Как снять защиту с блока питания компьютера?
Генераторы
Все про генераторы
Как убрать защиту с блока питания от компьютера
Зарядник свинцового аккумулятора из компьютерного БП
Задача в общем-то распространенная, особенно среди автовладельцев зимой. Решается двумя путями — купить или сделать самому. Насчет купить — недорогие китайские зарядники в розетку включать страшно, приличные типа кедра, ориона и т.п. не выдерживают борьбы с жабой. А старые компьютерные БП при желании можно найти бесплатно, т.к. в сервисах их просто выкидывают. Вот и я решил применить подобный БП. Дешево и сердито + не надо настраивать силовую часть.
Делалось в три этапа:
1. Простейший. Поднял выходное напряжение 12В до 14.4В. Выдернул контакты из разъема питания HDD, желтый и черный, к клеммам цеплял прищепками, все работало
2. Прищепки стали некошерны, бывали глюки от защиты, с током непонятки, пришлось модернизировать — добавился стабилизатор тока, отключены защиты, к проводам добавились крокодилы.
3. Добавил индикатор напряжения и тока, спасибо братьям-китайцам, цена вопроса чуть меньше 5$. т.е. красота требует жертв — финансовых первые два этапа обошлись даром, за исключением крокодилов +2$ за пару.
Кому интересны подробности — под кат: «>
Уточнение — все нижесказанное касается БП на базе TL494, 7500 и пр. аналогов.
Этап 1. Корректировка напряжения
Собственно во всех блоках питания напряжение можно скорректировать изменяя сопротивление резисторов делителя ОС.
Есть две проблемы: во-первых БП постороены так, что бы контролировать два напряжения +12В и +5В, при этом канал +5В основной. Это решается просто, резистор с выхода +5В убираем. получаем классический делитель, осталось подобрать сопротивления резистора для получения на выходе напряжения 13.8…14.4В. По выбору напряжения читаем соответствующие форумы Пересказывать лень. Искать эти резисторы проще всего по следующему принципу — они идут с цепей +5В и +12В на ножку 1 TL494. От ножки 1 есть еще резистор на землю — это нижний резистор делителя, при этом из бывает два параллельных — для повышения точности и упрощения подбора по стандартным рядам.
Проблема вторая — на канал +5В завязана защита от перенапряжения, и ее надо убирать и делать это сложнее, схемы защиты все разные, разбираться тяжело, поэтому это дело лучше убирать сразу, а не как я — вторым этапом. Собственно суть в следующем, с цепи +5В идет резистор на компаратор LM393 и там так же нужно убирать лишнее, но бывает что защита сделана на транзисторах или еще как то хитро, решается индивидуально и не всегда надежно, поэтому перехожу сразу ко второму этапу.
Этап 2. Стабилизация тока и защита
Независимо от реализации защиты сводится она к контролю уровня DeadTime (вывод 4) TL494. Таким образом, что бы полностью отключить защиту, достаточно отрезать все дорожки от ножки 4 и подключить ее к общему проводу (вывод 7 TL494). Для параноиков можно небольшое мертвое время оставить, для этого на вывод 4 подать напряжение 50-100мВ через делитель с выхода Vref (14). Делитель 10к верхний резистор, 1кОм нижний. Для перфекционистов — не сочтите за оскорбление можно параллельно верхнему резистору добавить конденсатор на 10-47мкФ — будет плавный пуск. Не отношу себя ни к первым, ни ко вторым, поэтому ножку 4 просто заземлил.
Стабилизация тока делается по схеме на рисунке 1.На рисунке показаны новые цепи, при этом выводы 15 и 16 должны быть отрезаны от старых цепей, а к выводам 3 и 14 новые детали подключатся дополнительно.. Это важно, так как на выводы 3 и 14 еще заведены аналогичные цепи с ОС по напряжению.
Поясню назначение элементов — R1 датчик тока, собственно с него снимается напряжение. т.е. при токе 5А падение напряжения будет 0,5В. R2C1 — простейший фильтр, R3RV1 задают ток, соответсвенно для тока 0,5А на среднем выводе потенциометра должно быть 0,5В.R4R5C2 — задают параметры усилителя ошибки, такие как коэф. усиления и постоянную времени. Кому нужны подробности — внимательно читают титце-шенка главу про автоматическое управление.
Недостатком данной схемы является то, что датчик тока будет влиять на напряжение, т.е. реальное напряжение на аккумуляторе при токе заряда 5А будет на 0,5В ниже чем планировалось. НО, во-первых при увеличении напряжения ток будет падать, и при полном заряде это влияние существенно меньше, во-вторых просто, все остальные варианты требуют дополнительных деталей, типа ОУ и т.д. и получается уже совсем не конструкция выходного дня.
Этап 3. Индикация
Наличие токовых клещей и мультиметра конечно позволяет контролировать процесс, но сильно напрягает лишним движняком. Итак, лень — двигатель прогресса и добавилась вот такая штука покупал эту штуку там . Из особенностей подключения — для улучшения точности показаний минус питания и входа подключены к точке между резисторами R1R2 рисунка 1. Это позволяет избежать влияния резистора R1. + питания для индикатора брал с дежурного источника или с питания 494, оттуда же взято и питание вентилятора. Для AT-блоков питания может не быть, тогда будут проблемы с глубоко разряженными аккумуляторами. И еще — индикатор занижает напряжение на 0,1В, разбираться не стал.
Ну и в итоге получилась такая штука
Вид внутри
и снаружи
Ну вроде все. Из нюансов — на старых БП канал +12В довольно слабый, поэтому диоды шоттки заменил на более мощные, выковыряв из 5В цепи.
