Инфракрасный светодиод для пульта ДУ

Инфpaкрасный светодиод: хаpaктеристика ИК диодов, какие подходят для излучателя пульта ДУ, светодиодные инфpaкрасные излучатели большой мощности

Одним из распространенных и широко применяемых в различных областях радиоэлектроники лед-элементов является инфpaкрасный светодиод. Спектр его свечения находится в невидимом человеческому глазу диапазоне длин волн электромагнитного излучения. Рассмотрим, какие разновидности светоисточников подобного типа бывают, каковы их главные технические хаpaктеристики, какие самые мощные их модификации существуют и в каких сферах все они используются.

Разновидности ИК излучающих диодов

На современном рынке радиодеталей светодиодные излучатели представлены в достаточно широком ассортименте. Существует несколько десятков позиций, различающихся по следующим основным параметрам:

  1. Мощности излучаемого потока света (или, как вариант, наибольшему проходящему через лэд-кристалл току).
  2. Прямому назначению.
  3. Форм-фактору.

Инфpaкрасные светодиоды светосилой до 100 мВт работают на номинале тока, не превышающем значение в 50 мА. Импортные аналоги несколько отличаются от отечественных. Их лед-кристаллы заключены в 3- или 5-милиметровый корпус овальной формы. Внешне они похожи на стандартный led-элемент с двумя выводами. По цвету линзы модели различаются от чисто прозрачного до желтого и гoлyбого оттенка.

Российские компании уже много лет изготавливают инфpaкрасные светодиоды в хаpaктерном мини-корпусе. Примером являются экземпляры: 3Л107А или АЛ118А. В противоположность им более мощные версии диодов производят на DIP-матрице по технологии smd, как например, модель SFH4715S линейки Osram.

Обратите внимание! Ввиду того, что ИК диод излучает в незаметном невооруженному глазу диапазоне, проверить его работоспособность можно посредством изображения, полученного съемкой цифровой видеокамеры, например, через мобильный телефон.

Технические хаpaктеристики

Так как инфpaкрасное излучение невидно зрению человека и диапазон его длин волн распространен достаточно широко – 0,75-2000 микрометров – то хаpaктерный для обычных светодиодов набор технических параметров не применяется для них. Вместо этого для лед-элементов, работающих в ИК-сегменте спектра, используются следующие главные обозначения их свойств:

  1. Мощность в единицу времени (Вт/ч), либо дополнительно указывается на какую площадь излучателя она приходится.
  2. Интенсивность потока в пределах прострaнcтвенного/телесного угла, выражаемая в Вт/ср (стерадианах).

Читайте также Что такое светодиод: описание и хаpaктеристики

Однако далеко не всегда требуется постоянное инфpaкрасное излучение, поэтому для светодиодов конкретного применения указываются хаpaктеристики не только в непрерывном, но и в импульсном режиме функционирования. При этом в последнем случае мощность сигнала на выходе может в несколько раз превышать аналогичный показатель, свойственный для первого варианта.

Помимо выше рассмотренных специфических параметров, для инфpaкрасных светодиодов хаpaктерны и общие показатели эксплуатации, также указываемые в паспортных данных:

  1. Диапазон длин волн.
  2. Номинальный прямой ток.
  3. Наивысший импульсный ток.
  4. Величина падения напряжения.
  5. Значение обратного напряжения.

Следует знать! Все существующие виды лед-элементов (лампы, светодиоды), в том числе излучающие в инфpaкрасной области, хаpaктеризуются различным углом рассеивания, даже в рамках одной серии – от узкого в 15 до широкого в 80 . Поэтому при их выборе для конкретного применения нужно обращать внимание и на этот параметр, указанный в маркировке.

Мощные инфpaкрасные светодиоды

Для изготовления мощного инфpaкрасного светодиода требуется большой лед-кристалл. В связи с этим возникает несколько технологических проблем:

  1. С увеличением площади лэд-кристалла существенно возрастает его стоимость.
  2. При работе на полную мощность такого led-элемента выделяется настолько много энергии, что возникает сильный перегрев его основания и, как следствие, последующее быстрое разрушение.

Если же объединить несколько близко установленных лед-кристаллов, возникает значительная потеря мощности из-за повышения нерабочей боковой площади. Ввиду выше рассмотренных обстоятельств, разработчики предложили несколько компромиссных вариантов:

  1. На данный момент допустимо изготавливать кристаллы размером до 1 мм 2 . До этого порогового значения можно существенно повысить силу тока, а значит, и мощность – в результате снижения сопротивления в лэд-материале из-за его нагрева.
  2. Внедряются все более совершенные рефлекторы, собирающие боковое излучение к центру.
  3. Производятся линзы с высоким коэффициентом преломления, что заставляет лучше собирать и направлять в пучок боковые волны.

Важно! Инфpaкрасные светодиоды и лазерные их модификации – это совершенно различные по принципу действия и техническим хаpaктеристикам светильники. В основе последних применяются квантоворазмерные гетероструктуры.

Область применения

Инфpaкрасные светодиоды применяют далеко не только для дистанционных пультов управления бытовыми и технологическими приборами (телевизорами, кондиционерами, котельной аппаратурой), но также во многих других областях:

  1. В создании направленной системы подсветки медицинского оборудования.
  2. В видеонаблюдении – для скрытого или дополнительного освещения охраняемых объектов и территорий. Здесь применяются различные типы инфpaкрасных прожекторов.
  3. В приборах ночного видения.
  4. В устройствах передачи данных посредством оптоволоконной сети.
  5. В научно-исследовательских направлениях (твердотельный лазер, подсветка и т. д.).
  6. В военно-промышленной сфере.
  7. В детекторах, датчиках, сигнализациях.
  8. В конвейерных сушилках на мукомольных и зернопереpaбатывающих предприятиях.
  9. Для стерилизации капиллярно-пористых пищевых продуктов.
  10. В качестве компонентов контрольно-измерительного и прочего оборудования.

