Как три фазы преобразовать в одну?
Какой лучший частотный преобразователь для одной фазы в три?
-
7 commentsПрименение 2 января, 2019
Как подключить трехфазный двигатель в однофазную сеть?
Человечество на полную катушку пользуется современными техническими изобретениями,обладающими принципиальной новизной. Жизнь порой заставляет изучать навороченные раскладки, поражаться уловкам доморощенных технарей. И даже не будучи фанатами, нам просто иногда хочется быть в теме. На самом деле для понимания вопроса, всего лишь надо идти от элементарного к сложному, от завязки к развязке. И начинать лучше с прояснения непонятных вещей.
Что такое трехфазная сеть?
Фаза означает изменение направления между величинами электросети в один и тот же момент времени. В случае 3-х ф. тока, используют три напряжения, ориентированных в 3-х различных направлениях. Таким образом, напряжение сети вычисляется сложением векторных величин, и не равняется алгебраической сумме всех напряжений.
Рассмотрим на примере того же двигателя. При подаче напряжения 380 В на катушку используются разные пары фаз в определенной последовательности для каждой обмотки. Собственно поэтому характеризуют цепь 380 Вольтами, а не скалярным сложением (220 + 220 + 220 = 660)В. Это объяснение очень упрощено и не совсем полно, но, надеемся, хорошо представлено. Да и написано так, чтобы было ясно, нам, электрическим«чайникам».
Излагая техническим слогом, в трехфазовой электросети, цепи проводников несут три переменных значений физических величин, которые достигают мгновенные пики в разное время. Принимая один проводник в качестве эталона, остальные два течения запаздывают во времени на одну треть и две трети от одного цикла тока. Эта задержка между фазами, имеет эффект передачи мощности в течение каждого цикла, а также позволяет производить вращающееся магнитное поле.
Способы подключения обмоток
Двигатели в быту и любительской практике приводят в действие самые различные механизмы — циркулярно работающую пилу, электрический рубанок, вентилятор, сверлильный станок, насосное оборудование. Не зная, как работают электродвигатели, лучше не лезть в дебри с частотниками. Двигатели бывают:
- постоянного
- и переменного тока (асинхронные и синхронные).
Механизм включает в себя ротор и статор. Изученный еще в школе принцип электромагнитной индукции лежит в основе принципа их работы. Большая часть производимых электродвигателей являются«асинхронными». Откуда взялось это слово? Частота вращения подвижной детали(ротора) всегда отстаёт от частоты вращения магнитного поля неподвижной (статора). Шкала частот на выходе варьируется – 1000, 1500, 3000… об./мин. И все потому, что ротор способен вращаться на валу с различной скоростью внутри сердечника.
По числу полюсов агрегаты бывают одно-, двух, трехполюсные. В сердечнике статора последних расположено по обмотке на каждую фазу, концы которых выведены к клеммной коробке. За счёт чего можно увеличить скорость асинхронного двигателя (АД) без потери мощности? За счет смены числа пар полюсов.
Для перехода к другим способам, а их существует еще два, нам не обойтись без условных обозначений «звезда» и«треугольник». Три обмотки катушки могут соединяться двумя способами: в точке или по кругу, отсюда произошли названия соединений «звезда», «треугольник».
Что будет, если трёхфазный движок, соединенный треугольником, включить в электросеть 380 В? Пусковые токовые значения в этом случае могут увеличиться в семь раз, что приведёт к сетевой перегрузке. Имея дело с двигателями, нужно, быть предельно внимательными. Покупая товар, непременно задумайтесь, если на шильдиках изображён значок треугольник/звезда (а не наоборот звезда/треугольник) при том же напряжении 220/380 В.
Как подключить трехфазный двигатель в сеть 220 В
Использование трёхполюсного АД в однофазной электросети интересует многих владельцев частных домов. Агрегаты пользуются всё большей востребованностью в домашнем хозяйстве. По своей конструкции они довольно просты и отличаются неприхотливостью в эксплуатации. Однако, в плане подключения двигателя к однофазной сети не все так просто.
Пульсирующее поле однофазного тока, не способно привести ротор электродвигателя во вращение – такой ток необходимо преобразовать в многофазный и после этого лишь подавать на агрегат.
