цилиндрических поверхностях за ширину щели принимают диаметральный зазор ( разность диаметров ).
Ширина радиальной щели — Расстояния между поверхностями отверстия и вала в цилиндрическом соединении.
Длина щели до отверстия — Кратчайший путь по взрывозащищенной поверхности из оболочки в окружающую среду или из одного отделения в другое на участке, где имеется отверстие для болта или другого элемента крепления.
1.2 Условия эксплуатации
Климатические исполнения, категории размещения
Типы климатов и макроклиматов и критерии их разграничения приведены в таблице 2.
Климатические исполнения изделий
Как определить мощность и обороты электродвигателя без бирки?
При замене сломанного советского электродвигателя на новый, часто оказывается, что на нем нет шильдика. Нам часто задают вопросы: как узнать мощность электродвигателя? Как определить обороты двигателя? В этой статье мы рассмотрим, как определить параметры электродвигателя без бирки — по диаметру вала, размерам, току.
Заказать новый электродвигатель по телефону
Как определить мощность?
Существует несколько способов определения мощности электродвигателя: диаметру вала, по габариту и длине, по току и сопротивлению, замеру счетчиком электроэнергии.
По габаритным размерам
Все электродвигатели отличаются по габаритным размерам. Определить мощность двигателя можно сравнив габаритные размеры с таблицей определения мощности электродвигателя, перейдя по ссылке габаритно-присоединительные размеры электродвигателей АИР.
Какие размеры необходимо замерить:
- Длина, ширина, высота корпуса
- Расстояние от центра вала до пола
- Длина и диаметр вала
- Крепежные размеры по лапам (фланцу)
По диаметру вала
Определение мощности электродвигателя по диаметру вала — частый запрос для поисковых систем. Но для точного определения этого параметра недостаточно – два двигателя в одном габарите, с одинаковыми валами и частотой вращения могут иметь различную мощность.
Таблица с привязкой диаметров валов к мощности и оборотам для двигателей АИР и 4АМ.
Мощность электродвигателя Р, кВт |
Диаметр вала, мм | Переход к модели | |||
3000 об/мин | 1500 об/мин | 1000 об/мин | 750 об/мин | ||
0,18 | 11 | 11 | 14 | — | АИР56А2, АИР56В4, АИР63А6 |
0,25 | 14 | 19 | АИР56В2, АИР63А4, АИР63В6, АИР71В8 | ||
0,37 | 14 | 19 | 22 | АИР63А2, АИР63В4, АИР71А6, АИР80А8 | |
0,55 | 19 | АИР63В2, АИР71А4, АИР71В6, АИР80В8 | |||
0,75 | 19 | 22 | 24 | АИР71А2, АИР71В4, АИР80А6, АИР90LA8 | |
1,1 | 22 | АИР71В2, АИР80А4, АИР80В6, АИР90LB8 | |||
1,5 | 22 | 24 | 28 | АИР80А2, АИР80В4, АИР90L6, АИР100L8 | |
2,2 | 24 | 28 | 32 | АИР80В2, АИР90L4, АИР100L6, АИР112МА8 | |
3 | 24 | 32 | АИР90L2, АИР100S4, АИР112МА6, АИР112МВ8 | ||
4 | 28 | 28 | 38 | АИР100S2, АИР100L4, АИР112МВ6, АИР132S8 | |
5,5 | 32 | 38 | АИР100L2, АИР112М4, АИР132S6, АИР132М8 | ||
7,5 | 32 | 38 | 48 | АИР112M2, АИР132S4, АИР132М6, АИР160S8 | |
11 | 38 | 48 | АИР132M2, АИР132М4, АИР160S6, АИР160М8 | ||
15 | 42 | 48 | 55 | АИР160S2, АИР160S4, АИР160М6, АИР180М8 | |
18,5 | 55 | 60 | АИР160M2, АИР160M4, АИР180М6, АИР200М8 | ||
22 | 48 | 55 | 60 | АИР180S2, АИР180S4, АИР200М6, АИР200L8 | |
30 | 65 | АИР180M2, АИР180M4, АИР200L6, АИР225М8 | |||
37 | 55 | 60 | 65 | 75 | АИР200M2, АИР200M4, АИР225М6, АИР250S8 |
45 | 75 | 75 | АИР200L2, АИР200L4, АИР250S6, АИР250M8 | ||
55 | 65 | 80 | АИР225M2, АИР225M4, АИР250M6, АИР280S8 | ||
75 | 65 | 75 | 80 | АИР250S2, АИР250S4, АИР280S6, АИР280M8 | |
90 | 90 | АИР250М2, АИР250M4, АИР280M6, АИР315S8 | |||
110 | 70 | 80 | 90 | АИР280S2, АИР280S4, АИР315S6, АИР315M8 | |
132 | 100 | АИР280M2, АИР280M4, АИР315M6, АИР355S8 | |||
160 | 75 | 90 | 100 | АИР315S2, АИР315S4, АИР355S6 | |
200 | АИР315M2, АИР315M4, АИР355M6 | ||||
250 | 85 | 100 | АИР355S2, АИР355S4 | ||
315 | — | АИР355M2, АИР355M4 |
По показанию счетчика
Как правило измерение счетчика отображаются в киловаттах (далее кВт). Для точности измерения стоит отключить все электроприборы или воспользоваться портативным счетчиком. Мощность электродвигателя 2,2 кВт, подразумевает что он потребляет 2,2 кВт электроэнергии в час.