Ну и по выходному напряжению тоже ставил подстроечник что бы можно было регулировать. Провода на аккум потолще, чтоб падения напряжения не было. Вроде все. Наверное все переделки заняли меньше времени чем написание статьи
PhiX › Блог › РЕМОНТ КОМПЬЮТЕРНЫХ БЛОКОВ ПИТАНИЯ
В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.
Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.
Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.
Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.
Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.
Инструментарий.
Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.
Немного о том, что мы увидим, вскрыв блок питания.
Внутреннее изображение блока питания системы ATX
A – диодный мост, служит для преобразования переменного тока в постоянный
B – силовые конденсаторы, служат для сглаживания входного напряжения
Между B и C – радиатор, на котором расположены силовые ключи
C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки
между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений
D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе
E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе
Распиновка разъема 24 pin и измерение напряжений.
Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.
Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.
Визуальный осмотр.
Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.
Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.
Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.
Первичная диагностика.
Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.
Неисправности:
БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.
Если вы обнаружили, что сгорел плавкий предохранитель, не спешите его менять и включать БП. В 90% случаев вылетевший предохранитель это не причина неисправности, а её следствие. В таком случае в первую очередь надо проверять высоковольтную часть БП, а именно диодный мост, силовые транзисторы и их обвязку.
Варистор
Задачей варистора является защита блока питания от импульсных помех. При возникновении высоковольтного импульса сопротивление варистора резко уменьшается до долей Ома и шунтирует нагрузку, защищая ее и рассеивая поглощенную энергию в виде тепла. При перенапряжении в сети варистор резко уменьшает свое сопротивление, и возросшим током через него выжигается плавкий предохранитель. Остальные элементы блока питания при этом остаются целыми.
Варистор выходит из строя из-за скачков напряжения, вызванными например грозой. Так же варисторы выходят из строя, если по ошибке вы переключили БП в режим работы от 110в. Вышедший из строя варистор обычно определить не сложно. Обычно он чернеет и раскалывается, а на окружающих его элементах появляется копоть. Вместе с варистором обычно перегорает предохранитель. Замену предохранителя можно производить только после замены варистора и проверки остальных элементов первичной цепи.
Диодный мост
Диодный мост представляет собой диодную сборку или 4 диода стоящие рядом друг с другом. Проверить диодный мост можно без выпаивания, прозвонив каждый диод в прямом и обратном направлениях. В прямом направлении падение тока должно быть около 500мА, а в обратном звониться как разрыв.
Диодные сборки измеряются следующим образом. Ставим минусовой щуп мультиметра на ножку сборки с отметкой «+», а плюсовым щупом прозваниваем в направления указанных на картинке.
Конденсаторы
Вышедшие из строя конденсаторы легко определить по выпуклым крышкам или по вытекшему электролиту. Конденсаторы заменяются на аналогичные. Допускается замена на конденсаторы немногим большие по ёмкости и напряжению. Если из строя вышли конденсаторы в цепи дежурного питания, то блок питания будет включаться с n-ого раза, либо откажется включаться совсем. Блок питания с вышедшими из строя конденсаторами выходного фильтра будет выключаться под нагрузкой либо так же полностью откажется включаться, будет уходить в защиту.
Иногда, высохшие, деградировавшие, конденсаторы выходят из строя, без каких либо видимых повреждений. В таком случае следует, предварительно выпаяв конденсаторы проверить их емкость и внутренние сопротивление. Если емкость проверить нечем, меняем все конденсаторы на заведомо рабочие.
Ремонт блока питания компьютера своими руками
Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами. Прежде чем перейти непосредственно к методике, рассмотрим структурную схему БП и приведем перечень возможных неисправностей, это существенно упростит задачу.
Структурная схема
На рисунке показано изображение структурной схемы типичной для импульсных БП системных блоков.
Устройство импульсного БП ATX
Указанные обозначения:
- А – блок сетевого фильтра;
- В – выпрямитель низкочастотного типа со сглаживающим фильтром;
- С – каскад вспомогательного преобразователя;
- D – выпрямитель;
- E – блок управления;
- F – ШИМ-контроллер;
- G – каскад основного преобразователя;
- H – выпрямитель высокочастотного типа, снабженный сглаживающим фильтром;
- J – система охлаждения БП (вентилятор);
- L – блок контроля выходных напряжений;
- К – защита от перегрузки.
- +5_SB – дежурный режим питания;
- P.G. – информационный сигнал, иногда обозначается как PWR_OK (необходим для старта материнской платы);
- PS_On – сигнал управляющий запуском БП.
Распиновка основного коннектора БП
Для проведения ремонта нам также понадобится знать распиновку главного штекера БП (main power connector), она показана ниже.
Штекеры БП: А – старого образца (20pin), В – нового (24pin)
Для запуска блока питания необходимо провод зеленого цвета (PS_ON#) соединить с любым нулевым черного цвета. Сделать это можно при помощи обычной перемычки. Заметим, что у некоторых устройств цветовая маркировка может отличаться от стандартной, как правило, этим грешат неизвестные производители из поднебесной.
Нагрузка на БП
Необходимо предупредить, что включение импульсных БП без нагрузки существенно сокращает их срок службы и даже может стать причиной поломки. Поэтому мы рекомендуем собрать простой блок нагрузок, его схема показана на рисунке.
Схема блока нагрузки
Схему желательно собирать на резисторах марки ПЭВ-10, их номиналы: R1 – 10 Ом, R2 и R3 – 3,3 Ом, R4 и R5 – 1,2 Ом. Охлаждение для сопротивлений можно выполнить из алюминиевого швеллера.
Подключать в качестве нагрузки при диагностике материнскую плату или, как советуют некоторые «умельцы», HDD и СD привод нежелательно, поскольку неисправный БП может вывести их из строя.