На рационализаторские предложения с применением ЛАТр-ов и прочих самодельных конструкций не стоит обращать внимание. Областью запредельной НАНО технологии и научной фантастики не занимаемся, на гонорар за поддержку «нобелевских лауреатов» рассчитывать не приходится. На сегодня известно два толковых способа преобразования однофазного тока в многофазовый – это подключение агрегата через:
- фазосдвигающий конденсатор;
- частотный преобразователь.
Рассмотрим их по очередности.
- Сдвиг фаз при помощи конденсаторов
В трёхфазных цепях создать вращающееся магнитное поле не проблема, при энергетической генерации в обмотках статора наводится ЭДС благодаря вращению намагниченного ротора. Некоторые умудряются прибегать к незамысловатым «хитростям». Применяют различные схемы, для составителей которых, главный вопрос в том, чтобы обеспечить работу электрооборудования без потери мощности. Например, существует метод сдвига фаз в обмотках по отношению друг к другу.
Достаточно подключить конденсатор параллельно одной из обмоток, сначала подобрав номинал устройства таким образом, чтобы обеспечить необходимый сдвиг фаз. Этот вариант неплохой, если следовать старому правилу: чем меньше деталей и они проще, тем надежнее система в целом. Конденсатор, конечно, штука сравнительно копеечная, ставится за минуту, но требует особых навыков. А вот второй метод с преобразователем, хоть и дороговатый, но окупается удобством. Согласитесь, совсем немаловажный фактор.
- Частотники, работающие от однофазной сети
Частота в нашей сети постоянная и равна 50 Гц. Частотник служит для преобразования однофазного переменного тока 50 Гц в трёхфазный, частотой от 1 до 800 Гц. Вся технология процесса сводится к управлению скоростью вращения асинхронного электродвигателя. Подключить ПЧ – это значит, подобрать правильное сечение кабеля, типы проводов, и дополнительное оборудование. Не думайте, что открыв страницу в инструкции, вам сразу станет суть ясной. Вы можете даже не достигнуть результата, подсоединив провода по схеме, если не обратите внимание на некоторые нюансы. На что именно?
Своими руками преобразователь из одной в три фазы.
Так как трёхполюсный движок нужно запитать через ЧП от однофазной сети, то и кабелей нужно два: до частотника двужильный (до 50 м можно использовать лишь неэкранированный кабель, экранированный — до 15 м), от частотника до двигателя – только трехжильный. Одна из жил проводов заземляющая, остальные фазные. Сечение выбирается по техническому паспорту на частотник. Требуемое напряжение в проводах, как раз,получается по току и сопротивлению (согласно сечению) кабеля по знакомой формуле: U = R*I. Расчётные данные следует принимать по ПУЭ.
Частотник советуют покупать с удвоенным запасом, не менее чем на 2 кВ. Его номинальное значение рассчитано лишь на мощность машины, а значит, в лучшем случае он отключится по теплу, в худшем – задымится. Все они собраны по одинаковой схеме, на двух тиристорах управляемых мультивибратором. Схема несложная. Лучше выбрать простой и по мощней. Покупать там, где есть выбор и обязательно с гарантией.
Частотный преобразователь 220-380, чьей фирмы лучше?
Ответим на вопрос по существу. Азиатских производителей на рынке продаж подобной техники – бесчисленное множество. Устанем перечислять. Отечественный сборщик ЧП – это своего рода лотерея (иногда зависит от того, в какой день недели устройство собрано).
Частотники фирмы Siemens обычно полностью соответствуют предъявляемым требованиям. Достаточно проста в наладке ЧП продукция производства АВВ или Danfoss. Она по цене и качеству, лучше других. Покупайте, не задумываясь. Судя по отзывам, имеют весьма достойный девайс. Динамические характеристики повышенные благодаря векторному управлению, которое также обеспечивает высокий момент на низких частотах во время пуска и работы.
Универсальные компактные модели ЧП отлично справляются с задачей преобразования сетевых параметров,их очевидные преимущества выражаются в следующем:
- способность выработки «полноценного» трёхфазного тока;
- отсутствие потерь в мощности движка;
- пригодность для любой конструкции электродвигателя;
- конструктивность очень простая.
- собственнаяэнергопотребляемостьминимальная.
