Амперметр на светодиодах своими руками

Амперметр своими руками

Привет всем любителям самоделок. В данной статье я расскажу, как сделать амперметр своими руками, в сборке которой поможет кит-набор, ссылка на него будет в конце статьи. Данный амперметр пригодится для различных самоделок, где нужно контролировать ампераж. Корпус радиоконструктора выполнен специально с защелками для установки на щиток или панель, что является несомненным плюсом.

Перед прочтением статьи предлагаю посмотреть видеоролик с подробным процессом сборки и проверкой в работе кит-набора.

Для того, чтобы сделать амперметр своими руками, понадобится:
* Кит-набор
* Паяльник, флюс, припой
* Мультиметр
* Приспособление для пайки «третья рука»
* Крестовая отвертка
* Бокорезы

Шаг первый.
Весь монтаж будет производиться на печатной плате, на которой нанесена маркировка всех компонентов, так что в данном случае инструкция не нужна, само качество изготовления платы на высоком уровне, также она имеет металлизированные отверстия.

Разобравшись с комплектом кит-набора, переходим непосредственно к сборке.

Шаг второй.
Первым делом на плату устанавливаем резисторы. Для установки резисторов необходимо измерить их номиналы, сделать это можно при помощи мультиметра, цветовой маркировки с справочной таблицей или онлайн-калькулятора. Определив сопротивление каждого резистора, устанавливаем их на свои места, согласно маркировке на плате, с обратной стороны загинаем выводы, чтобы при пайке детали не выпали.

После установки резисторов переходим к конденсаторам, устанавливаем полярные и неполярные конденсаторы, полярные ставим с соблюдением полярности, плюс это длинная ножка, минус-короткая, также минус на плате обозначен заштрихованным полукругом.

Керамические неполярные конденсаторы вставляем согласно цифровой маркировке на их корпусе и на самой плате. Далее вставляем диоды, на плате один их них выделен жирной полоской, которая также нанесена черным на корпусе диода, остальные три все одинаковые и перепутать их не получится, а затем ставим индуктивность.






Вот и готов кит-набор, теперь его можно проверить в действии.

Шаг пятый.
Чтобы проверить данный радиоконструктор необходимо подсоединить провода к питанию, для этого будет достаточно аккумуляторной батареи типа 18650, а тестируемое устройство подсоединяем в разрыв к входу прибора.



Подключать можно различные устройства для проверки потребления тока, чтобы откалибровать измерения имеется подстроечный резистор. Данный кит-набор пригодится для тех, кто хочет сделать что-то электронное, где необходим вывод информации в реальном времени, например, потребление тока электродвигателя. Также данная сборка будет полезна начинающим радиолюбителям, которые хотят попробовать себя в радиоэлектронике.

На этом у меня все, всем спасибо за внимание и творческих успехов.

Амперметр для автомобильного зарядного устройства на ATtiny13

Как-то раз в руки к автору этих строк попало весьма интересное устройство, рожденное в СССР, в далеком 1976 году – его просто отдали за ненадобностью.

Звали это устройство АДЗ-101У2, и оно представляло собой типичный образчик советского конструктивизма: тяжелый двадцатикилограммовый “чемодан”, с ручкой для переноски в верхней части и мощным однофазным трансформатором внутри. Но самое интересное, что у этого “чемодана” напрочь отсутствовала задняя панель – и вовсе не потому, что прибор успел ее “посеять”, нет. А дело здесь было в том, что обе его панели являлись… передними!

С одной своей стороны “чемодан” представлял собой сварочный аппарат, а с другой – зарядное устройство для автомобильных аккумуляторов. И если как “сварочник” он особых эмоций не вызвал – еще бы, ведь всего-то 50А переменного тока; то вот “зарядник” – вещь в хозяйстве, безусловно, нужная. Испытания прибора подтвердили его полную боеспособность (даже сварка работала!), но без недостатков, разумеется, не обошлось. Суть проблемы состояла в том, что штатный амперметр “зарядника” скрылся в неизвестном направлении, и предыдущий владелец аппарата подыскал ему вполне “равноценную” замену – автомобильный амперметр, скрученный с какого-то военного грузовика, и имеющий очень “информативную” шкалу в ±30 А!

Понятно, что следить за зарядом аккумулятора (а ток зарядки – всего лишь 3-6 А!) при помощи такого вот прибора, мягко говоря, проблематично – как будто и нет его вовсе… Поэтому решено было заменить “грузовиковый показометр” на какой- либо более или менее адекватный прибор, с внятной шкалой на 0-10 А. Идеальным кандидатом на эту роль представлялся стрелочный щитовой амперметр со встроенным шунтом – один из тех, которые раньше использовались практически во всех “зарядниках” советского производства, да и много где еще.

Однако, первая же прогулка по электромагазинам и “развалам” принесла разочарование: оказывается, ничего, хотя бы отдаленно напоминающего искомый прибор, уже давным-давно в продаже нет… А так-так в то время автор еще не был знаком с бескрайними просторами китайских чудосайтов, то руки вновь потянулись к паяльнику, в результате чего и было разработано устройство, схема которого приведена на рис.1, а характеристики – в табл.1:

Для вывода результатов измерения в данном амперметре решено было использовать пару 7-сегментых LED- индикаторов. Такие индикаторы, несмотря на некоторую свою архаичность по сравнению с новомодными LCD-модулями типа 16хх, обладают также и рядом неоспоримых преимуществ: они гораздо надежнее и прочнее; не портятся и не мутнеют от контакта с нефтепродуктами (а замасленные руки в гараже – дело обычное, цифры на LED-индикаторах ярче и гораздо “читабельнее” – особенно издали; и к тому же, никакой холод в гараже светодиодам не страшен – в отличие от ЖК, который на морозе попросту “слепнет”.