Читайте также Что такое и где применяется RGB-подсветка

Добиться максимально качественно инфpaкрасного излучения от светодиодов, работающих в импульсном режиме, можно только при строгом контроле параметров напряжения. Небольшое отклонение от нормы приведет к изменениям мощности излучения в несколько раз! Так, например, если на приборах, работающих в непрерывном режиме, указывается 5 Вт/ср, то при переходе их в импульсный режим – порядка 125 Вт/ср. Поэтому для стабильности работы таких систем рекомендуется периодически уделять внимание их сервису и необходимому обслуживанию.

Основные выводы

Инфpaкрасные светодиоды излучают в невидимой для глаза человека области спектра, и потому для обозначения их главных параметров используют несколько отличные от обычных лед-элементов хаpaктеристики:

  1. Мощность за период времени или с конкретной площади излучателя.
  2. Интенсивность в границах определенного прострaнcтвенного угла.

Существуют десятки модификаций инфpaкрасных светодиодов. Все они различаются не только по силе излучения, но также назначению и форм-фактору. Чем мощнее лед-кристалл, тем больше он нагревается и разрушается. Поэтому производители при изготовлении мощных моделей прибегают к некоторым ухищрениям, а не идут по пути прямого увеличения их размеров. Сфера применения ИК-диодов обширна – от индикации в пультах ДУ бытовой техники до сложных военно-промышленных и медицинских приборов.

Если вы владеете информацией о том, какие еще инфpaкрасные светодиоды существуют и где они применяются, обязательно напишите об этом в комментариях.

Принцип работы ИК пульта управления

Большая часть современной бытовой электронной аппаратуры имеет пульт дистанционного управления, использующий инфракрасное (ИК) излучение в качестве способа передачи информации. ИК канал передачи данных используется в некоторых устройствах системы «умный дом», которую мы производим.

Принцип ИК передачи информации

Инфракрасное, или тепловое излучение — это электромагнитное излучение, которое испускает любое нагретое до определенной температуры тело. ИК диапазон лежит в ближайшей к видимому свету области спектра, в его длинноволновой части и занимает область приблизительно от 750 нм до 1000 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, около половины излучения Солнца. Оптические свойства веществ в инфракрасном излучении отличаются от их свойств в видимом свете. Например, некоторые стекла непрозрачны для инфракрасных лучей, а парафин, в отличие от видимого света, прозрачен для ИК излучения и используется для изготовления ИК линз. Для его регистрации используют тепловые и фотоэлектрические приемники и специальные фотоматериалы. Источником ИК лучей, кроме нагретых тел, наиболее часто используются твердотельные излучатели — инфракрасные светодиоды, ИК лазеры, для регистрации применяются фотодиоды, форотезисторы или болометры. Некоторые особенности инфракрасного излучения делают его удобным для применения в устройствах передачи данных:

  • ИК твердотельные излучатели (ИК светодиоды) компактны, практически безинерционны, экономичны и недороги.
  • ИК приемники малогабаритны и также недороги
  • ИК лучи не отвлекают внимание человека в силу своей невидимости
  • Несмотря на распространенность ИК лучей и высокий уровень «фона», источников импульсных помех в ИК области мало
  • ИК излучение низкой мощности не сказывается на здоровье человека
  • ИК лучи хорошо отражаются от большинства материалов (стен, мебели)
  • ИК излучение не проникает сквозь стены и не мешает работе других аналогичных устройств

Все это позволяет с успехом использовать ИК способ передачи информации во многих устройствах. ИК передатчики и приемники находят применение в бытовой и промышленной электронике, компьютерной технике, охранных системах, системах передачи данных на большие расстояния по оптоволокну. Рассмотрим более подробно работу систем (пультов) управления бытовой электроники.

Пульт ИК управления при нажатии кнопки излучает кодированную посылку, а приемник, установленный в управляемом устройстве, принимает её и выполняет требуемые действия. Для того, чтобы передать логическую последовательность, пульт формирует импульсный пакет ИК лучей, информация в котором модулируется или кодируется длительностью или фазой составляющих пакет импульсов. В первых устройствах управления использовались последовательности коротких импульсов, каждый из которых представлял собою часть полезной информации. Однако в дальнейшем, стали использовать метод модулирования постоянной частоты логической последовательностью, в результате чего в пространство излучаются не одиночные импульсы, а пакеты импульсов определенной частоты. Данные уже передаются закодированными длительностью и положением этих частотных пакетов. ИК приемник принимает такую последовательность и выполняет демодулирование с получением огибающей. Такой метод передачи и приема отличается высокой помехозащищенностью, поскольку приемник, настроенный на частоту передатчика, уже не реагирует на помехи с другой частотой. Сегодня для приема ИК сигнала обычно применяется специальная микросхема, объединяющая фотоприемник, усилитель с полосовым фильтром, настроенным на определенную несущую частоту, усилитель с АРУ и детектор для получения огибающей сигнала. Кроме электрического фильтра, такая микросхема имеет в своем составе оптический фильтр, настроенный на частоту принимаемого ИК излучения, что позволяет в максимальной степени использовать преимущество светодиодного излучателя, спектр излучения которого имеет небольшую ширину. В результате таких технических решений, стало возможным принимать маломощный полезный сигнал на фоне ИК излучения других источников, бытовых приборов, радиаторов отопления и т.д. Работа современных устройств ИК управления достаточно надежна, а дальность составляет от нескольких метров до 40 и более метров, в зависимости от варианта реализации и уровня помех.