Перечень возможных неисправностей
Перечислим наиболее распространенные неисправности, характерные для импульсных БП системных блоков:
- перегорает сетевой предохранитель;
- +5_SB (дежурное напряжение) отсутствует, а также больше или меньше допустимого;
- напряжения на выходе блока питания (+12 В, +5 В, 3,3 В) не соответствуют норме или отсутствуют;
- нет сигнала P.G. (PW_OK);
- БП не включается дистанционно;
- не вращается вентилятор охлаждения.
Методика проверки (инструкция)
После того, как блок питания снят с системного блока и разобран, в первую очередь, необходимо произвести осмотр на предмет обнаружения поврежденный элементов (потемнение, изменившийся цвет, нарушение целостности). Заметим, что в большинстве случаев замена сгоревшей детали не решит проблему, потребуется проверка обвязки.
Визуальный осмотр позволяет обнаружить «сгоревшие» радиоэлементы
Если таковы не обнаружены, переходим к следующему алгоритму действий:
- проверяем предохранитель. Не стоит доверять визуальному осмотру, а лучше использовать мультиметр в режиме прозвонки. Причиной, по которой выгорел предохранитель, может быть пробой диодного моста, ключевого транзистора или неисправность блока, отвечающего за дежурный режим;
Установленный на плате предохранитель
- проверка дискового термистора. Его сопротивление не должно превышать 10Ом, если он неисправен, ставить вместо него перемычку крайне не советуем. Импульсный ток, возникающий в процессе заряда конденсаторов, установленных на входе, может стать причиной пробоя диодного моста;
Дисковый термистор (обозначен красным)
- тестируем диоды или диодный мост на выходном выпрямителе, в них не должно быть обрыва и КЗ. При обнаружении неисправности следует подвергнуть проверке установленные на входе конденсаторы и ключевые транзисторы. Поступившее на них в результате пробоя моста переменное напряжение , с большой вероятностью, вывело эти радиодетали из строя;
Выпрямительные диоды (обведены красным)
- проверка входных конденсаторов электролитического типа начинается с осмотра. Геометрия корпуса этих деталей не должна быть нарушена. После этого измеряется емкость. Нормальным считается, если она не меньше заявленной, а расхождение между двумя конденсаторами в пределах 5%. Также проверке должны быть подвергнуты запаянные параллельно входным электролитам варисторы и выравнивающие сопротивления;
Входные электролиты (обозначены красным)
- тестирование ключевых (силовых) транзисторов. При помощи мультиметра проверяем переходы база-эмиттер и база-коллектор (методика такая же, как при проверке диодов).
Показано размещение силовых транзисторов
Если найден неисправный транзистор, то прежде, чем впаивать новый, необходимо протестировать всю его обвязку, состоящую из диодов, низкоомных сопротивлений и электролитических конденсаторов. Последние рекомендуем поменять на новые, у которых большая емкость. Хороший результат дает шунтирование электролитов при помощи керамических конденсаторов 0,1 мкФ;
- Проверка выходных диодных сборок (диоды шоттки) при помощи мультиметра, как показывает практика, наиболее характерная для них неисправность – КЗ;
Отмеченные на плате диодные сборки
- проверка выходных конденсаторов электролитического типа. Как правило, их неисправность может быть обнаружена путем визуального осмотра. Она проявляется в виде изменения геометрии корпуса радиодетали, а также следов от протекания электролита.
Не редки случаи, когда внешне нормальный конденсатор при проверке оказывается негодным. Поэтому лучше их протестировать мультиметром, у которого есть функция измерения емкости, или использовать для этого специальный прибор.
Видео: правильный ремонт блока питания ATX.
https://www.youtube.com/watch?v=AAMU8R36qyE
Заметим, что нерабочие выходные конденсаторы – самая распространенная неисправность в компьютерных блоках питания. В 80% случаев после их замены работоспособность БП восстанавливается;
Конденсаторы с нарушенной геометрией корпуса
- проводится измерение сопротивления между выходами и нулем, для +5, +12, -5 и -12 вольт этот показатель должен быть в пределах, от 100 до 250 Ом, а для +3,3 В в диапазоне 5-15 Ом.
Доработка БП
В заключение дадим несколько советов по доработке БП, что позволит сделать его работу более стабильной:
- во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
- диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
- выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
- бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
- если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.
Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.
Очень интересно прочитать:
Communities › Электронные Поделки › Blog › Переделка блока питания от компьютера в зарядное устройство
Началось все с того, что подарили мне блок питания АТХ от компьютера. Так он пролежал пару лет в заначке, пока не возникла необходимость соорудить компактное зарядное устройство для аккумуляторов.
Блок выполнен на известной для серии блоков питания микросхеме TL494, что дает возможность его без проблем переделать в зарядное устройство. Не буду вдаваться в подробности работы блока питания,
алгоритм переделки следующий:
1. Очищаем блок питания от пыли. Можно пылесосом, можно продуть компрессором, у кого что под рукой.
2. Проверяем его работоспособность. Для этого в широком разъеме, который идет к материнской плате компьютера необходимо найти зеленый провод и перемкнуть его на минус (черный провод), после включить блок питания в сеть и проверить выходные напряжения. Если напряжения(+5В, +12В) в норме переходим к пункту 3.
3. Отключаем блок питания от сети, достаем печатную плату.
4. Выпаиваем лишние провода, на плате припаиваем перемычку зеленого провода и минуса.
5. Находим на ней микросхему TL494, может быть аналог KA7500.