Ну а последним доводом в пользу светодиодной матрицы – в контексте данной разработки – стал тот факт, что длинный 1602 просто-напросто не вписывался по размерам в штатное отверстие для амперметра (круглое и очень небольшое!) на корпусе ЗУ. Определившись с типом индикатора, встал другой вопрос – какой же микроконтроллер использовать в качестве основы для данного устройства. В том, что эту схему нужно строить именно на МК, сомнений никаких не возникало -делая амперметр на “КМОП-россыпи”, можно повредиться рассудком.

На первый взгляд, самым очевидным решением является “рабочая лошадка” ATtiny2313 – этот МК имеет достаточно развитую архитектуру, и вполне подходящее для подключения LED-матрицы количество линий ввода-вывода. Однако, здесь все оказалось не так уж и просто – ведь для измерения тока в состав МК обязательно должен входить аналогово-цифровой преобразователь, но инженеры фирмы Atmel почему-то не оснастили “2313-й” данной функцией… Другое дело семейство Меда: эти чипы обязательно имеют “на борту” модуль АЦП.

Но, с другой стороны, даже АТМедав – как самый простой представитель “старшего” семейства – обладает гораздо большей функциональностью, чем того требует построение простого амперметра. А это уже не самое лучшее решение с точки зрения классического подхода к проектированию!

Под “классическим подходом к проектированию” здесь подразумевается так называемый “принцип необходимого минимума” (горячим приверженцем которого, в пику новомодным “Ардуинам”, является и автор этих строк), согласно которому любую систему следует проектировать с использованием минимально возможного количества ресурсов; а окончательный результат должен содержать в себе как можно меньше незадействованных элементов.

Поэтому, в соответствии с этим принципом – простому прибору – простой микроконтроллер, и никак иначе! Правда, и не все простые МК подойдут для поставленной задачи. Взять, к примеру, ATtinyl3 – в нем есть АЦП, он прост и недорог; да вот только линий ввода- вывода – для подключения матрицы из двух “семисегментников” – у него явно маловато… Хотя, если немного пофантазировать, то такая проблема вполне разрешима – при помощи копеечного счетчика К176ИЕ4 и несложного алгоритма, этим счетчиком управляющего.

Вдобавок, у такого подхода есть даже положительные стороны – во-первых, отпадает необходимость “навешивать” на каждый сегмент индикатора по токоограничительному резистору (генераторы тока уже имеются в выходных каскадах счетчика); а во-вторых, в данной схеме можно использовать индикатор как с общим катодом, так и с общим анодом – для перехода на “общий анод” нужно изменить подключение транзисторов VT1 и VT2, выв. 6 DD2 подключить к линии +9В через резистор 1 кОм, а левый вывод R3 соединить с “землей”. Для того, чтобы управлять счетчиком при помощи МК, нужно задействовать всего две линии: одну – для сигнала счета (С), а другую – для сигнала сброса (R).

Причем, в ходе испытания устройства выяснилось, что КМОП-микросхема К176ИЕ4, будучи подключенной напрямую к линиям МК, вполне надежно работает с его ТТЛ- уровнями – без какого-либо дополнительного согласования. А еще две линии МК управляют ключами VT1-VT2, создавая динамическую индикацию. Фрагмент исходного кода, где реализована процедура управления счетчиком DD2, приведен в листинге: можно зажигать тот или иной разряд индикатора.

Кстати, благодаря счетчику К176ИЕ4, к любому МК можно подключить индикаторную матрицу 7×4, задействовав для этого только 6 линий ввода-вывода (две – для управления счетчиком, и еще четыре – для динамического переключения разрядов). А если в “напарники” к К176ИЕ4 добавить еще один счетчик – декадный К176ИЕ8 – чтобы использовать его для “сканирования” разрядов; то появится возможность подключить к МК индикаторную матрицу величиной до 10 знакомест, выделив для этого всего лишь 5 линий ввода-вывода (две – для управления К176ИЕ8; две – для К176ИЕ4; и еще одна – для гашения индикатора в момент счета К176ИЕ4)!

В подобном случае процедура написана на низкоуровневом языке AVR-Assembler; однако, она легко может быть переведена и на любой язык высокого уровня. В регистре Temp процедура получает число, которое необходимо отправить в счетчик К176ИЕ4 для отображения на индикаторе; линия 1 порта В микроконтроллера подключена ко входу сброса счетчика (R), а линия 2 – к его счетному входу (С).

Чтобы избежать мерцания чисел в момент переключения счетчика, перед вызовом данной процедуры необходимо погасить оба разряда, закрыв транзисторы VT1 и VT2 подачей лог.О на линии 0 и 4 порта В МК; ну а после того, как процедура отработает, уже алгоритм динамической индикации будет сводиться к управлению счетчиком К176ИЕ8, что во многом аналогично алгоритму передачи цифры в счетчик К176ИЕ4, приведенному в листинге выше.