Передатчик ИК сигнала

Передатчик ИК сигнала, ИК пульт, чаще всего имеет питание от батарейки или аккумулятора. Следовательно его потребление должно быть максимально низким. С другой стороны, излучаемый сигнал должен быть значительной мощности для обеспечения большой дальности передачи. Такие противоположные по энергетическим затратам задачи успешно решаются способом передачи коротких импульсных кодированных пакетов. В промежутках между передачами пульт практически не потребляет энергии. Задача контроллера пульта — опрос кнопок клавиатуры, кодирование информации, модулирование опорной частоты и выдача сигнала на излучатель. Для изготовления пультов выпускаются различные специализированные микросхемы, однако для этих целей могут быть использованы и современные микроконтроллеры общего применения типа AVR или PIC. Основное требование к таким микроконтроллерам — это наличие режима сна с чрезвычайно низким потреблением и способность чувствовать нажатия кнопок в этом состоянии.

Излучатель ИК сигнала испускает инфракрасные лучи под действием тока возбуждения. Ток на излучатель обычно превышает возможности микроконтроллера, поэтому для формирования необходимого тока устанавливается простейший светодиодный драйвер на одном транзисторе. Для снижения потерь, при выборе транзистора необходимо обратить внимание на его коэффициент усиления тока — β или h21. Чем выше этот коэффициент, тем выше эффективность устройства. Современные передатчики используют полевые или CMOS транзистоы, эффективность которых на используемых частотах можно считать предельной.

Приведенная схема не лишена недостатков, в частности при снижении уровня заряда батареи, мощность излучения будет падать, что приведет к снижению дальности. Для снижения зависимости от напряжения питания, можно использовать простейший стабилизатор тока.

Большинство передатчиков работают на частоте 30 — 50 кГц. Такой диапазон частот был выбран исторически при создании первых подобных устройств. Была выбрана область с наименьшим уровнем помех. Кроме того, принимались в расчет ограничения на элементную базу. В дальнейшем, по мере стандартизации и распространения аппаратуры с таким способом управления, переход на другие частоты стал нецелесообразным.

В целях увеличения импульсной мощности передатчика, а соответственно и его дальности, сигнал основной частоты отличается от меандра и имеет скважность 3 — 6. Таким образом повышается импульсная мощность с сохранением или даже уменьшением средней мощности. Импульсный ток светодиода выбирается исходя из его паспортных значений и может достигать одного и более Ампер. Импульсный ток в большинстве пультов ИК не превышает 100 мА. При этом, поскольку и опорная частота имеет малый коэффициент заполнения и длительность кодированной посылки не превышает 20-30 мс, средний ток при нажатой кнопке не превышает одного миллиампера. Повышение импульсного тока светодиода сопряжено с снижением эффективности и уменьшением срока службы. Современные инфракрасные светодиоды имеют эффективность 100-200 мВт излучаемой энергии при токе 50 мА. Допустимый средний ток не должен превышать 10-20 мА. Питание светодиода должно иметь RC фильтр, который снижает воздействие импульсной помехи на питание микроконтроллера. Спектр применяемых светодиодов для ИК пультов большинства бытовой аппаратуры имеет максимум в области 940 нм.

Длительность единичного пакета опорной частоты для уверенного приема составляет не менее 12-15 и не более 200 периодов. При передаче кодированной посылки, передатчик формирует в начале преамбулу, которая представляет собой один или несколько пакетов опорной частоты и позволяет приемнику установить необходимый уровень усиления и фона. Данные в кодированной посылке передаются в виде нулей и единиц, которые определяются длительностью или фазой (расстоянием между соседними пакетами). Общая длительность кодированной посылки чаще всего составляет от нескольких бит до нескольких десятков байт. Порядок следования, признак начала и количество данных определяется форматом посылки.

Приемник ИК сигнала

Приемник ИК сигнала как правило имеет в своем составе собственно приемник ИК излучения и микроконтроллер. Микроконтроллер раскодирует принимаемый сигнал и выполняет требуемые действия. Поскольку приемник в большинстве случаев устанавливается в аппаратуре с сетевым питанием, его потребление не существенно. Микроконтроллер чаще всего выполняет и другие сервисные функции в устройстве и является его центральным логическим устройством.

Приемник ИК излучения чаще всего выполняется в виде отдельного интегрального модуля, который располагается за передней панелью управляемой аппаратуры. В передней панели имеется прозрачное для ИК лучей окошко. Как правило, такая микросхема имеет три вывода – питание, общий и выход сигнала. Производители электронных компонентов предлагают приемники ИК сигналов различного типа и исполнения. Однако, принцип их работы схож. Внутри такая микросхема имеет:

  • фотоприемник — фотодиод
  • интегрирующий усилитель, выделяющий полезный сигнал на уровне фона
  • ограничитель, приводящий сигнал к логическому уровню
  • полосовой фильтр, настроенный на частоту передатчика
  • демодулятор — детектор, выделяющий огибающую полезного сигнала.

Корпус такого приемника выполняется из материала, выполняющего роль дополнительного фильтра, пропускающего ИК лучи определенной длины волны. Современные интегральные приемники позволяют принимать полезный сигнал на уровне фона, превышающего его в несколько десятков раз и при этом чувствовать посылки частоты, имеющие всего от 4 — 5 периодов.

Питание приемника излучения должно быть выполнено с RC фильтром для увеличения чувствительности. Микроконтроллер производит помеху широкого спектра на линиях питания, что может повлиять на работу приемника.