Отпаиваем все элементы от выводов микросхемы №1, 4, 13, 14, 15, 16. На выводах 2 и 3 должны остаться резистор и конденсатор, все остальное тоже выпаиваем. Часто 15-14 ножки микросхемы находятся вместе на одной дорожке, их надо разрезать. Можно ножом перерезать лишние дорожки, это лучше избавит от ошибок монтажа.
6. Далее собираем схему.
Резистор R12 можно выполнить куском толстого медного провода, но лучше взять набор 10 Вт резисторов, соединенных параллельно или шунт от мультиметра. Если будите ставить амперметр, то можно припаятся к шунту. Тут следует отметить, что провод от 16 ножки должен быть на минусе нагрузки блока питания а не на общей массе блока питания! От этого зависит правильность работы токовой защиты.
7. После монтажа, последовательно к блоку по сети питания подключаем лампочку накаливания, 40-75 Вт, 220В. Это необходимо чтоб не сжечь выходные транзисторы при ошибке монтажа. И включаем блок в сеть. При первом включении лампочка должна мигнуть и погаснуть, вентилятор должен работать. Если все нормально, переходим к пункту 8.
8. Переменным резистором R10 выставляем выходное напряжение 14,6 В. Далее подключаем на выход автомобильную лампочку 12 В, 55 Вт и выставляем ток, так чтоб блок не отключался при подключении нагрузки до 5 А, и отключался при нагрузке более 5 А. Значение тока может быть разным, в зависимости от габаритов импульсного трансформатора, выходных транзисторов и т.д…В среднем для ЗУ пойдет и 5 А.
9. Припаиваем клеммы и идем тестить к аккумулятору. По мере заряда аккумулятора ток заряда должен уменьшатся, а напряжение быть более менее стабильным. Окончание заряда будет когда ток уменьшится до нуля.
Вот вкратце описал простую переделку блока питания в зарядное устройство…Задавайте вопросы, пишите комментарии…
Удачи всем на дороге!
Comments 56
понарвился ответ автора так понял что чайника . чел спрашивает 5 пин куда девать автор говорит откуси или нет дак без 5 и 6 пина частотки не будет . вы автор материал у кого то своровали и выложили чтоль
А что с выводами 5-12 ? Оставляем или отрезать? Спасибо
12 оставляем это питание ШИМ…А 5 не помню…попробуйте оставить если не будет работать выкусить доророжку…
Антон привет! Осталась схема самого блока питания?
Привет! Схема классическая как для ТL494 от старого блока питания…
У тебя что то напутано с защитой
Какой у тебя стоит резистор R12?
у тебя лампочка по сети забирает ток. Посмотри чтоб минус на аккум шол только через шунт! Потом отсоедини лампочку по сети и пробуй.
Убрал лампочку, блок свистел но нагрузку в 1А выдержал, подключил лампу 55W, сила тока возросла до 4,7А, и блок потух, сгорели ключи по входу STD13007
Привет, собираю ЗУ как у тебя, ну что то пошло не так, есть предположения?
не умеючи можно сжечь что угодно…
Блин раза 2 использовал это говно.Один раз магнитолу сжег клиентскую.2 раз БП полыхнул так что не видел минуты 2.Не заморачивайтесь.
собрал . не работает.моргнет и все.
Уходит в защиту…Проверь правильность сборки, покрути на отключеном блоке резистор тока, потом повключай…
тоже самое. моргнет и в защиту
проверь чтоб не было ничего лишнего на 1,2, 15,16 ногах микросхемы
вот нужно решить как обойти
проверь чтоб не было ничего лишнего на 1,2, 15,16 ногах микросхемы
как обойти защиту на микросхеме U2 ?
Добрый день.А у меня блок от компа на микрухе WT 7514L (450вт)можно ли сделать как вы сделали?
чтоб одновременно два провода размыкать а не один…
если фазу не разомкнуть то конденсаторы могут быть под небольшим напряжением…
А для чего на включатель идет столько проводов?
Прикольный проект, земляк ! Ссылочкой на статью не поделишься ?
минусом на 4 лапу, плюсом на 13,14. конденсатор 47 мкф, для мягкого старта блока питания, иначе при старте бывает выбивает транзисторы входные. из опыта построения множества лабораторников !
Спасибо! Стоял конденсатор в родной начинке…
в родной начинке 1…10 мкф. нужен 47…100 мкф, для более мягкого старта. ИМХО из опыта
Делаю аналогичную переделку, намучился с регулировкой тока. То регулируется ступенчато, то свистят транзисторы. Подбирал обратную связь и вылетел один высоковольтный транзистор. Но конденсатор с высоким номиналом как у вас 0,068 не пробовал. Попробую как транзистор заменю. Еще подозрение что у меня сильно малое сопротивление шунта (где-то 15см 0.7мм2)
Есть мнение (моё), что за ступенчатость лежит вина на том резисторе, которым пытаетесь регулировать. Может, нужно его зашунтировать или вообще заменить. Я в своем обратную связь тоже долго подбирал, при чем, с осциллографом. Пришел к выводу, что по току одна и та же RC цепочка может адекватно работать в конкретном диапазоне токов. На малых токах одни номиналы, на больших — другие. В итоге, сделал переключение режимов. Соответственно, одновременно переключаются резисторы, ограничивающие максимальный ток на выходе блока, резисторы и конденсаторы цепи ОС по току и шунты на амперметре (подобрал для одной шкалы). Переключал в выключенном состоянии. Не скажу, что на малых токах нет нареканий, посвистывает порою стремно.