К недостаткам же такого подключения индикаторной матрицы – помимо использования “лишней” микросхемы – можно отнести необходимость введения в схему дополнительного питания +9 В, т.к. попытки запитать КМОП-счетчики от +5 В, увы, не увенчались успехом… В качестве индикатора в данном устройстве применим практически любой сдвоенный “семисегментник” с общими катодами, предназначенный для работы в схемах с динамической индикацией. Допустимо использовать и четырехразрядную матрицу, задействовав у нее только два из четырех имеющихся разрядов.

В авторском варианте индикаторное “табло” и вовсе было собрано на отрезке макетной платы “решета”, из двух “древних” одноразрядных АЛС321… Правда, в процессе работы над схемой амперметра всплыла небольшая проблема – с подключением десятичной запятой: ведь она должна светиться в старшем разряде, и не гореть – в младшем. И если все делать “по уму”, то неплохо было бы выделить – для динамического управления этой самой запятой – еще одну ножку МК (т.к. в К176ИЕ4 никаких средств для управления запятыми не предусмотрено) – чтобы на нее “повесить” вывод индикатора, отвечающий за запятые.

Но, поскольку все линии ввода-вывода МК уже были заняты, то бороться с этой проблемой пришлось отнюдь не самым изящным способом: обе запятые решено было оставить постоянно зажженными, запитав соответствующий вывод индикаторной “матрицы” от линии +9В через токоограничительный резистор R3 (подбирая его сопротивление, можно выровнять яркость свечения запятой относительно остальных сегментов); а лишнюю запятую в младшем разряде (крайнюю правую) просто замазать каплей черной нитрокраски. С технической точки зрения такое решение сложно назвать идеальным; но в глаза “загримированная” подобным образом запятая совершенно никак не бросается…

В качестве датчика тока используются два параллельно соединенных резистора R1 и R2, мощностью по 5 Вт каждый. Вместо пары R1 и R2 вполне можно установить и один резистор сопротивлением 0,05 Ом – в таком случае его мощность должна быть не менее 7 Вт. Более того, в “прошивке” микроконтроллера предусмотрена возможность выбора сопротивления измерительного шунта – в данной схеме может быть применен как 0,05-омный, так и 0,1-омный датчик тока.

Для того, чтобы задать микроконтроллеру сопротивление шунта, использующегося в конкретном случае, необходимо записать определенное значение в ячейку памяти EEPROM, расположенную по адресу 0x00 – для сопротивления 0,1 Ом это может быть любое число меньше 128 (в таком случае МК, будет делить результат измерений на 2); а при использовании шунта сопротивлением 0,05 Ом в эту ячейку, соответственно, следует записать число больше 128.

И если планируется эксплуатировать устройство с приведенным на схеме 0,05-омным шунтом, то о записи указанной ячейки можно и вовсе не беспокоиться, т.к. у нового (или “стертого в ноль”) МК во всех ячейках памяти итак будет число 255 (OxFF). Питать прибор можно как от отдельного источника – напряжением не менее 12 В, так и от силового трансформатора самого зарядного устройства. Если питание будет производиться от трансформатора ЗУ, то желательно задействовать для этого отдельную обмотку, никак не связанную с зарядной цепью; однако, допускается питать амперметр и от одной из зарядных обмоток.

В этом случае напряжение питания нужно брать до выпрямительного моста “зарядника” (т.е., непосредственно с обмотки), а в разрыв обоих проводов питания амперметра включить по резистору 75 Ом/1 Вт. Резисторы необходимы для зашиты “отрицательных” диодов моста VD1-4 от прохождения через них части зарядного тока.

Дело в том, что если подключить прибор к зарядной обмотке, не установив этих резисторов то, учитывая общую “землю” у моста VD1-4 и диодного моста зарядного устройства, около половины зарядного тока аккумулятора будет возвращаться в обмотку не через мощные диоды выпрямителя ЗУ, а через “отрицательное” плечо моста VD1-4, вызывая сильный нагрев маломощных 1N4007.

Установка же этих резисторов ограничит ток питания прибора и оградит диодный мост VD1-4 от протекания зарядного тока, который теперь, практически полностью, будет течь по “правильной” цепи – через мощные диоды выпрямителя ЗУ.

Печатная плата для данного амперметра разрабатывалась под конкретные посадочные места в корпусе конкретного ЗУ; ее чертеж приведен на рис.2. Индикаторная матрица устанавливается отдельно – на небольшом платке (отрезке “макетки” 30×40), которая крепится к основной плате болтами М2,5 через дистанционные втулки, со стороны монтажа; и соединяется с ней 10-жильным шлейфом. Еще одной частью получившегося “бутерброда” является декоративная передняя панель из оргстекла, покрашенная с обратной стороны нитрокраской из баллончика (не закрашенным должен остаться только небольшой прямоугольник – “окошко” для индикатора).

Передняя панель также крепится к основной плате со стороны монтажа (болтами М3 с дистанционными втулками – ими же прибор крепится и к корпусу ЗУ). Печатные дорожки сильноточной цепи, идущие к резисторам R1 и R2, следует выполнить как можно более широкими, и припаять к ним выводы резисторов на всю длину, заодно усилив монтаж толстым слоем припоя. В качестве выводов для подключения прибора к ЗУ желательно использовать два болта М3, припаяв их головки к плате, и закрепив с другой стороны гайками.