Форматы ИК передачи данных

Различные производители бытовой аппаратуры применяют в своих изделиях различные пульты ИК управления. Поскольку пульт должен общаться только с конкретным устройством, он формирует последовательность данных, уникальную для своего типа оборудования. Передаваемые данные содержат кроме собственно команды управления адрес устройства, проверочные данные и другую сервисную информацию. Более того, различные производители используют различные способы формирования последовательности данных и различные способы передачи логических состояний. Наиболее распространенные способы кодирования битов информации — это изменение длительности паузы между пакетами (метод интервалов) и кодирование сочетанием состояний (бифазный метод). Однако, встречаются способы кодирования бит информации длительностью, сочетанием длительности и паузы и т.д. Наиболее распространенные форматы передачи:

Форматы RC-5 и NEC используются многими производителями электроники. Некоторые производители разработали свой стандарт, но в основном используют его сами. Менее распространенные форматы пультов управления:

  • JVC
  • ITT
  • Mitsubishi
  • Nokia NRC17
  • Philips RC6
  • Phiilps RC-MM
  • Philips RECS80
  • RCA Protocol
  • Samsung
  • Sharp
  • Sony SIRC
  • X-Sat Protocol

В отличие от пультов управления бытовой электроникой, которые передают только одну команду, соответствующую нажатой кнопке, пульты управления кондиционерами передают при каждом нажатии всю информацию о параметрах, выбранных пользователем на экране пульта, такие как температура, режим охлаждения, нагрева или вентиляции, мощность вентилятора и другие. В результате, посылка становится достаточно длительной. Например, пульт бытового кондиционера Daikin FTXG передает единовременно 35 байт информации, скомпонованной в трех последовательных посылках. Форматы пакетов ИК передачи кондиционеров:

Инфракрасные передатчики служат для синхронизации активных 3D очков затворного типа с телевизором.

Двунаправленная передача информации используется в некоторых мобильных устройствах: ноутбуках, телефонах, смартфонах, плеерах и т.д. Передача информации по протоколу IrDA основана на форматах асинхронной передачи данных, реализованных в COM портах компьютера.

Передача информации на большие расстояния не обходится сегодня без ИК излучения. Оптоволоконные линии связи используют ИК излучение ближней и средней области спектра (некоторые и видимого) для передачи данных.

  • Волоконно-оптические линии связи (ВОЛС)
  • Беспроводная передача данных в инфракрасном диапазоне

Параметры среднестатистического ИК светодиода

Satrap

remza+

Информация Неисправность Прошивки Схемы Справочники Маркировка Корпуса Сокращения и аббревиатуры Частые вопросы Полезные ссылки

Справочная информация

Этот блок для тех, кто впервые попал на страницы нашего сайта. В форуме рассмотрены различные вопросы возникающие при ремонте бытовой и промышленной аппаратуры. Всю предоставленную информацию можно разбить на несколько пунктов:

  • Диагностика
  • Определение неисправности
  • Выбор метода ремонта
  • Поиск запчастей
  • Устранение дефекта
  • Настройка

Учитывайте, что некоторые неисправности являются не причиной, а следствием другой неисправности, либо не правильной настройки. Подробную информацию Вы найдете в соответствующих разделах.

Неисправности

Все неисправности по их проявлению можно разделить на два вида — стабильные и периодические. Наиболее часто рассматриваются следующие:

  • не включается
  • не корректно работает какой-то узел (блок)
  • периодически (иногда) что-то происходит

Если у Вас есть свой вопрос по определению дефекта, способу его устранения, либо поиску и замене запчастей, Вы должны создать свою, новую тему в соответствующем разделе.

  • О прошивках

    Большинство современной аппаратуры представляет из себя подобие программно-аппаратного комплекса. То есть, основной процессор управляет другими устройствами по программе, которая может находиться как в самом чипе процессора, так и в отдельных микросхемах памяти.

    На сайте существуют разделы с прошивками (дампами памяти) для микросхем, либо для обновления ПО через интерфейсы типа USB.

    • Прошивки ТВ (упорядоченные)
    • Запросы прошивок для ТВ
    • Прошивки для мониторов
    • Запросы разных прошивок
    • . и другие разделы

    По вопросам прошивки Вы должны выбрать раздел для вашего типа аппарата, иначе ответ и сам файл Вы не получите, а тема будет удалена.

  • Схемы аппаратуры

    Начинающие ремонтники часто ищут принципиальные схемы, схемы соединений, пользовательские и сервисные инструкции. Это могут быть как отдельные платы (блоки питания, основные платы, панели), так и полные Service Manual-ы. На сайте они размещены в специально отведенных разделах и доступны к скачиванию гостям, либо после создания аккаунта:

    • Схемы телевизоров (запросы)
    • Схемы телевизоров (хранилище)
    • Схемы мониторов (запросы)
    • Различные схемы (запросы)

    Внимательно читайте описание. Перед запросом схемы или прошивки произведите поиск по форуму, возможно она уже есть в архивах. Поиск доступен после создания аккаунта.

  • Справочники

    На сайте Вы можете скачать справочную литературу по электронным компонентам (справочники, таблицу аналогов, SMD-кодировку элементов, и тд.).

    • Справочник по транзисторам
    • ТДКС — распиновка, ремонт, прочее
    • Справочники по микросхемам
    • . и другие .

    Информация размещена в каталогах, файловых архивах, и отдельных темах, в зависимости от типов элементов.

    Marking (маркировка) — обозначение на электронных компонентах

    Современная элементная база стремится к миниатюрным размерам. Места на корпусе для нанесения маркировки не хватает. Поэтому, производители их маркируют СМД-кодами.