Еще, учитывая, что токи под 30 ампер и выше мне не потребуются, ограничился 10-ю. Соответственно, при 25 вольтах, полученных от блока, 10 ампер — было бы за глаза. А, для блока с заявленной мощностью в 400 ватт работа почти в холостую является не самой экономичной. Потому в базовых цепях (Б-Э) силовых ключей заменил резисторы с 2,7-3,3 кОм на 200-300 Ом (подобрал по порогу открытия транзисторов и взял чуток с запасом). Резисторы по 200 кОм из верхних плеч (Б-К) убрал вообще. Тем самым заставил транзисторы находиться в открытом состоянии гораздо меньше времени, так как при исчезновении управляющего импульса напряжение на базе падает быстрее. Фронты импульсов стали практически идеальными, не затянутыми. В результате, нагрева транзисторов практически нет. При 14 вольтах и 6 амперах (в процессе зарядки АКБ) радиатор силовых транзисторов был еле-теплый довольно продолжительное время.
Мощность по итогу, конечно, не 400 ватт. На 25-ти вольтах удавалось выжать только около 6,5 Ампер == порядка 160 ватт. С учетом не идеального КПД, будем считать, что из сети потребляем 200 ватт. Но, главную для себя цель достиг —, на мои нужды хватает и тока и напряжения, а перегрева не боюсь. Вентилятор стоит с регулятором на основе пленочного терморезистора (выдрал из акб ноута) и почти всегда вращается на самых малых оборотах.
Считаю, что шунт по мере возможности лучше взять готовый из белых керамических сопротивлений. Соединил параллельно два пятиватных по 0,1 Ом, вышло, что и падение напряжения не большое и потому нагрева их не происходит, и для работы схемы их сопротивления достаточно. Да и стрелочный амперметр откалибровать проще, зная сопротивление шунта.
Делаю аналогичную переделку, намучился с регулировкой тока. То регулируется ступенчато, то свистят транзисторы. Подбирал обратную связь и вылетел один высоковольтный транзистор. Но конденсатор с высоким номиналом как у вас 0,068 не пробовал. Попробую как транзистор заменю. Еще подозрение что у меня сильно малое сопротивление шунта (где-то 15см 0.7мм2)
Поиграйте с шунтом, обязательно чтоб 16 вывод микросхемы был на минусе аккумулятора, а не блока питания! Еще можно поиграться сопротивлением переменного резистора регулировки тока, у меня стоит 2 кОм…И обязательно при экспериментах включайте блок питания последовательно через лампочку по сети 220В.
Не включается компьютер. Что делать?
Привет, давненько я не писал в свой блог. Сказывается нехватка времени или куча дел, или весеннее настроение, а может быть я просто ищу «отмазки». Видимо, нужно найти способ «давать себе пинков». Пожалуй, стоит прочитать какую-нибудь книжечку по мотивации. Ладно, перейдем к самому посту.
Раз уж мой блог посвящен теме ремонта компьютера, то я просто обязан был написать этот пост. Думаю, ситуация, когда компьютер просто не включается знакома каждому пользователю ПК. Что же делать в такой ситуации? Нужно просто прочитать мою статью и взять пару способов себе на заметку. Я уверен, что ответ на этот вопрос написан уже тысячи раз, но я знаю, что полезная информация не бывает лишней, и попробую внести свою лепту.
Возможно, кто-то захочет сразу отнести компьютер к специалистам, но не стоит торопиться, я уверен, что в половине случаев его получится починить своими руками. Только представьте в 50% случаев можно вообще не тратить ни копейки на ремонт!
Я приведу небольшой список действий по шагам, которые помогут вам, если не починить компьютер, то хотя бы определить неисправность. Знать, что именно неисправно — уже половина дела, можно будет попробовать заменить деталь самостоятельно или все же отнести компьютер в ремонт, но быть уверенным, что вам не «навешают лапши на уши».
Итак рассмотрим 2 варианта поломки компьютера:
- компьютер не стартует совсем;
- компьютер «заводится», но нет изображения на мониторе.
Кстати, рекомендую к прочтению мою статью Как я ремонтировал компьютер — это история моего реального опыта ремонта с неожиданным финалом. ?
Сразу оговорюсь, что не существует какого-либо универсального алгоритма ремонта, который 100% подходит для любого компьютера. Моя статья скорее руководство к действиям, которые может совершить даже не подготовленный пользователь для ремонта своего стационарного ПК.
Вариант 1. Компьютер не включается (кулеры не крутятся, индикаторы не горят).
Пойдем по пути от простого к сложному.
Проверяем электропитание
Во-первых, стоит проверить электричество в розетках. Да-да, не удивляйтесь, но многие не задумываются об этом элементарном действии. Особенно это актуально для квартир с раздельным контуром электричества на освещение и на розетки. То есть, свет в доме может гореть, но розетки могут не работать.
Затем обязательно проверяем все соединения от розетки до самого блока питания, так как могут быть выключены сетевой фильтр или ИБП.
Блок питания ушел в защиту
Довольно часто компьютер отказывается включаться после перебоев с электричеством. Дело в том, что во всех современных блоках питания есть функция защиты от перепадов напряжения или от замыкания электрической цепи. В таких случаях он просто «уходит в защиту», то есть не подает питание на системную плату.
Чтобы привести его в чувства достаточно выдернуть из него провод питания на несколько секунд (10-20 секунд), затем снова его подключить и попробовать включить компьютер. Очень интересно наблюдать за удивлением пользователей, когда этот метод срабатывает =)
Если на этот раз все тихо, тогда не стоит расстраиваться и придется вооружиться крестовой отверткой. Первым делом снимаем левую крышку системного блока.