Для измерения мощности по показанию счетчика нужно:
- Подключить мотор и дать ему поработать в течении 6 минут.
- Замеры счетчика умножить на 10 – получаем точную мощность электромотора.
Расчет мощности по току
Для начала нужно подключить двигатель к сети и замерить показатели напряжения. Замеряем потребляемый ток на каждой из обмоток фаз с помощью амперметра или мультиметра. Далее, находим сумму токов трех фаз и умножаем на ранее замеренные показатели напряжения, наглядно в формуле расчета мощности электродвигателя по току.
- P – мощность электродвигателя;
- U – напряжение;
- Ia – ток 1 фазы;
- Ib – 2 фазы;
- Ic – 3 фазы.
Определение оборотов вала
Асинхронные трехфазные двигатели по частоте вращения ротора делятся 4 типа: 3000, 1500, 1000 и 750 об. мин. Приводим пример маркировки на основании АИР 180:
- АИР 180 М2 – где 2 это 3000 оборотов.
- АИР 180 М4 – 4 это 1500 об. мин.
- АИР 180 М6 – 6 обозначает частоту вращения 1000 об/мин.
- АИР 180 М8 – 8 означает, что частота вращения выходного вала 750 оборотов.
Самый простой способ определить количество оборотов трехфазного асинхронного электродвигателя – снять задний кожух и посмотреть обмотку статора.
У двигателя на 3000 об/мин катушка обмотки статора занимает половину окружности — 180 °, то есть начало и конец секции параллельны друг другу и перпендикулярны центру. У электромоторов 1500 оборотов угол равен 120 °, у 1000 – 90 °. Схематический вид катушек изображен на чертеже. Все обмоточные данные двигателей смотрите в таблице.
Узнать частоту вращения с помощью амперметра
Узнать обороты вала двигателя, можно посчитав количество полюсов. Для этого нам понадобится миллиамперметр — подключаем измерительный прибор к обмотке статора. При вращении вала двигателя стрелка амперметра будет отклонятся. Число отклонений стрелки за один оборот – равно количеству полюсов.
- 2 полюса – 3000 об/мин
- 4 полюса – 1500 об/мин
- 6 полюса – 1000 об/мин
- 8 полюса – 750 об/мин
Если не получилось узнать мощность и обороты
Если не получилось узнать мощность и обороты электродвигатели или вы не уверены в измерениях – обращайтесь к специалистам «Систем Качества». Наши специалисты помогут подобрать нужный мотор или провести ремонт сломанного электродвигателя АИР.
Расчет основных параметров двигателя с шильдика
Электродвигатели встречаются в промышленности и быту повсеместно. Если Вы не обращали внимание, то я приведу парочку фото примеров:
Порой возникает необходимость, рожденная будничным любопытством, либо производственной необходимостью в определении мощности электродвигателя по внешнему виду, или значения допустимой температуры в эксплуатации, не говоря уже о значениях тока и напряжения.
Тут возможен вариант, что с него содрана табличка, на которой написаны номинальные параметры, либо же шильдик в таком состоянии, что различить ничего невозможно. Как же быть в такой ситуации…
Одно дело, если Вы всю жизнь работали на производстве движков, и можете определить мощность на глаз. В иных случаях, определить поможет линейка (рулетка) и таблицы с габаритами механизмов.
Если Ваша деятельность больше лежит в теоретических изысканиях, нежели практических, то пригодится формула определения мощности ЭД или таблицы с номинальным данными, именно про это и не только в этой статье.
Бирка (шильдик) электродвигателя
Осмотрев любой, за редким исключением, электродвигатель можно обнаружить табличку, привинченную на болты, саморезы или же заклепки. Что же написано на данном куске металла? Возьмем шильдик, заменив на нем заводской номер на название сайта.
Кстати, редко бывает, что табличка на электрооборудование находится в таком, почти идеальном состоянии. Часто данные выцветают или замазаны краской, ведь задача стоит для обслуживающего персонала покрасить двигатель, а не покрасить двигатель, оставив табличку нетронутой. Но, нам повезло. Пойдем по-порядку.
Первая строчка — число фаз и тип тока (3
), заводской номер, частота сети, форма исполнения и монтажа, класс изоляции
Вторая строчка — тип электродвигателя, косинус фи, возможные схемы соединения, номинальная частота вращения
Третья строчка — возможные номинальные напряжения, номинальная мощность, IP — степень защиты электродвигателя, масса, режим работы электродвигателя (S1).