Где применяются преобразователи частоты однофазный вход-выход 1 ф. 220 В
Асинхронные двигатели (АД) чаще применяются в быту, нежели в промышленности, в частности в системе однополюсных канальных вентиляторов и водяных насосов. Не секрет, что возникают затруднения, связанные с регулировкой скорости вращения АД. В чем и состоит задача однополюсных преобразователей частоты вход-выход 220-220.
Неравномерность крутящего момента может привести к аномальному шуму и вибрации в агрегате. Для регулировки скорости трехфазных электродвигателей применяются однополюсные частотники 220/380 В(вход/выход), иногда со специальным контроллером, служащим для управления устройством.
Такие виды преобразователей предназначаются для работы в технологическом (насосы и вентиляторы, транспортирующие механизмы, экструдеры, миксеры и т.п.) и энергосберегающем оборудовании (станции управления насосами, системы климата и кондиционирования и т.п.). Модели выпускаются с возможностью крепления на ДИН-рейку. Имеют широкий диапазон регулировки частоты на выходе. Умный пульт управления обеспечивает комфортные условия рабочей обстановки.
Дабы избежать осложнений, с которыми часто встречаются в процессе эксплуатации 3-х полюсных электродвигателей в однофазных сетях, следует придерживаться правил:
- мощность двигателя, применяемого в качестве ЧП, выбирается большей, чем мощность подсоединяемого к нему электропривода;
- на практике преобразователи мощностью 4 кВт способны решать все существующие хозяйственные проблемы в частном доме. Можно ориентироваться на нагрузку 2-3 кВт, что приемлемо для энергосети;
- рабочий ток преобразователя в обычном режиме должен быть больше, чем указанно его значение в паспорте данного типа электродвигателей (иначе ЧП просто сгорит);
- подключение преобразователя осуществляется в строгой последовательности: первым запускается ЧП, затем 3-х полюсные потребители. Выключается оборудование в обратной последовательности.
Вывод
Сегодня не «вчерашний день», но если случится, что вам потребуется подключить трёхполюсный двигатель на 230 В, мы думаем, вы справитесь. Ведь на самом деле – все должно быть понятно. Вам понадобится обычный 1-полюсный частотный преобразователь 220-380 В.
«Дедовский способ» Как получить три фазы из однофазной сети 220 В
Старый и проверенный способ получения трёх фаз из обычной однофазной сети 220 В: схема и описание.
Доброго времени суток! Хочу показать один интересный способ, как получить из однофазной сети 220 В — трехфазную, причем без особых затрат.
Но сначала расскажу о своей проблеме предшествующей поиску подобного решения.
У меня есть советская мощная настольная циркулярная пила (2 кВт), которая подключалась к трехфазной сети. Мои попытки запитать ее от однофазной сети, как это обычно принято, не представлялось возможным: была сильная просадка мощности, грелись пусковые конденсаторы, грелся сам двигатель.
Благо в свое время я потратил должное время на поиск решения в интернете. Где я наткнулся на одно видео, где один парень сделал своеобразный расщепитель при помощи мощного электромотора. Далее он пустил по периметру своего гаража эту трехфазную сеть и подключил к ней все остальные приборы требующий трехфазного напряжения. Перед началом работ, приходил в гараж, запускал раздающий двигатель и до ухода он работал. В принципе, решение мне понравилось.
Решил повторить и сделать свой расщепитель фаз. Электродвигатель взял старый советский на 3,5 кВт, с обмотками включенными звездой.
Вся схема состоит всего из нескольких элементов: общий сетевой выключатель, кнопка для запуска, конденсатор на 100 мкФ и собственно мощного мотора.
Схема расщепителя фаз из асинхронного двигателя.
Как все работает? Сначала подаем однофазное питание на раздающий мотор, пусковой кнопкой подключаем конденсатор, тем самым запуская его. Как только мотор раскрутился до нужных оборотов, конденсатор можно выключить. Теперь можно подключить к выходу расщепителя фаз нагрузку, в моем случае настольную циркулярку и ещё несколько трехфазных нагрузок.
Рама выполнена из уголков, все оборудование закреплено на кусок листа OSB. Сверху переделаны ручки для переноски всей конструкции, а на выход подключенная трехвыводная розетка.
После подключения пилы через такое устройство получилось существенное улучшение в работе, ничего не греется, мощности вполне хватает и не только на пилу. Ничего не рычит, не гудит, как это было раньше.