При записи “прошивки” в МК его необходимо настроить для работы на частоте 1,2 МГц. от внутреннего тактового генератора. Для этого частоту тактирования следует выбрать равной 9,6 МГц, и включить внутренний делитель такта на 8. Для увеличения надежности работы также желательно активировать внутренний супервайзор питания (модуль BOD), настроив его на сброс МК при “просадке” питающего напряжения ниже 2.7 В. Все настройки производятся при помощи записи соответствующих значений в конфигурационные Fuse-ячейки: SUT1=1, SUT0=0, CKDIV8=0, BODLEVEL1 =0. BODLEVELO= 1. WDTON=1. Остальные “фъюзы” можно оставить по умолчанию.

Схема вольтметра на светодиодах

Хорошо применять такой светодиодный индикатор своими руками в самодельных регулируемых блоках питания. Если под рукой есть все необходимые радиокомпоненты, то схему измерителя напряжения возможно собрать самостоятельно очень быстро и легко.

На трех операционных усилителях LM324 собраны компараторы напряжения. Их инверсные входы подсоединены к резисторному делителю напряжения, собранного на резисторах R1 и R2, через который на схему идет контролируемое напряжение.

На неинвертирующие входы операционных усилителей поступает опорное напряжение с делителя, выполненного на сопротивлениях R3 — R15. Если на входе вольтметра отсутствует напряжение, то на выходах ОУ будет высокий уровень сигнала и на выходах логических элементов будет логический ноль, поэтому светодиоды не светятся.

При поступление на вход светодиодного индикатора измеряемого напряжения, на определенных выходах компараторов ОУ установится низкий логический уровень, соответственно на светодиоды поступит высокий логический уровень, в результате чего загорится соответствующий светодиод. Для предотвращения подачи уровня напряжения на входе устройства имеется защитный стабилитрон на 12 вольт.

Этот вариант рассмотренной выше схемы отлично подойдет любому автовладельцу и даст ему наглядную информацию о состоянии заряда аккумуляторной батареи. В данном случае задействованы четыре встроенных компаратора микросборки LM324. Инвертирующими входами формируются опорные напряжения 5,6V, 5,2V, 4,8V, 4,4V соответственно. Напряжение аккумулятора напрямую поступает на инвертирующий вход через делитель на сопротивлениях R1 и R7.

Светодиоды выступают в роли мигающих индикаторов. Для настройки, вольтметр, подсоединяют к АКБ, затем регулируют переменный резистор R6 так, чтобы нужные напряжения присутствовали на инвертирующих выводах. Зафиксируйте индикаторные светодиоды на передней панели авто и нанесите рядом с ними напряжение аккумулятора, при котором загораются тот, или иной индикатор.

Итак, хочу сегодня рассмотреть очередной проект с применением микроконтроллеров, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровое устройство на современном микроконтроллере. Конструкция его была взята из журнала радио за 2010 год и может быть с легкостью перестроена под амперметр в случае необходимости.

Это простая конструкция автомобильного вольтметра используется для контроля напряжения бортовой сети автомобиля и расчитана на диапазон от 10,5В до 15 вольт. В роли индикатора применены десять светодиодов.

Сердцем схемы является ИМС LM3914. Она способна оценить уровень входное напряжение и отобразить приблизительный результат на светодиодах в режиме точка или столбик.

Светодиоды выводят текущее значение напряжения аккумулятора или бортовой сети в режиме точки (вывод 9 не подключен или подсоединен на минус) или столбика (вывод 9 к плюсу питания).

Сопротивление R4 регулирует яркость свечения светодиодов. Резисторы R2 и переменный R1 образуют делитель напряжения. При помощи R1 осуществляется настройка верхнего порога напряжения, а при помощи резистора R3 нижнего.

Калибровка схемы делается по следующуму принципу. Подаем на вход вольтметра 15 вольт. Затем изменяя сопротивление R1, добивемся, зажигания светодиода VD10 (в режиме точка) или всех светодиодов(в режиме столбик).

Затем на вход подаем 10,5 вольт и R3 добиваемся свечения VD1. А затем увеличиваем уровень напряжение с шагом в половину вольта. Тумблер SA1 используется для переключения между режимами индикации точка/столбик. При замкнутом SA1 – столбик, при разомкнутом – точка.

Если напряжение на аккумуляторной батареи ниже уровня 11 вольт, стабилитроны VD1 и VD2 не пропускают ток, из-за чего светится только HL1, говорящий о низком уровне напряжения бортовой сети автомобиля.

Если напряжение лежит в интервале от 12 до 14 вольт, стабилитрон VD1 отпирает VT1. HL2 горит, указывая на нормальный уровень АКБ. Если напряжение батареи выше 15 вольт, стабилитрон VD2 отпирает VT2, и загорается светодиод HL3, показывающий значительное превышение напряжения в сети автомобиля.

В роли индикатора, как и в предыдущей конструкции, применены три светодиода.

При низком напряжении уровне загорается HL1. Если норма HL2. А более 14 вольт, вспыхивает третий светодиод. Стабилитрон VD1 формирует опорное напряжение для работы ОУ.