Четвертая строчка — номинальные токи в зависимости от схемы включения обмоток, далее какому госту соответствует эд.
Рассмотрим отдельные параметры более подробно.
Мощность электродвигателя: полная, активная и на валу
Формула для расчета мощности трехфазного асинхронного двигателя:
S1 — полная мощность, потребляемая двигателем из сети
P1 — активная мощность, потребляемая электродвигателем из сети (указана на шильдике)
P — активная мощность на валу ЭД.
cosf — косинус фи, коэффициент мощности — угол сдвига фаз между активной (P) и полной мощностью (S).
В формулах выше, значение мощности получится в Вт, значение полной мощности в ВА. Чтобы перевести в киловатты необходимо получившееся значение разделить на тысячу. Значение тока и напряжения соответственно в формуле выше в амперах и вольтах.
I1 и U1 — линейные значения тока и напряжения, их еще называют междуфазными. Не стоит путать с фазными. Линейные — это АВ, ВС, СА (380); фазные — АО, ВО, СО (220). Если выразить формулы мощностей через фазные значения тока и напряжения, то вместо корня из трех вначале будет коэффициент 3. Этот коэффициент определяется наглядно через векторную диаграмму трехфазного напряжения.
Для двигателей постоянного тока формула будет просто произведение напряжения на зажимах двигателя умножить на ток, потребляемые двигателем из сети.
Потребляемая мощность p1 больше мощности на валу ЭД из-за потерь, которые возникают при преобразовании электрической энергии в механическую.
Звезда/Треугольник и 220/380, 380/660
Смотреть все значения по порядку как они идут через дробь. То есть написано на шильде Y/D ( треугольник/звезда), значит и токи, напряжения соответственно будут сначала для Y, а после дроби для звезды. Единственно, нюанс, что при 220/380 — треугольник будет 220, А при 380/660 — треугольник будет 380. То есть говорить, что 380 — это всегда звезда — неверно.
Всегда изучайте табличку на движке перед подключением.
Достоинства при подключении звездой и треугольником абстрактны, так как каждая схема имеет свои области применения:
- Y — меньше рабочий и пусковой ток, больше напряжение, меньше пусковой момент, меньше греется
- D — больше пусковой момент, пусковой ток, но и больше греется.
Бывают двухскоростные двигатели, где сначала запускаются на звезде, А потом переходят на треугольник. В таком случае механизм легче запускается, А потом работает с большей мощностью.
При подключении трехфазного двигателя на 220В, где есть лишь фаза и ноль, можно прибегнуть к схеме с конденсаторами.
Форма исполнения и способ монтажа
IM 1081 — форма исполнения и способ монтажа согласно ГОСТ 2479 и МЭК60034-5. В нашем примере это обозначает “на лапах с двумя подшипниковыми щитами, с одним циллиндрическим концом вала”.
Это название состоит из латинских букв IM и четырех чисел.
Первая цифра от 1 до 9 — конструктивный способ исполнения
Вторая и третья (00. 99) — способ монтажа
Четвертая (0..9) — условное обозначение конца вала.
Коэффициент полезного действия электродвигателя
КПД показывает эффективность преобразования электродвигателем электрической энергии, которую он берет из сети, в механическую энергию вращения механизма.
Если бы не было потерь при передаче энергии, то КПД равнялся бы 100%. Однако, такого не существует. Однако, существуют виды потерь, которые уменьшают величину коэффициента:
- потери от нагрева проводников с током при увеличении нагрузки — электрические потери
- потери на вихревые токи, гистерезис в шихтованных статорах — магнитные потери
- потери на трение подшипников, вентиляцию — механические потери
- плюс различные дополнительные менее важные виды потерь.
Часто, но не всегда, чем выше скорость вращения электродвигателя, тем больше его КПД. Это связано с зависимостью КПД и скольжения ЭД. Существуют классы согласно величины КПД по ГОСТ IEC/TS 60034-31—2015: IE1, IE2, IE3, IE4.
Классы изоляции двигателей по нагревостойкости
Здесь нам на помощь придет ГОСТ 8865-93. Класс изоляции электрических машин характеризует максимальную температуру при номинальных параметрах. То есть в нашем примере при номинальных данных с таблички, температура изоляции не должна превышать 155 градусов.
Приведу данные допустимых температур электродвигателей для разных классов изоляции. Следует учитывать, что материалы могут иметь различные классы.
- Y — 90
- A — 105
- E — 120
- B — 130
- F — 155
- H — 180
Далее идут цифровые классы: 200, 220, 250 — а после них плюс 25 градусов с обозначением класса согласно допустимого значения температуры.
Данные температуры определены опытным путем при работе на номинальных параметрах на протяжении срока эксплуатации до величин, при которых увеличивается тангенс дельта и уменьшается напряжение пробоя.