Только желательно брать раздающий мотор мощнее потребителей хотя бы на 1 кВт, тогда не будет заметно особой просадки мощности при резкой нагрузке.
Кто бы что не говорил про не чистый синус или это ничего не даст, советую их не слушать. Синус напряжения чистый и разбитый ровно на 120 градусов, в результате подключенная техника получает качественного напряжение, ввиду чего и не греется.
Вторая половина читателей, которые будут говорить по 21-век и большое наличие частотных преобразователей трехфазного напряжения могу сказать, что мой выход в разы дешевле, так как старый мотор довольно просто найти. Можно взять даже негодный для нагрузки, со слабыми и почти разбитыми подшипниками.
Мой расщепитель фаз в холостом режиме потребляет не столь много: 200 — 400 Вт где-то, мощность подключенных инструментов вырастает в разы, по сравнению с обычной схемой подключения через пусковые конденсаторы.
В заключении хочу обосновать свой выбор данного решения: надежность, невероятная простота, небольшие затраты, высокая мощность.
Преобразователь однофазного в трехфазное. Конвертер одной фазы в три. Инвертор. Схема. Конструкция. Своими руками. Собрать самому.
Схема преобразователя однофазного напряжения в трехфазное. (10+)
Преобразователь однофазного напряжения в трехфазное — Схема
В этой схеме, как и в любой другой, могут быть ошибки. Если Вы их обнаружите, пожалуйста, напишите нам. Подпишитесь на новости, чтобы быть в курсе исправлений и обновлений материала.
Внимание! Сборка прибора требует навыков в области силовой электроники, связана с контактом с высоким напряжением, которое может быть опасным для жизни как самого инженера, так и пользователей прибора. Убедитесь, что Вы обладаете нужной квалификацией.
Схема выполнена на основе импульсного силового источника синусоидального напряжения. Советую ознакомиться с его схемой.
Вашему вниманию подборка материалов:
Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам
Эта схема не является трехфазным инвертором, но может быть использована для его разработки. Если вместо корректора коэффициента мощности на вход устройства установить преобразователь 12 или 24 вольта в 600 вольт, который можно получить на основе резонансного инвертора, перестроив его выходное напряжение с 310 на 600 вольт, то будет отличный трехфазный инвертор.
Принципиальная схема преобразователя однофазного напряжения в трехфазное.
Преобразователь выдает трехфазное напряжение хорошей синусоидальной формы 370 В, 1.5 кВт (в сумме на все три фазы). Напряжение 370 В, а не 380, выбрано, исходя из того, что для получения 380 В нужно питать схему постоянным напряжением 620 В. Но силовые ключи и драйверы полумоста на 600 В гораздо более распространены. А снижение питающего напряжения на 3% для большинства приборов значения не имеет.
Схема использует три идентичных блока. Элементы на этих блоках имеют на схеме одинаковые обозначения. Схема рисовалась путем переделки схемы источника синусоидального напряжения. Перенумеровывать элементы у меня не хватило духу. Так что некоторые номера пропущены. Простите меня за это.
C13 — 1 мкФ, R25 — 5.5 кОм, C14 — 0.5 мкФ, R26 — 11 кОм, C15 — 0.25 мкФ, R27 — 22 кОм, C16 — 0.1 мкФ, R25 — 55 кОм.
ККМ — корректор коэффициента мощности. Его схема здесь не приводится. Об этом будет отдельная статья. Корректор коэффициента мощности обычно выполняется по схеме повышающего преобразователя. Так что его не составит труда выполнить на выходное постоянное напряжение 600 В. Оно-то нам и нужно для питания схемы.
М1 — маломощный мост для получения низковольтного напряжения для питания низковольтной схемы преобразователя.
Диоды VD4, VD5, VD6 — выпрямительные диоды на 600В, желательно быстродействующие, но подойдут и 100 нс. Мы используем 1N5406.
Диоды VD1, VD2 — импульсные низковольтные кремниевые диоды, например, детекторные.
Полевые транзисторы VT1, VT2 — полевые транзисторы от 600В, 3А. Подойдут, например, IRFBG 30, или другие.