Самодельный амперметр для автомобиля

Схема устройства для визуального контроля зарядного и разрядного тока автомобильной аккумуляторной батареи во время поездки. Индикатор амперметра — стрелочный, кроме того, имеется светодиодный индикатор направления тока, включающийся, когда батарея разряжается.

Наличие информации о направлении и значении тока, протекающего через аккумуляторную батарею, позволяет водителю избежать многих аварийных ситуаций.

Например, он может своевременно заметить, что батарея по какой-то причине не заряжается и предотвратить её полную разрядку. Не менее опасна ситуация, когда зарядный ток чрезмерно велик, что может привести к пожару и выходу из строя генератора. Такое случается, например, при отказе регулятора напряжения.

На современных легковых автомобилях обычно ограничиваются установкой на приборной панели контрольной лампы зарядки аккумуляторной батареи. Амперметры в цепи зарядки и разрядки батареи, как правило, отсутствуют, поэтому их не бывает и в продаже. Чтобы получать более полную информацию об условиях работы батареи, остаётся установить на автомобиль самодельный амперметр.

Например, зашунтированный резистором с небольшим сопротивлением обычный стрелочный милли- или микроамперметр.

Но далеко не каждый подобный прибор пригоден для этой цели, так как падение напряжения на нём при токе полного отклонения стрелки может составить заметную долю напряжения в бортсети автомобиля.

Промышленность выпускает стандартные измерительные шунты для амперметров, имеющие падение напряжения 75 и даже 50 мВ при номинальном токе, но для большинства малогабаритных электроизмерительных приборов этого недостаточно.

Для их подключения к шунту необходим усилитель постоянного тока с малым температурным дрейфом нуля. Требуется также, чтобы механизм стрелочного прибора был устойчив к вибрации, а его габариты достаточно малы для установки наприборной доске автомобиля.

Применять на автомобиле амперметр с цифровым отсчётом нецелесообразно, прежде всего, по той причине, что при изменении измеряемого параметра (тока) цифры на индикаторе быстро сменяются и в его показаниях трудно ориентироваться.

Стрелочные приборы при параллельном подключении к шунту, что практически равносильно короткому замыканию рамки, обладают заметной инерционностью, вызванной демпфированием измерительного механизма. А в тёмное время суток водителю приходится напрягать зрение для того, чтобы рассмотреть положение стрелки.

Кроме того, стрелка может колебаться не только в результате изменений измеряемого тока, но и при сотрясениях кузова автомобиля. Поэтому целесообразно дополнить стрелочный амперметр сигнальным светодиодом, включающимся при критическом значении тока.

Основные технические характеристики

  • Пределы измерения тока, А . -40. +40.
  • Дрейф нуля при изменении температуры на 20 оС, А, не более . 1,1.
  • Собственный потребляемый ток, мА, не более . 23.

Принципиальная схема

В предлагаемом приборе свечение светодиода свидетельствует о том, что направление тока через аккумуляторную батарею соответствует его разрядке. Схема амперметра показана на рис. 1.

Рис. 1. Схема самодельного амперметра для автомобиля.

Прибор состоит из стабилизатора напряжения на стабилитроне VD1 и транзисторе VT2, балансного усилителя постоянного тока на транзисторах VT1 и VT3 и порогового устройства на транзисторе VT4, в коллекторную цепь которого включён светодиод HL1.

Поскольку усилитель на транзисторах VT1 и VТ3 балансный, он имеет сравнительно небольшой температурный дрейф нуля. Резистор R2 — стандартный шунт с падением напряжения 75 мВ при токе 40 А.

При неработающем генераторе через шунт R2 протекает ток от аккумуляторной батареи в бортсеть автомобиля, при этом транзистор VT3 открывается и его коллекторный ток увеличивается, а падение напряжения на подстроечном резисторе R7 растёт. Когда начинает работать генератор, ток через шунт течёт от бортсети в батарею.

При этом увеличиваются коллекторный ток транзистора VT1 и падение напряжения на резисторе R1. Стрелка миллиамперметра PA1 с нулём посередине шкалы отклоняется пропорционально протекающему через шунт току в сторону того из резисторов R1, R7, падение напряжения на котором больше.

Перемещением движка подстроечного резистора R7 регулируют порог срабатывания светодиодного индикатора тока аккумуляторной батареи. Если этот порог соответствует нулевому току через шунт R2, то светодиод будет включён, когда батарея разряжается, и выключен, когда она заряжается. При необходимости можно, конечно, установить и другой порог.

Детали и налаживание

Микроамперметр РА1 может быть практически с любым сопротивлением рамки. Его влияние всегда можно скомпенсировать, уменьшив или увеличив сопротивление добавочного резистора R6. Автор применил стрелочный индикатор от импортного авометра УХ-1000А с током полного отклонения стрелки 500 мкА.

Корпус прибора был распилен пополам и использована только его верхняя часть со стрелочным индикатором, который был переделан так, чтобы при отсутствии тока стрелка находилась посередине шка-, лы. С помощью металлической пластины и винтов индикатор закреплён на приборной доске. Конструкция этого прибора выдерживает вибрации и не очень сильные удары.

В качестве РА1 можно применить и индикатор уровня записи (например, М68 501 или М476/1) от старого кассетного магнитофона. Такие индикаторы имеют шкалу небольшого размера, но обладают повышенной устойчивостью к вибрации и могут длительно эксплуатироваться даже на мотоцикле, где уровень вибрации значительно выше, чем на легковом автомобиле.