Отключаем все лишнее
После того, как мы добрались до комплектующих компьютера, нужно просто внимательно осмотреть материнскую плату и другие комплектующие. Если вы не увидели следов перегрева или других видимых признаков неисправности, тогда пробуем поочередно отключать питание жесткого диска и оптического привода, можно вынуть даже оперативную память, что поможет исключить их неисправность. Кроме того, поочередно отключая комплектующие мы снижаем нагрузку на блок питания, который также может служить причиной неисправности (об этом написано немного ниже). После каждой отключенной детали пробуем включить компьютер, если в итоге он заработает, пробуем вернуть комплектующие на свои места, выясняя какая же деталь служит причиной неисправности.
Чуть не забыл, обратите особое внимание на конденсаторы на материнской плате, если они вздулись, их нужно заменить. Если нет опыта перепаивания комплектующих, лучше обратиться в сервисный центр.
Так выглядит хороший и вздутый вытекший конденсатор.
Проверяем кнопки включения и перезагрузки
После отключения комплектующих нужно попробовать отключить переднюю панель компьютера, чтобы исключить неисправность или залипание самих кнопок включения и перезагрузки. Для этого нужно найти на материнской плате разъем, к которому подходят 3 или 4 тонких проводка от передней панели корпуса. Обычно, такой разъем подписан как «f-panel«, а разъемы кнопок включения или перезагрузки — «power sw» и «reset sw» соответственно. Нужно просто вытащить эти разъемы со своих мест, но перед этим лучше запомнить, как они располагались.
После отключения разъемов кнопок нужно попробовать замкнуть контакты кнопки включения отверткой (обозначены как power sw или +pw- на самой плате), как на фото ниже . Будьте аккуратны, чтобы не замкнуть ничего лишнего, так как это может привести к нежелательным результатам.
В моем случая я перемкнул 3 и 4 верхние левые контакты. На обозначении материнской платы они подписаны как «+PW-»
Если после этой процедуры компьютер не включается, возвращаем контакты кнопок на свои места и переходим к следующему шагу.
Проверяем блок питания
Если элементарные шаги не помогли, можно предположить, что неисправен блок питания. Хорошо, если под рукой есть запасной блок, тогда просто подключаем питание процессора и материнской платы от нового БП, если запасного нет, тогда пробуем протестировать вольтаж установленного. Как это сделать, я писал в статье Как проверить блок питания.
Довольно часто, причиной неисправности блока питания служат вспухшие конденсаторы, за замену которых в сервисном центре возьмут около 500 рублей.
Включаем на коленке
Предположим, что все предыдущие шаги не дали результата, тогда можно попробовать включить компьютер на «коленке». В чем суть этого метода?
Нужно вынуть материнскую плату из корпуса, предварительно отключив от неё все провода и открутив несколько болтиков (обычно 6 или 8). Таким образом, мы получим системную плату с установленным процессором, кулером и оперативной памятью. Также нужно подключить провод от монитора к видеокарте, которую придется воткнуть в разъем, если нет встроенной. После того, как системная плата извлечена подключаем к ней питание на процессор и на саму плату. То есть мы должны воспроизвести процесс сборки компьютера, только вне корпуса.
Затем нужно положить её на картонку или любую другую не проводящую электричество поверхность и попробовать «завести» её, замкнув контакты отверткой, как описано выше. Не кладите системную плату на ковер — помните о статическом электричестве!
Если этот метод сработал, значит нужно искать проблему при сборке компьютера внутри корпуса. Например, иногда причиной неисправности служит затерявшийся при сборке болтик, который попадает между материнской платой и корпусом и соответственно замыкает контакты на обратной стороне платы.
Если ни один из выше перечисленных способов, так и не заставил компьютер работать, тогда нужно настраиваться на одну из самых неприятных поломок — замену материнской платы. Конечно, делать это нужно если Вы уверены в исправности других комплектующих. Хорошо, если модель не слишком старая и в магазине комплектующих можно купить новую с аналогичными параметрами. Довольно часто бывает и такое, что найти новый аналог не удается, тогда есть два выхода:
- покупать плату б/у (чего я делать не рекомендую);
- покупать современную материнскую плату с заменой соответствующих комплектующих (процессор, оперативная память, кулер).
Вариант 2. Компьютер включается, но на мониторе ничего
Исключаем неисправность самого монитора
Как правило, на исправных мониторах при включении должен гореть оранжевый/желтый или красный индикатор, а после того, как с видеовыхода компьютера на него поступает сигнал, индикатор меняет свой цвет на зеленый или синий. Если Вы не уверены в работе монитора, тогда можно проверить его, подключив к другому компьютеру или к видеовыходу ноутбука.
Довольно часто причиной неисправности монитора служит севшая подсветка. Диагностировать эту неисправность можно, если при включенном компьютере попробовать выключить и снова включить монитор. Если «картинка» появилась на 1 секунду и пропала, значит неисправна подсветка монитора. Как вариант, также можно попробовать посмотреть на экран сверху под большим углом. В некоторых случаях можно будет увидеть еле различимое привычное изображение, что также будет свидетельствовать о его неисправности.
Проверяем видеокарту
Если мы уверены в исправности монитора переходим к осмотру системного блока.
Конечно, первым делом стоит проверить целостность соединения видеокабеля. Если с этим никаких проблем, тогда первое, что приходит в голову в этой ситуации — это неисправность видеокарты, но проверить её работоспособность довольно проблематично, если нет интегрированной видеокарты или запасной. Поэтому, в таких случаях самым простым будет проверка оперативной памяти, а проверку видеокарты оставим на потом, если ничего другое не поможет. Также можно будет попросить видеокарту у своих друзей и попробовать запустить с ней. Единственное условие — разъемы видеокарт должны совпадать, ну и желательно не брать очень мощную, так как может не хватить мощности вашего блока питания.
Проверяем оперативную память
Я уже писал статью о том, как можно протестировать модули памяти с помощью программы MemTest, но такая проверка подходит для случаев, когда компьютер самопроизвольно перезагружается или выпадает в BSOD.