D5 — операционный усилитель, рассчитанный на работу при однополярном питании 12В, с высоким входным сопротивлением и с возможностью подключения к выходу нагрузки 2 кОм или менее. Хорошо подходит К544УД1, КР544УД1.
D6 — интегральный стабилизатор напряжения (КРЕН) на 12В.
VT5 — Маломощный высоковольтный транзистор на 600 вольт. Он работает только в момент включения схемы. Так что в процессе работы мощность не рассеивает.
VD9 — Стабилитрон 15В.
C11 — 1000мкФ 25В.
R25 — 300кОм 0.5Вт
D1 — Интегральные широтно-импульсно модулирующие (ШИМ) контроллеры. Это 1156ЕУ3 или его импортный аналог UC3823.
Добавление от 27.02.2013 Иностранный производитель контроллеров Texas Instruments преподнес нам удивительно приятный сюрприз. Появились микросхемы UC3823A и UC3823B. У этих контроллеров функции выводов немного не такие, как у UC3823. В схемах для UC3823 они работать не будут. Вывод 11 теперь приобрел совсем другие функции. Чтобы в описанной схеме применить контроллеры с буквенными индексами A и B, нужно вдвое увеличить резисторы R22, исключить резисторы R17 и R18, подвесить (никуда не подключать) ножки 16 и 11 всех трех микросхем. Что касается российских аналогов, то нам читатели пишут, что в разных партиях микросхем разводка разная (что особенно приятно), хотя мы пока новой разводки не встречали.
D3 — Драйверы полумоста. IR2184
R7, R6 — Резисторы по 10кОм. C3, C4 — Конденсаторы по 100нФ.
R10, R11 — Резисторы по 20кОм. C5, C6 — Электролитические конденсаторы по 30 мкФ, 25 вольт.
R8 — 20кОм, R9 — подстроечный резистор 15кОм
R1, R2 — подстроечники по 10кОм
R3 — 10 кОм
C2, R5 — резистор и конденсатор, задающие частоту работы ШИМ — контроллеров. Их выбираем таким образом, чтобы частота была около 50 кГц. Подбор стоит начать с конденсатора 1 нФ и резистора 100 кОм.
R4 — Эти резисторы в разных плечах — разные. Дело в том, что для получения синусоидального напряжения со сдвигом фаз на 120 гр. используется фазосдвигающая цепь. Кроме сдвигания она еще и ослабляет сигнал. Каждое звено ослабляет сигнал в 2.7 раза. Так что подбираем резистор в нижнем плече в диапазоне от 10 кОм до 100 кОм так, чтобы ШИМ контролер при минимальном значении синусоидального напряжения (с выхода операционного усилителя) был закрыт, при небольшом его увеличении начинал выдавать короткие импульсы, при достижении максимума был практически открыт. Резистор среднего плеча будет в 9 раза больше, резистор верхнего — в 81 раз.
После подбора этих резисторов более точно коэффициент усиления можно регулировать подстроечными резисторами R1.
R17 — 300 кОм, R18 — 30 кОм
C8 — 100нФ. Это могут быть низковольтные конденсаторы. На них высокого напряжения не бывает, хотя они стоят в высоковольтной части.
R22 — 0.23 Ом. 5Вт.
VD11 — Диоды Шоттки. Выбраны диоды Шоттки, чтобы обеспечить минимальное падение напряжения на диоде в открытом состоянии.
R23, R24 — 20 Ом. 1Вт.
L1 — дроссель 10мГн (1E-02 Гн), на ток 5А, C12 — 1мкФ, 400 В.
L2 — несколько витков тонкого провода поверх дросселя L1. Если в дросселе L1 — X витков, то в катушке L2 должно быть [X] / [60]
К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.
Данная схема вполне может быть переделана на другую выходную частоту? на 400Гц например? И если да, то необходимо настроить задающий генератор и всё? И подскажите как рассчитывались номиналы L1, C12 Читать ответ.
Инвертор, преобразователь, чистая синусоида, синус.
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за.
Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму.
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи.
Светомузыка, светомузыкальная приставка своими руками. Схема, конструк.
Как самому собрать свето-музыку. Оригинальная конструкция свето-музыкальной сист.
Резонансный стабилизатор переменного напряжения, токовые клещи постоян.
Два примера применения магнитного усилителя — токовые клещи и стабилизатор напря.