    Package (корпус) — вид корпуса электронного компонента

    При создании запросов в определении точного названия (партномера) компонента, необходимо указывать не только его маркировку, но и тип корпуса. Наиболее распостранены:

    • DIP (Dual In Package) – корпус с двухрядным расположением контактов для монтажа в отверстия
    • SOT-89 — пластковый корпус для поверхностного монтажа
    • SOT-23 — миниатюрный пластиковый корпус для поверхностного монтажа
    • TO-220 — тип корпуса для монтажа (пайки) в отверстия
    • SOP (SOIC, SO) — миниатюрные корпуса для поверхностного монтажа (SMD)
    • TSOP (Thin Small Outline Package) – тонкий корпус с уменьшенным расстоянием между выводами
    • BGA (Ball Grid Array) — корпус для монтажа выводов на шарики из припоя

  • Краткие сокращения

    При подаче информации, на форуме принято использование сокращений и аббревиатур, например:

    Сокращение Краткое описание
    LED Light Emitting Diode — Светодиод (Светоизлучающий диод)
    MOSFET Metal Oxide Semiconductor Field Effect Transistor — Полевой транзистор с МОП структурой затвора
    EEPROM Electrically Erasable Programmable Read-Only Memory — Электрически стираемая память
    eMMC embedded Multimedia Memory Card — Встроенная мультимедийная карта памяти
    LCD Liquid Crystal Display — Жидкокристаллический дисплей (экран)
    SCL Serial Clock — Шина интерфейса I2C для передачи тактового сигнала
    SDA Serial Data — Шина интерфейса I2C для обмена данными
    ICSP In-Circuit Serial Programming – Протокол для внутрисхемного последовательного программирования
    IIC, I2C Inter-Integrated Circuit — Двухпроводный интерфейс обмена данными между микросхемами
    PCB Printed Circuit Board — Печатная плата
    PWM Pulse Width Modulation — Широтно-импульсная модуляция
    SPI Serial Peripheral Interface Protocol — Протокол последовательного периферийного интерфейса
    USB Universal Serial Bus — Универсальная последовательная шина
    DMA Direct Memory Access — Модуль для считывания и записи RAM без задействования процессора
    AC Alternating Current — Переменный ток
    DC Direct Current — Постоянный ток
    FM Frequency Modulation — Частотная модуляция (ЧМ)
    AFC Automatic Frequency Control — Автоматическое управление частотой

    Частые вопросы

    После регистрации аккаунта на сайте Вы сможете опубликовать свой вопрос или отвечать в существующих темах. Участие абсолютно бесплатное.

    Кто отвечает в форуме на вопросы ?

    Ответ в тему Параметры среднестатистического ИК светодиода как и все другие советы публикуются всем сообществом. Большинство участников это профессиональные мастера по ремонту и специалисты в области электроники.

    Как найти нужную информацию по форуму ?

    Возможность поиска по всему сайту и файловому архиву появится после регистрации. В верхнем правом углу будет отображаться форма поиска по сайту.

    По каким еще маркам можно спросить ?

    По любым. Наиболее частые ответы по популярным брэндам — LG, Samsung, Philips, Toshiba, Sony, Panasonic, Xiaomi, Sharp, JVC, DEXP, TCL, Hisense, и многие другие в том числе китайские модели.

    Какие еще файлы я смогу здесь скачать ?

    При активном участии в форуме Вам будут доступны дополнительные файлы и разделы, которые не отображаются гостям — схемы, прошивки, справочники, методы и секреты ремонта, типовые неисправности, сервисная информация.

    Полезные ссылки

    Здесь просто полезные ссылки для мастеров. Ссылки периодически обновляемые, в зависимости от востребованности тем.

    Разновидности, характеристики и сфера применения инфракрасных светодиодов

    Одним из распространенных и широко применяемых в различных областях радиоэлектроники лед-элементов является инфракрасный светодиод. Спектр его свечения находится в невидимом человеческому глазу диапазоне длин волн электромагнитного излучения. Рассмотрим, какие разновидности светоисточников подобного типа бывают, каковы их главные технические характеристики, какие самые мощные их модификации существуют и в каких сферах все они используются.

    Разновидности ИК излучающих диодов

    На современном рынке радиодеталей светодиодные излучатели представлены в достаточно широком ассортименте. Существует несколько десятков позиций, различающихся по следующим основным параметрам:

    1. Мощности излучаемого потока света (или, как вариант, наибольшему проходящему через лэд-кристалл току).
    2. Прямому назначению.
    3. Форм-фактору.

    Инфракрасные светодиоды светосилой до 100 мВт работают на номинале тока, не превышающем значение в 50 мА. Импортные аналоги несколько отличаются от отечественных. Их лед-кристаллы заключены в 3- или 5-милиметровый корпус овальной формы. Внешне они похожи на стандартный led-элемент с двумя выводами. По цвету линзы модели различаются от чисто прозрачного до желтого и голубого оттенка.

    Российские компании уже много лет изготавливают инфракрасные светодиоды в характерном мини-корпусе. Примером являются экземпляры: 3Л107А или АЛ118А. В противоположность им более мощные версии диодов производят на DIP-матрице по технологии smd, как например, модель SFH4715S линейки Osram.

    Обратите внимание! Ввиду того, что ИК диод излучает в незаметном невооруженному глазу диапазоне, проверить его работоспособность можно посредством изображения, полученного съемкой цифровой видеокамеры, например, через мобильный телефон.

    Технические характеристики

    Так как инфракрасное излучение невидно зрению человека и диапазон его длин волн распространен достаточно широко – 0,75-2000 микрометров – то характерный для обычных светодиодов набор технических параметров не применяется для них. Вместо этого для лед-элементов, работающих в ИК-сегменте спектра, используются следующие главные обозначения их свойств:

    1. Мощность в единицу времени (Вт/ч), либо дополнительно указывается на какую площадь излучателя она приходится.
    2. Интенсивность потока в пределах пространственного/телесного угла, выражаемая в Вт/ср (стерадианах).

    Однако далеко не всегда требуется постоянное инфракрасное излучение, поэтому для светодиодов конкретного применения указываются характеристики не только в непрерывном, но и в импульсном режиме функционирования. При этом в последнем случае мощность сигнала на выходе может в несколько раз превышать аналогичный показатель, свойственный для первого варианта.