В ситуации, когда на монитор не выводится изображение, нужно попробовать вынуть все модули памяти. При их отсутствии компьютер должен издавать продолжительный писк. Если вы услышали такой — это очень хорошо и означает, что компьютер доходит до проверки оперативной памяти, а значит, что скорее всего дело именно в самих «планках». В таком случае стоит попробовать поочередно установить модули и выяснить из-за какого из них происходит сбой.
Сбрасываем BIOS
Причиной для сброса настроек BIOS могут быть неудачные мероприятия по разгону компьютерной системы пользователем или установка некорректных настроек. Так или иначе, это простое действие поможет избежать многих проблем.
На следующем шаге также целесообразно убедиться в отсутствии залипания кнопок включения и перезагрузки. О том, как это сделать, написано выше.
Как видите, все эти действия любой пользователь может совершить самостоятельно. Очень надеюсь, что мои советы помогут вам починить компьютер. И только если никакие из выше перечисленных действий не принесли результат, можно отдать компьютер специалистам для более тщательного изучения проблемы.
Немного юмора
На моей практике были случаи когда пользователи, не знали о существовании режима экономии электроэнергии, при котором монитор просто гаснет при длительном отсутствии активности. Увидев такую картину, пользователь подходил и нажимал на кнопку включения. Компьютер «просыпался» и начинал быстро закрывать все программы, после чего выключался совсем. Затем следовали разгневанные звонки системным администраторам с жалобой на то, что компьютер самопроизвольно отключается.
О роли варисторов/терморезисторов в блоках питания
Качественные блоки питания обеспечивают долговременную надежную и безаварийную работу вычислительного оборудования и другой техники.
Так как при майнинге используются мощные импульсные источники питания, питающие дорогостоящее оборудование, то их выход из строя влечет за собой весьма неприятные последствия.
В связи с этим стоит разобраться с некоторыми особенностями их работы, которые помогут избежать поломок, вызванных непониманием процессов, происходящих внутри импульсных источников питания.
Переходные процессы в радиоэлектронной аппаратуре и вычислительной технике
При эксплуатации любых электрических приборов в момент переключения возникают нелинейные переходные процессы, которые в некоторых случаях незаметны, а иногда приводят к выходу устройства из расчетного режима работы, что сопровождается повышенной нагрузкой на его элементы и может привести их к выходу из строя.
Переходные процессы всегда возникают в момент коммутации цепей с нагрузкой, имеющей индуктивный и/или емкостной характер. В большинстве случаев они являются вредными для работы устройства, поэтому конструкторы аппаратуры обычно предпринимают меры для их сведения до минимума.
Так как любой участок цепи имеет в той или иной мере LC-параметры, то нелинейные процессы всегда происходят в любой электронике. В мощных блоках питания, использующихся для майнинга, установлены конденсаторы и катушки большой емкости/индуктивности, поэтому переходные процессы в них могут быть очень значительными.
Кратковременный всплеск переменного напряжения, значительно превышающий нормальное значение:
Во время включения в работу блока питания большой мощности в его контурах протекают импульсы тока огромной величины. Всплески напряжения, вызванные переходными процессами, могут многократно превышать номинальное напряжение, протекающее в сети.
Всплески напряжения (voltage spikes), возникающие на графике синусоидального переменного напряжения, вследствие переходных процессов (transients):
Для борьбы со всплесками напряжения в момент включения блоков питания в них устанавливаются специальные защитные элементы. Они обычно справляются со своей ролью, но иногда, при нештатных ситуациях, не справляются со своими задачами. Чтобы не допускать их возникновения (или хотя бы свести до минимума), нужно знать принципы работы, назначение и состав защитных элементов на входе импульсного блока питания.
Зачем нужны защитные цепи на входе импульсных блоков питания
В качественных импульсных блоках питания обычно устанавливаются входные цепи, которые решают ряд проблем, среди которых:
Для защиты входных цепей блока питания от всплесков напряжения и тока используются варисторы (varistors) и термисторы, а также предохранители, варисторы, а также разрядники (surge arresters).
MOV-варистор и термисторы с позитивным и негативным коэффициентом сопротивления:
Как обеспечивается защита от всплесков напряжения и тока на входе блока питания?
За защиту от всплесков напряжения на входе импульсного БП в рабочем режиме обычно отвечают варисторы и разрядники. Для защиты от бросков тока на входе применяют предохранители, а также термисторы.
Простейшая схема включения защитного варистора в блоке питания:
Схема включения защитных элементов на входе импульсного источника тока с применением варисторов и разрядников:
Как работает варистор?
Варистор — это резистор, сопротивление которого изменяется в зависимости от приложенного напряжения. В нормальных условиях оно очень большое (мегаОмы) и не оказывает особого влияния на работу электрической цепи при параллельном включении.
Вольт-амперная характеристика варистора:
При значительном повышении напряжения на варисторе сопротивление падает, это приводит к поглощению энергии всплеска и выделении ее в виде тепла.
Варисторы нужны для защиты радиоэлектронных устройств от бросков высокого напряжения за счет того, что их сопротивление резко падает с увеличением поданного на них напряжения:
Это спасает другие компоненты от выхода из строя, хотя иногда приводит к выгоранию самого варистора, спасающего своим героическим поведением более дорогие электронные элементы. Варисторы устанавливаются на входе БП перед диодным выпрямителем, так как они дополнительно выполняют фильтрующую функцию — гашение помех, возникающих при выключении диодного моста.
Варистор TVR 14471 на входе блока питания Be Quiet Dark Power Pro мощностью 1200 ватт с платиновым сертификатом:
Для чего в блоке питания применяются термисторы?