Формирование произвольного / регулируемого выходного напряжения с помо.
Регулировка, установка выходного напряжения специализированной микросхемы интегр.
Расчет трехфазной цепи для жилого дома
Вам необходимо сделать трехфазное питание для дома? О том, как это сделать, читайте описание ниже.
Прежде всего, нужно провести расчет трехфазной цепи.
Порядок распределения нагрузки по фазам
1. Симметрично распределить нагрузку на три фазы. Мощность на каждой фазе будет равна мощности трехфазной нагрузки, кратная трем.
2. Рассчитать нагрузку на каждую фазу.
3. В результате, нужно добиться того, чтобы на каждой фазе, в момент полной загрузки сети, была примерно одинаковая мощность.
4. Определить ток на самой загруженной фазе. После этого необходимо проверить, чтобы при максимальной мощности ток был меньше тока срабатывания входного трехфазного автомата.
Расчет нагрузки по фазам
Допустим, у вас имеется трехфазный двигатель мощностью 1500 Вт. Соответственно, на каждую фазу приходится по 500 Вт активной мощности. Предположим, что cos фи=0,8. Полная мощность равна: 500/0,8. Получается, что 625 Вт нужно распределить на каждую фазу.
Кроме двигателя к фазам, вероятно, подключены и другие потребители. Например, кроме 500 Вт подключается освещение на 200 Вт и конвектор на 300 Вт. Все мощности суммируются по горизонтали. Реактивная мощность остается без изменений (если не используются нагрузки с реактивной составляющей).
По теореме Пифагора можно определить реактивную мощность.
Но на практике это довольно сложные расчеты. Поэтому, это рассчитывается приближенно: 625 Вт + 500 Вт = 1150 Вт. Эта сумма получается больше точных расчетов по формуле, но страшного ничего нет. Расчет произведен с небольшим запасом.
На практике для приблизительных расчетов достаточно сложить все полные мощности и по ним определить мощность автомата для требуемой нагрузки.
Разводка однофазного щитка
Например, к щиту подключаются — плита (варочная панель) 7,2 кВт; духовой шкаф 4,3 кВт; кухня 5,5 кВт; комната 3,5 кВт; ванная 3,5 кВт; двигатель 3-фазный 1,5 кВт; розетка 3-фазная.
Рассмотрим такую ситуацию: у вас была однофазная сеть и теперь дали разрешение на проведение трехфазной. В этом случае нужно все потребители распределить по фазам.
Самый мощный прибор это варочная панель (плита) 7,2 кВт, которую нужно посадить на первую фазу. На вторую подключить духовой шкаф и комнату. В итоге получается 7,8 кВт. А на третью фазу подключить кухню и ванную комнату. Общая мощность получится 9 кВт. Прибавим еще мощность двигателя, разделив ее на каждую фазу одинаково. В итоге получилось: на первой фазе 7,8 кВт; на второй фазе 9,4 кВт; на третьей — 9,6 кВт. Приблизительно распределили нагрузку по фазам по возможности равномерно. Посмотрим, какой в результате получился щиток.
- Итак, трехфазный щиток состоит из входного автомата и трехфазного счетчика. Далее, на первую фазу подключен автомат 40 Ампер, через который питается плита мощностью 7,2 кВт. Если просуммировать с двигателем, будет 7,8 кВт.
- Ко второй фазе через автомат 25 Ампер подключен духовой шкаф и микроволновая печь. Через второй автомат 16 Ампер подсоединена комната проектной мощностью 3,5 кВт. Общая мощность получилась 8,4 кВт.
- К третьей фазе подключен ДИФ автомат и обычный автомат. Через обычный автомат на 25 Ампер подключена кухня проектной мощностью 5,5 кВт. Через ДИФ автомат подключена ванная комната проектной мощностью 3,5 кВт. Общая мощность на третью фазу получается 9,6 кВт.
Распределение полной мощности двигателя на три фазы по 0,6 кВт:
- первая фаза: 7,2+0,6=7,8 кВт;
- вторая фаза: 4,3+3,5+0,6=8,4 кВт;
- третья фаза: 5,5+3,5+0,6=9,6 кВт.