    Помимо выше рассмотренных специфических параметров, для инфракрасных светодиодов характерны и общие показатели эксплуатации, также указываемые в паспортных данных:

    1. Диапазон длин волн.
    2. Номинальный прямой ток.
    3. Наивысший импульсный ток.
    4. Величина падения напряжения.
    5. Значение обратного напряжения.

    Следует знать! Все существующие виды лед-элементов (лампы, светодиоды), в том числе излучающие в инфракрасной области, характеризуются различным углом рассеивания, даже в рамках одной серии – от узкого в 15 до широкого в 80 . Поэтому при их выборе для конкретного применения нужно обращать внимание и на этот параметр, указанный в маркировке.

    Мощные инфракрасные светодиоды

    Для изготовления мощного инфракрасного светодиода требуется большой лед-кристалл. В связи с этим возникает несколько технологических проблем:

    1. С увеличением площади лэд-кристалла существенно возрастает его стоимость.
    2. При работе на полную мощность такого led-элемента выделяется настолько много энергии, что возникает сильный перегрев его основания и, как следствие, последующее быстрое разрушение.

    Если же объединить несколько близко установленных лед-кристаллов, возникает значительная потеря мощности из-за повышения нерабочей боковой площади. Ввиду выше рассмотренных обстоятельств, разработчики предложили несколько компромиссных вариантов:

    1. На данный момент допустимо изготавливать кристаллы размером до 1 мм 2 . До этого порогового значения можно существенно повысить силу тока, а значит, и мощность – в результате снижения сопротивления в лэд-материале из-за его нагрева.
    2. Внедряются все более совершенные рефлекторы, собирающие боковое излучение к центру.
    3. Производятся линзы с высоким коэффициентом преломления, что заставляет лучше собирать и направлять в пучок боковые волны.

    Важно! Инфракрасные светодиоды и лазерные их модификации – это совершенно различные по принципу действия и техническим характеристикам светильники. В основе последних применяются квантоворазмерные гетероструктуры.

    Область применения

    Инфракрасные светодиоды применяют далеко не только для дистанционных пультов управления бытовыми и технологическими приборами (телевизорами, кондиционерами, котельной аппаратурой), но также во многих других областях:

    1. В создании направленной системы подсветки медицинского оборудования.
    2. В видеонаблюдении – для скрытого или дополнительного освещения охраняемых объектов и территорий. Здесь применяются различные типы инфракрасных прожекторов.
    3. В приборах ночного видения.
    4. В устройствах передачи данных посредством оптоволоконной сети.
    5. В научно-исследовательских направлениях (твердотельный лазер, подсветка и т. д.).
    6. В военно-промышленной сфере.
    7. В детекторах, датчиках, сигнализациях.
    8. В конвейерных сушилках на мукомольных и зерноперерабатывающих предприятиях.
    9. Для стерилизации капиллярно-пористых пищевых продуктов.
    10. В качестве компонентов контрольно-измерительного и прочего оборудования.

    Добиться максимально качественно инфракрасного излучения от светодиодов, работающих в импульсном режиме, можно только при строгом контроле параметров напряжения. Небольшое отклонение от нормы приведет к изменениям мощности излучения в несколько раз! Так, например, если на приборах, работающих в непрерывном режиме, указывается 5 Вт/ср, то при переходе их в импульсный режим – порядка 125 Вт/ср. Поэтому для стабильности работы таких систем рекомендуется периодически уделять внимание их сервису и необходимому обслуживанию.

    Основные выводы

    Инфракрасные светодиоды излучают в невидимой для глаза человека области спектра, и потому для обозначения их главных параметров используют несколько отличные от обычных лед-элементов характеристики:

    1. Мощность за период времени или с конкретной площади излучателя.
    2. Интенсивность в границах определенного пространственного угла.

    Существуют десятки модификаций инфракрасных светодиодов. Все они различаются не только по силе излучения, но также назначению и форм-фактору. Чем мощнее лед-кристалл, тем больше он нагревается и разрушается. Поэтому производители при изготовлении мощных моделей прибегают к некоторым ухищрениям, а не идут по пути прямого увеличения их размеров. Сфера применения ИК-диодов обширна – от индикации в пультах ДУ бытовой техники до сложных военно-промышленных и медицинских приборов.

    Если вы владеете информацией о том, какие еще инфракрасные светодиоды существуют и где они применяются, обязательно напишите об этом в комментариях.

    ИК светодиоды: область применения, разновидности и основные технические характеристики

    Инфракрасный (ИК) излучающий диод представляет собой полупроводниковый прибор, рабочий спектр которого расположен в ближней области инфракрасного излучения: от 760 до 1400 нм. В интернете часто встречается термин «ИК светодиод», хотя свет, видимый человеческим глазом, он не излучает. То есть в рамках физической оптики этот термин неверен, в широком же смысле название применимо. Стоит отметить, что во время работы некоторых ИК излучающих диодов можно наблюдать слабое красное свечение, что объясняется размытостью спектральной характеристики на границе с видимым диапазоном.

    Не стоит путать ИК светодиоды с лазерными диодами инфракрасного излучения. Принцип действия и технические параметры этих приборов сильно отличаются.

    Область применения

    На том, какими бывают инфракрасные светодиоды и где применяются, остановимся подробнее. Многие из нас ежедневно сталкиваются с ними, не подозревая об этом. Конечно же, речь идёт о пультах дистанционного управления (ПДУ), одним из важнейших элементов которого является ИК излучающий диод. Благодаря своей надёжности и дешевизне метод передачи управляющего сигнала с помощью инфракрасного излучения получил огромное распространение в быту. Главным образом такие пульты применяются для управления работой телевизоров, кондиционеров, медиа проигрывателей. В момент нажатия кнопки на ПДУ ИК светодиод излучает модулированный (зашифрованный) сигнал, который принимает и затем распознаёт фотодиод, встроенный в корпус бытовой техники. В охранной сфере большой популярностью пользуются видеокамеры с инфракрасной подсветкой. Видеонаблюдение, дополненное ИК подсветкой, позволяет организовать круглосуточный контроль охраняемого объекта, независимо от погодных условий. В данном случае ИК светодиоды могут быть встроены в видеокамеру либо установлены в её рабочей зоне в виде отдельного прибора – инфракрасного прожектора. Применение в прожекторах мощных ИК светодиодов позволяет осуществлять надёжный контроль прилегающей территории.