Термистор — это резистор, изменяющий свое сопротивление из-за температуры.
В блоках питания обычно используют термисторы с негативным температурным коэффицентом (NTC, Negative Temperature Coefficient), включенные последовательно с нагрузкой. В холодном состоянии они имеют сопротивление 6-12 Ом, поэтому при включении блока питания происходит их разогрев. Из-за нагрева сопротивление NTC-термисторов падает до 0.5-1 Ома и они уже не оказывают существенного влияния на работу устройства.
В дорогих блоках питания после успешного старта блока питания термисторы отключаются, ток начинает проходить через проводник с нулевым сопротивлением, что обеспечивает холодное состояние термистора (постоянную готовность к повторному включению БП), а также экономит электроэнергию, которая попусту рассеивается во время работы источника питания в штатном режиме.
Благодаря тому, что термистор принимает на себя «часть удара» в момент включения, остальные компоненты не страдают.
Простейшая схема включения защитного термистора на входе блока питания:
Варисторы обеспечивают защиту высоковольтной части блока питания от всплесков напряжения, а термисторы — от большого тока.
Варистор VZ1 и термистор TR101 на схеме блока питания Chieftec APS-550S мощностью 550W:
К чему может привести экономия на варисторах и термисторах в блоке питания?
В бюджетных блоках питания производители экономят на элементной базе и не устанавливают варисторов. Для защиты таких БП стоит использовать сетевые фильтры или UPS, имеющие в своем составе варисторы. Стоимость такой защиты оправдана значительным снижением возможного ущерба, который может появится в случае сгорания источника питания, питающего дорогостоящий компьютер.
В некоторых случаях защита от всплесков напряжения/тока, обеспечивающаяся варисторами и термисторами, не срабатывает. Это может происходит в случае неисправности варистора/термистора, а также если такой элемент нагрет и производится его включение расчете на его состояние при обычной температуре. Ситуация с медленным остыванием защитных варисторов (термисторов) может возникнуть в случае слишком быстрого повторного включения работавшего блока питания.
Если термистор не успевает остыть после выключения БП, то в момент повторной подачи высокого напряжения защита, обеспечиваемая гашением энергии на его высоком сопротивлении, не обеспечивается. Это может привести к плачевным последствиям.
Нагретый варистор не поглощает энергию импульса, появляющегося в момент включения из-за заряда емкостей электролитических конденсаторов и накопления энергии в индуктивностях, что обычно приводит к пробою транзисторов в высоковольтной части БП.
Благодаря этому, импульс высокого напряжения, поступающий на защищаемое устройство, гасится на варисторе. При сильном нагреве варистора в нем могут произойти необратимые изменения, приводящие к пробою или обрыву.
Пример платы дешевого блока питания Green Vision GV-PS S400:
Как определить исправность варисторов и термисторов?
На схемах блоков питания варисторы и термисторы имеют похожие обозначения в виде резистора с корпусом, перечеркнутым «клюшкой». Варисторы обычно стоят параллельно источнику тока и маркируются обозначением VR:
Термисторы обозначаются похоже:
Термисторы обычно включаются последовательно с нагрузкой, их сопротивление значительно меньше варисторов.
Проверка исправности варистора/термистора состоит в проведении двух действий:
- визуальный осмотр на наличие повреждений, следов прогара, взудтий и прочих безобразий;
- проверка сопротивления омметром — исправный варистор должен иметь большое сопротивление (несколько мегаОм) в обоих направлениях при комнатной температуре, терморезистор на входе блока питания — несколько Ом. При прозвонке варистора следует обращать внимание на место его установки. Если параллельно ему включены другие электронные элементы, то проверять сопротивление нужно после выпаивания варистора с платы.
Что делать майнерам для сведения к минимуму проблем из-за переходных процессов в блоках питания?
При наладке компьютеров, в том числе использующихся для майнинга, иногда возникают ситуации, когда из-за зависания системы приходится часто принудительно выключать-включать блок питания. В этом случае стоит делать перерыв на несколько минут перед повторным включением блока питания, чтобы он успел остыть. Это одинаково важно и для дорогих блоков питания, в которых установлен полный набор защитных элементов, включая варисторы и терморезисторы. Это связано с тем, что они не успевают восстановиться в случае очень быстрого повторного включения устройства с горячими внутренними компонентами.
При выборе блоков питания следует обращать внимание на наличие в них цепей защиты. Наличие варистора на входе источника питания обычно свидетельствует о стремлении его изготовителей обеспечить высокое качество и надежность изделия.
Если в использующемся на компьютере блоке питания не установлены входные защитные цепи, содержащие варисторы, блокировочные конденсаторы и термисторы, то стоит дополнительно установить качественный сетевой фильтр-удлинитель, содержащий хотя бы минимальный набор элементов, включающий варистор.
Фотография платы качественного сетевого фильтра с варисторами:
Варистор синего цвета на входе сетевого фильтра среднего качества:
Дешевый, якобы сетевой фильтр, на самом деле являющийся простым удлинителем/разветвителем с выключателем (не содержит варисторов и других защитных элементов):
При покупке входного фильтра следует учитывать, что большинство устройств, продаваемых в торговых сетях под таким названием на самом деле являются простыми удлинителями/разветвителями розеток, в лучшем случае содержащими узел защиты от короткого замыкания. Элементы защиты от бросков напряжения содержатся только в единицах из них.
В случае перебоев в работе компьютеров (не только тех, которые используются для майнинга), стоит дать время на остывание устройства перед его очередным включением. В противном случае еще не успевшие остыть защитные элементы не смогут выполнить свою функцию, что с большой степенью вероятности приведет к поломке.