В принципе, исходное положение стрелки прибора РА1 не обязательно должно быть точно в середине шкалы. Поскольку разрядный ток аккумуляторной батареи бывает значительно больше зарядного, часть шкалы, отведённая для его отображения, может быть длиннее отведённой для зарядного тока. Это, правда, приведёт к некоторым затруднениям при необходимости быстрой оценки направления тока во время движения.

Резистор R4 служит для установки начального значения коллекторного тока транзисторов VT1 и VT3, а подстроечным резистором R3 устанавливают на нуль стрелку микроамперметра PA1.

Для того чтобы она не отклонялась при изменении температуры, теплоотводящие фланцы транзисторов VT1 и VT3 плотно прижаты один к другому через изолирующую прокладку, смазанную теплопроводящей пастой, что выравнивает температуру транзисторов.

Электронный блок амперметра собран в пластмассовом корпусе размерами 70x50x40 мм и соединён с микроамперметром, установленным на приборной панели, а витой парой проводов — с шунтом R2 типа 75ШИП-40, находящимся под капотом поблизости от аккумуляторной батареи. В приборе применены постоянные резисторы МЛТ, подстроечные резисторы СП3-1б, оксидный конденсатор К50-6.

Вместо транзистора КТ315 можно применить любой маломощный кремниевый транзистор структуры n-p-n. Светодиод HL1 — маломощный любого типа и цвета свечения.

При первом включении электронного амперметра нужно подать на него напряжение +12 Всо стороны бортсети автомобиля от любого источника, не подключая аккумуляторную батарею.

Прежде всего следует измерить напряжение между крайними выводами подстроечного резистора R7. Если оно сильно отличается от 4,5 В, следует добиться этого значения подборкой резистора R4.

Затем следует установить стрелку прибора PA1 на нуль подстроечным резистором R3. С помощью подстроечного резистора R7 нужно включить светодиод HL1, после чего медленно перемещать движок подстроечного резистора в обратном направлении до выключения светодиода.

При этом показания микроамперметра PA1 могут немного измениться, что нужно устранить подстроечным резистором R3, после чего повторить регулировку подстроечного резистора R7.

Возможно, эти операции придётся повторить несколько раз. Для градуировки амперметра нужно создать в шунте R2 образцовый ток, подключив к его силовым зажимам цепь, состоящую из достаточно мощного источника постоянного напряжения и соединённых с ним последовательно ограничительного резистора и образцового амперметра.

При отсутствии амперметра с достаточно большим пределом измерения можно измерять падение напряжения на ограничительном резисторе и, зная его сопротивление, вычислять ток по закону Ома.

Но нужно иметь в виду, что вследствие зависимости сопротивления от протекающего тока (она очень сильна, например, у ламп накаливания, часто используемых для ограничения тока) такой способ может оказаться недостаточно точным. Второй вариант — временно заменить шунт R2 другим, в несколько раз большего сопротивления.

Тогда можно проградуировать прибор при значениях тока, уменьшенных во столько же раз, во сколько раз увеличено сопротивление шунта, а по завершении градуировки произвести обратную замену. Сначала задают ток, равный необходимому пределу измерения амперметра, и подборкой резистора R6 добиваются полного отклонения стрелки прибора PA1.

Затем меняют направление тока через шунт на противоположное и убеждаются, что стрелка полностью отклонилась в противоположную сторону. Несимметрию отклонения можно устранить подборкой резистора R4 (при этом установку нуля амперметра потребуется повторить заново) либо просто учесть её при градуировке шкалы. Деления на шкалу наносят, устанавливая 5-10 значений тока в каждом направлении.

Вторая схема амперметра

В некоторых случаях (например, на мотоцикле) может быть применён электронный амперметр, собранный по схеме, показанной на рис. 2. Здесь GB1 — аккумуляторная батарея, SA1 — размыкатель её минусового провода.

Рис. 2. Схема электронного амперметра для автомобиля.

Прибор отличается от описанного выше включением шунта в минусовую, а не плюсовую цепь аккумуляторной батареи, применением транзисторов противоположной использованным в первом варианте структуры и интегрального стабилизатора напряжения DA1. Недостатком такого амперметра можно считать то, что через измерительный шунт течёт и ток стартёра.

От редакции ж.Радио

Измерительный шунт для этого прибора можно изготовить и самостоятельно, но делать его из медного провода, как рекомендуют некоторые радиолюбители, недопустимо. Дело в том, что сопротивление меди при изменении температуры на 20 °C изменяется на 8,5 %, что приводит к уходу показаний амперметра.

Примерно такой же температурный коэффициент сопротивления (ТКС) и у других чистых металлов. Подходящий материал для шунта — сплавы нихром или манганин, ТКС которых на один-два порядка ниже. Шунт предпочтительно изготавливать из металлической ленты, имеющей при равном сечении большую поверхность охлаждения, чем круглый провод.

Для описанного прибора шунт можно сделать, например, из отрезка нихромовой ленты поперечным сечением 10×1 мм и длиной около 17 мм. Оба конца отрезка впаивают в прорези, сделанные в массивных медных пластинах. В этих пластинах сверлят по два резьбовых отверстия для подключения силовых и измерительных цепей.