    На этом их сфера применения не ограничивается. Весьма эффективным оказалось применение ИК излучающих диодов в приборах ночного видения (ПНВ), где они выполняют функцию подсветки. С помощью такого прибора человек может различать предметы на достаточно большом расстоянии в тёмное время суток. Устройства ночного видения востребованы в военной сфере, а также для скрытого ночного наблюдения.

    Разновидности ИК излучающих диодов

    Ассортимент светодиодов работающих в инфракрасном спектре насчитывает десятки позиций. Каждому отдельному экземпляру присущи определённые особенности. Но в целом, все полупроводниковые диоды ИК диапазона можно разделить по следующим критериям:

    • мощности излучения или максимальному прямому току;
    • назначению;
    • форм-фактору.

    Слаботочные ИК светодиоды предназначены для работы на токах не более 50 мА и характеризуются мощностью излучения до 100 мВт. Импортные образцы изготавливаются в овальном корпусе 3 и 5 мм, который в точности повторяет размеры обычного двухвыводного индикаторного светодиода. Цвет линзы – от прозрачного (water clear) до полупрозрачного голубого или жёлтого оттенка. ИК излучающие диоды российского производства до сих пор производят в миниатюрном корпусе: 3Л107А, АЛ118А. Приборы большой мощности выпускают как в DIP корпусе, так и по технологии smd. Например, SFH4715S от Osram в smd корпусе.

    Технические характеристики

    На электрических схемах ИК излучающие диоды обозначают так же, как и светодиоды, с которыми они имеют много общего. Рассмотрим их основные технические характеристики.

    Рабочая длина волны – основной параметр любого светодиода, в том числе инфракрасного. В паспорте на прибор указывается её значение в нм, при котором достигается наибольшая амплитуда излучения.

    Так как ИК светодиод не может работать только на одной длине волны, принято указывать ширину спектра излучения, которая свидетельствует об имеющемся отклонении от заявленной длины волны (частоты). Чем уже диапазон излучения, тем больше мощности сконцентрировано на рабочей частоте.

    Номинальный прямой ток – постоянный ток, при котором гарантирована заявленная мощность излучения. Он же является максимально допустимым током.

    Максимальный импульсный ток – ток, который можно пропускать через прибор с коэффициентом заполнения не более 10%. Его значение может в десять раз превышать постоянный прямой ток.

    Прямое напряжение – падение напряжения на приборе в открытом состоянии при протекании номинального тока. Для ИК диодов его значение не превышает 2В и зависит от химического состава кристалла. Например, UПР АЛ118А=1,7В, UПР L-53F3BT=1,2В.

    Обратное напряжение – максимальное напряжение обратной полярности, которое может быть приложено к p-n-переходу. Существуют экземпляры с обратным напряжением не более 1В.

    ИК излучающие диоды одной серии могут выпускаться с разным углом рассеивания, что отображается в их маркировке. Необходимость в однотипных приборах с узким (15°) и широким (70°) углом распределения потока излучения вызвана их различной сферой применения.

    Кроме основных характеристик, существует ряд дополнительных параметров, на которые следует обращать внимание при проектировании схем для работы в импульсном режиме, а также в условиях окружающей среды, отличных от нормальных. Перед проведением паяльных работ следует ознакомиться с рекомендациями производителя о соблюдении температурного режима во время пайки. О допустимых временных и температурных интервалах можно узнать из datasheet на инфракрасный светодиод.

    ИК-контроллер бытового кондиционера или реверс-инжиниринг пульта ДУ

    Приветствую, уважаемые хабрачитатели! В этой, первой для меня, статье я хотел поделиться своими исследованиями и наработками. Имея в своей квартире кондиционер я ощущал необходимость управлять им когда меня нет дома. Возвращаясь с дачи или просто с работы и, включив кондиционер, приходится ждать некоторое время пока не спадет жара. А хочется приходить в уже легкую прохладу.
    «Вот бы можно было удаленно включить кондишн. » — подумал я.

    Итак, у меня имеется сплит-система Panasonic CS-XE9DKE. Идея управлять кондиционером сводилась к созданию «своего» ИК-пульта. Назовем его «ИК-контроллер». А уж управлять самим контроллером — это задача десятая. И это зависит от конкретного места применения. Мне, например, было бы удобнее управлять с домашнего сервера через WizFi200(только вот достать его за приемлемые деньги проблематично). Моим родителям — с помощью отправки SMS(на SIM900) на номер контроллера. Возможны и другие варианты. Но это не главное, о чем я хотел рассказать.

    Реверс-инжиниринг

    Так как же родной пульт передает команду? Имея в наличии ИК-приемник TSOP17XX я начал анализировать поток данных от пульта. Выяснилось, что пульт шлет 2 посылки с небольшой паузой. Первая — заголовок, вторая — команда. Заголовок был всегда одинаковый.

    Ознакомившись с существующими системами кодирования ИК-сигналов(RC5, RC6, NEC, JVC и другие) стало ясно, что здесь применяется что-то другое, хотя принцип схож.

    Сингал выглядит следующим образом:
    (активный уровень — низкий)

    (значения бит для примера, время в мкс приблизительно)

    В начале идет пилотный сигнал, за ним примерно вдвое короче второй пилотный(пауза), за ним стартовый бит длительностью примерно в 8 раз короче чем первый пилотный. Далее начинается битовый поток. Один бит кодируется длительностью паузы(высокий уровень). Если пауза одинарная — это НОЛЬ, если пауза тройная — это ЕДИНИЦА.
    Всего при одном нажатии кнопки пульт шлет 2 таких посылки. Первая — заголовок, вторая — команда. Пауза между посылками около 10 мс.