Зажимать силовой и измерительный провода под один винт недопустимо. Обычно сопротивление шунта делают заведомо меньшим расчётного, а затем подгоняют его, механически обтачивая ленту по ширине и толщине.

В описанном приборе можно обойтись без подгонки, так как возникшую из-за неточного сопротивления шунта погрешность легко скомпенсировать подборкой резистора R6. При отсутствии ленты можно изготовить шунт из большого числа соединённых параллельно нихромовых проводов (например, от нагревателя электроплиты) такого же суммарного сечения.

А. Сергеев, г. Сасово Рязанской обл. Р-08-2014.

Вольтметр на светодиодах своими руками схема

Хорошо применять такой светодиодный индикатор своими руками в самодельных регулируемых блоках питания. Если под рукой есть все необходимые радиокомпоненты, то схему измерителя напряжения возможно собрать самостоятельно очень быстро и легко.

На трех операционных усилителях LM324 собраны компараторы напряжения. Их инверсные входы подсоединены к резисторному делителю напряжения, собранного на резисторах R1 и R2, через который на схему идет контролируемое напряжение.

На неинвертирующие входы операционных усилителей поступает опорное напряжение с делителя, выполненного на сопротивлениях R3 — R15. Если на входе вольтметра отсутствует напряжение, то на выходах ОУ будет высокий уровень сигнала и на выходах логических элементов будет логический ноль, поэтому светодиоды не светятся.

При поступление на вход светодиодного индикатора измеряемого напряжения, на определенных выходах компараторов ОУ установится низкий логический уровень, соответственно на светодиоды поступит высокий логический уровень, в результате чего загорится соответствующий светодиод. Для предотвращения подачи уровня напряжения на входе устройства имеется защитный стабилитрон на 12 вольт.

Этот вариант рассмотренной выше схемы отлично подойдет любому автовладельцу и даст ему наглядную информацию о состоянии заряда аккумуляторной батареи. В данном случае задействованы четыре встроенных компаратора микросборки LM324. Инвертирующими входами формируются опорные напряжения 5,6V, 5,2V, 4,8V, 4,4V соответственно. Напряжение аккумулятора напрямую поступает на инвертирующий вход через делитель на сопротивлениях R1 и R7.

Светодиоды выступают в роли мигающих индикаторов. Для настройки, вольтметр, подсоединяют к АКБ, затем регулируют переменный резистор R6 так, чтобы нужные напряжения присутствовали на инвертирующих выводах. Зафиксируйте индикаторные светодиоды на передней панели авто и нанесите рядом с ними напряжение аккумулятора, при котором загораются тот, или иной индикатор.

Итак, хочу сегодня рассмотреть очередной проект с применением микроконтроллеров, но еще и очень полезный в ежедневных трудовых буднях радиолюбителя. Это цифровое устройство на современном микроконтроллере. Конструкция его была взята из журнала радио за 2010 год и может быть с легкостью перестроена под амперметр в случае необходимости.

Это простая конструкция автомобильного вольтметра используется для контроля напряжения бортовой сети автомобиля и расчитана на диапазон от 10,5В до 15 вольт. В роли индикатора применены десять светодиодов.

Сердцем схемы является ИМС LM3914. Она способна оценить уровень входное напряжение и отобразить приблизительный результат на светодиодах в режиме точка или столбик.

Светодиоды выводят текущее значение напряжения аккумулятора или бортовой сети в режиме точки (вывод 9 не подключен или подсоединен на минус) или столбика (вывод 9 к плюсу питания).

Сопротивление R4 регулирует яркость свечения светодиодов. Резисторы R2 и переменный R1 образуют делитель напряжения. При помощи R1 осуществляется настройка верхнего порога напряжения, а при помощи резистора R3 нижнего.

Калибровка схемы делается по следующуму принципу. Подаем на вход вольтметра 15 вольт. Затем изменяя сопротивление R1, добивемся, зажигания светодиода VD10 (в режиме точка) или всех светодиодов(в режиме столбик).

Затем на вход подаем 10,5 вольт и R3 добиваемся свечения VD1. А затем увеличиваем уровень напряжение с шагом в половину вольта. Тумблер SA1 используется для переключения между режимами индикации точка/столбик. При замкнутом SA1 – столбик, при разомкнутом – точка.

Если напряжение на аккумуляторной батареи ниже уровня 11 вольт, стабилитроны VD1 и VD2 не пропускают ток, из-за чего светится только HL1, говорящий о низком уровне напряжения бортовой сети автомобиля.

Если напряжение лежит в интервале от 12 до 14 вольт, стабилитрон VD1 отпирает VT1. HL2 горит, указывая на нормальный уровень АКБ. Если напряжение батареи выше 15 вольт, стабилитрон VD2 отпирает VT2, и загорается светодиод HL3, показывающий значительное превышение напряжения в сети автомобиля.

В роли индикатора, как и в предыдущей конструкции, применены три светодиода.

При низком напряжении уровне загорается HL1. Если норма HL2. А более 14 вольт, вспыхивает третий светодиод. Стабилитрон VD1 формирует опорное напряжение для работы ОУ.

В данной статье приводится описание простого вольтметра, индикатором которого являются двенадцать светодиодов. Данный вольтметр на светодиодах позволяет отображать измеряемое напряжение в диапазоне от 0 до 12 вольт с шагом в 1 вольт, причем погрешность в измерении не превышает 2 процентов.