    Таким образом заголовок содержит 64 бита, или 8 байт. Сначала идут младшие биты.

    Поток данных заголовка выглядит следующим образом:

    0100000000000100000001110010000000000000000000000000000001100000
    Или в байтах(HEX): 02 20 E0 40 00 00 00 06

    Следует заметить, что последний байт является контрольной суммой всех предыдущих.

    Теперь немного отвлечемся на сам пульт. Пульт имеет следующие кнопки:

    • ON/OFF(включение/выключение)
    • ± (настройка температуры)
    • O2 (генератор кислорода)
    • ion (ионизатор)
    • quiet (тихий режим)
    • mode ( auto, heat, cool, dry, fan)
    • fan speed
    • swing <>(горизонтальное направление)
    • swing ^v (вертикальное направление)

    Также есть кнопки для установки текущего времени, таймеров включения и выключения(раздельно, самостоятельно).

    3 кнопки, которые отличаются от других, это:

    • ion
    • quiet
    • O2

    Смысл в том, что эти кнопки не посылают все настройки, а включают/выключают конкретный режим. Т.е. Эти 3 режима можно включать/выключать в любом состоянии кондиционера.

    Теперь вернемся к протоколу передачи. Любой команде предшествует заголовок.
    Байты заголовка: 02 20 E0 40 00 00 00 06
    Далее идет вторая посылка с командой.
    Команды трех особых кнопок:
    ion: 02 20 E0 04 80 48 33 01
    oxyg: 02 20 E0 04 80 50 33 09
    quiet: 02 20 E0 04 80 81 33 3A
    Отмечу, что, как и в заголовке, последний байт — контрольная сумма.

    А вот все остальные кнопки посылают пакет со всеми настройками сразу. И формат этого пакета следующий:

    Поток бит:
    0100000000000100000001110010000000000000PNF1mmm00ccccc0000000001vvvvFFFF
    hhhh0000nnnnnnnnnnnXfffffffffffY000010000000000010000000ttttttttttt00000ssssssss

    Расшифровка полей по порядку следования:
    P — 1, если нажата кнопка ON/OFF. При нажатии других кнопок здесь 0.
    N — 1, если установлен таймер включения
    F — 1, если установлен таймер выключения
    mmm — режим(Mode). Auto — 0, heat — 4, cool — 3, dry — 2, fan — 6
    ccccc — температура. От 16 до 30
    vvvv — вертикальное направление. Auto — 15, 1 — под потолок, … 5 — в пол.
    FFFF — скорость вентилятора. Auto — 10, F1 — 3, F2 — 4, F3 — 5, F4 — 6, F5 — 7
    hhhh — горизонтальное направление. Auto — 13, | | — 6, / / — 9, / | — 10, | — 11, — 12
    nnnnnnnnnnn — время включения. Номер минуты в сутках. (например 16:00 = 960)
    X — 1, если нажата кнопка установки/сброса таймера
    fffffffffff — время выключения. Номер минуты в сутках.
    Y — 1, если нажата кнопка установки/сброса таймера
    ttttttttttt — текущее время.
    ssssssss — контрольная сумма посылки.

    Сигналы X и Y — установлены в 1 только когда выполняется установка/сброс таймеров, т.е. когда непосредственно нажимается SET или CANCEL. Не путать с N и F!
    N и F — только сообщают, что таймеры включены/выключены, при этом nnnnnnnnnnn или fffffffffff могут быть «не известны»(0x600) в данный момент. Например при нажатии кнопки увеличения температуры, если в данный момент включен любой таймер, значение N/F равно 1, а nnnnnnnnnnn/fffffffffff cсодержит конкретное время только для включенного таймера(для выключенного содержит 0x600). Кондиционер сменит свой статус N/F только если соответсвующий бит X/Y равен 1.
    Если таймер включения не установлен, то время включения д.б. 1536 = 0x600 = 0b11000000000. С временем таймера выключения аналогично. По крайней мере так шлет родной пульт.

    Разделим поток бит на байты и развернем биты:

    Итого команда 19 байт.

    Контроллер

    Для тестирования я собрал схему(позаимствовал здесь) на макетке для беспаечного монтажа. Компоненты:

    • atmega8
    • ИК-диод
    • транзистор кт361
    • резистор 470 на базу транзистора
    • резистор 220 ограничивает ток диода
    • резистор 10к на RESET

    Отличие моей схемы от схемы по ссылке — светодиод подключен к PB1, а база транзистора к PB3.

    При отпускании кнопки на порту PD7 запускается таймер 1 в режиме CTC с выводом сигнала на PB1/OC1A, а так же таймер 2 с выводом на PB3/OC2 для несущей частоты, на которой и модулируется основной сигнал. Таймеры работают с предделителем 8.

    Прошивка

    Вывод

    Текущая тестовая реализация пока умеет слать заголовок и фиксированную команду. Но вот тут у меня возник вопрос — а какая должна быть у этого контроллера глубина реализации? Ведь можно контроллеру сказать «включи охлаждение на 23 градуса», а можно просто сказать «передай команду» и передать весь поток бит с уже сформированной командой. А ведь можно еще и тайминги указать. Тогда можно управлять через один контроллер-излучатель различными устройствами. Надеюсь в комментариях вы мне поможете принять решение.
    Планируется также подключение пары датчиков температуры для контроля температуры помещения и выходного потока воздуха из кондиционера. Это удобно для обратной связи(например оповещение по смс с текущими параметрами климата) и контроля(а включился ли кондиционер?).