Наиболее подходящая область применения данного светодиодного вольтметра-индикатора — это использование в регулируемых блоках питания. Если под рукой имеются все необходимые радиодетали, то схему возможно собрать буквально за час-два.

Описание устройства светодиодного вольтметра

На операционных усилителях LM324 (DA1…DA3) построены компараторы напряжения. Их инверсные входы подключены к резисторному делителю напряжения, собранного на сопротивлениях R1 и R2, через который на схему поступает измеряемое напряжение.

На неинвертирующие входы ОУ подается опорное напряжение с делителя, построенного на резисторах R3 — R15. Если на входе вольтметра не подано напряжение, то на выходах DA1…DA3 будет сигнал высокого уровня и соответственно на выходах логических элементов DD1…DD3 (Исключающее ИЛИ)

будет логический ноль, поэтому светодиоды не горят.

При подаче на вход вольтметра напряжения, на определенных выходах компараторов DA1…DA3 (в соответствии с уровнем на напряжения на неинвертирующих выводах ОУ) появится низкий логический уровень.

Как следует из принципиальной схемы, при различных уровнях напряжения на входах интегральных микросхем DD1…DD3, на их выходах устанавливается высокий логический уровень, в результате чего начинает светиться соответствующий светодиод. Для ограничения напряжения на входе вольтметра до 12 вольт в схему включен стабилитрон VD2.

Детали светодиодного вольтметра

В схеме в качестве компараторов использованы ОУ LM324. Их применение способствовало снижению общего числа микросхем и прочих радиоэлементов для сопряжения аналоговой части схемы с интегральными микросхемами. Конденсаторы — КМ. Все сопротивления — МЛТ-0,125, МЛТ-0,25.

Светодиоды HL1 — HL12 можно применить АЛ307. Интегральный стабилизатор напряжения DA5 78L12 возможно заменить на КРЕН8Б или 7812. Стабилитрон VD2 можно поменять на КС212 с буквой Е или Ж. Схема вольтметра запитана от нестабилизированного источника постоянного напряжения от 13 до16 вольт с током нагрузки не ниже 12 мА.

Практически вся техника, которую выпускают в наши дни, содержит в себе светодиоды. Они буквально окружают нас со всех сторон, начиная от ламп и фонариков, заканчивая определением напряжения буквально во всей бытовой технике. Их часто используют для подсветки экранов, управления различными приборами и т.д.
Чаще всего в технике используются светодиоды пяти цветов:

Так же они могут создавать инфракрасное и ультрафиолетовое излучение. Именно такие незаменимы в системах управления: пульты для телевизоров, кондиционеров и другой бытовой техники.
Мы рассмотрим способ применения светодиодов в определении напряжения устройств. Основной прибор для измерения напряжения – вольтметр. Как же тут могут пригодиться светодиоды? Они и станут нашими видимыми индикаторами.
Обычно, как образец приводят пример вольтметра на основе 12 светодиодов. Соответственно он может индексировать напряжение в диапазоне от 0 до 12 вольт. Такое устройство можно весьма эффективно использовать для измерения блоков питания, которые можно регулировать. Незаменимым он будет так же для радиолюбителей, в частности для создания небольших приборов дома.

Светодиоды – индикаторы

Использование светодиода в качестве индикатора тоже имеет свои законы, которые нужно знать, если вы собираете прибор своими руками.

  • Важно соблюдать полярность. Светодиод – полупроводниковый прибор, который имеет два вывода: катод и анод. Работать он будет только в случае прямого включения.
  • Граница напряжения. Для каждого светодиода она своя. Если превысить это значение – он сломается.
  • Как индикаторы рекомендуется применять светодиоды, которые достаточно ярко горят при напряжении 5 мА.

Вольтметры на светодиодах

Если погрешность вольтметра составляет не более 4%, то его можно смело назвать индикатором. Такое устройство можно легко сделать своими руками при помощи светодиодов. Вы сможете использовать такой вольтметр для индикации микросхем под напряжением 5 вольт. Индикаторами будут 6 светодиодов в границах 1,2 – 4,2 вольт с промежутком через 0,6 вольт. Светодиоды должны потреблять 60 микроампер.
Принцип работы индикатора основан на фиксации падения напряжения в переходах: база – эмиттер транзисторов и прямых падений на диодах (0,6 вольт).
Схему такого вольтметра легко найти в интернете.

Как собрать вольтметр для аккумулятора автомобиля?

Этот вольтметр можно использовать как для 12-вольтного аккумулятора, так и для зарядных устройств, либо вообще самостоятельно.
Индикатор будет состоять из 10 светодиодов с разницей значения в четверть вольт. Измерение напряжения будет в диапазоне 10,25 – 15 вольт.
Питание осуществляется от напряжения, которые вы будете измерять.
Основой схемы такого вольтметра являются две поликомпараторные микросхемы с линейным законом индикации.
Микросхема – это набор из 10 компараторов и резисторов, которые образуют делитель напряжения. У компаратов на выходе есть ключевые каскады для того, чтобы управлять светодиодами. Для того, чтобы микросхемы работали последовательно, резисторные делители включены именно в таком (последовательном) порядке.
Светодиоды устанавливаем в одну линию. Вы можете взять как светодиодные линейки, так и 10 отдельных светодиодов. Для вольтметра подойдут светодиоды любого типа.