По всем трем фазам максимальная мощность составляет 9,6 кВт. Если проектная мощность 8,8 кВт и входной автомат на 40 Ампер, а у нас проектная мощность на одной из трех фаз 9,6 кВт, то такой автомат не выдержит нагрузку. Если третью фазу загрузить на полную мощность, то этот автомат отключится. Поэтому, входной автомат нужно ставить на 50 Ампер.
Из этого примера видно, что при небольшом количестве потребителей можно полноценно загрузить трехфазную цепь. Иногда возникает необходимость подключить кондиционеры, электрический теплый пол и другие потребители высокой мощности.
Прежде чем покупать электрическое оборудование, надо рассчитать потребляемую мощность. Потянет ли входной автомат и разрешенный лимит по току на электроснабжение дома?
После подсчета всех нагрузок по фазам можно определить, какой мощности нужен входной автомат. Узнать в энергосбыте, какой резерв по току вам дадут. Возможно, разрешение дадут только на 25 Ампер. Придется покупать приборы из расчета на эти 25 Ампер. На фазу дается только 5,5 кВт.
В этом случае, что делать с электроплитой на 7,2 кВт? Современные электроплиты и варочные панели имеют подключение к двухфазной цепи, а иногда и к трехфазной. Кроме земляного и нулевого вывода имеется L1 и L2 (иногда L1, L2, L3). В первом случае для подключения двухфазной цепи, а во втором – подключение трехфазной цепи. Такие мощные нагрузки предусмотрены специально, чтобы можно было их распределить.
Когда делаете проект и запрашиваете проектную мощность, пытайтесь получить разрешение на мощность с запасом.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Частотный преобразователь 1 фаза в 3 фазы (2.2KW 220V)
Простой и полезный преобразователь позволяет использовать трех-фазные двигатели в бытовой сети без потери мощности, а также дает ряд преимуществ в плане удобства и управления.
Интеренет-магазин Banggood предложил интересный трехфазный преобразователь стоимостью 5300 руб.
Variable Frequency Inverter (VFD), или частотный преобразователь (ЧП), — это специальный преобразователь напряжения с цифровым управлением, который позволяет «на лету» изменять величину напряжения, частоту, а также управлять выходом. Такие устройства используют в промышленности в качестве «драйверов» для электродвигателей.
Характеристики моей модели:
Номинальная мощность: 2.2KW (заявлено 8.0KVA/3HP)
Питание: AC 220V 50HZ/60HZ 1 фаза
Выход: 3 фазы 380/220V до 400HZ
Управление: с панели, внешнее аналоговое/цифровое (RS485)
Выбранная модель представляет собой весьма бюджетный частотный преобразователи и подходит для тех случаев, когда нужно из однофазной сети сделать трех-фазную, подключить асинхронный трехфазный двигатель, а также для управления двигателем. Внутри установлен мощный PWM-управляемый преобразователь.
Подобные преобразователи практически все одинаковы, отличаются, в основном, мощностью выхода.
Из важных особенностей выделю модели, которые работают от однофазной сети. Как правило, это модели до 4.0 кВт (мощнее уже для трехфазной сети). Устройства имеют панель для управления, силовые клеммы и контакты управления.
На панель вынесена кнопка реверса (FWD/REV) для случаев, когда нужно быстро изменить направление вращения двигателя, потенциометр изменения значений (по умолчанию — обороты двигателя). Кнопки старт-стоп работы, а также кнопки для программирования параметров.
Целью было собрать универсальный блок для замены пускового фазосдвигающего конденсатора, который используется для запуска трехфазных двигателей. Фазосдвигающие конденсаторы — простой, но не самый эффективный способ для запуска двигателя. При остановке нужно всегда переключать конденсатор, теряется определенная часть мощности, да и в целом это не удобно.
Буквально за сорок минут родилась вот такая коробка — универсальный пусковой блок для деревообрабатывающих станков на основе дешевого китайского преобразователя.
Пару вилка-розетка оказалось проще найти по месту. Это промышленные IEK вилки типа CCИ-014 (или аналогичные), и розетка к ним. Вилки устанавливаются на имеющееся оборудование (например, д/о станки), а розетка — на блок с частотным преобразователем. Таким образом достигается универсальность использования одного преобразователя для целого парка оборудования.
Параллельно обслужил механику старых станков. Двигатели — нормальные, трехфазные, 2-3 кВт. Однофазный двигатель на 1 кВт обходится примерно в такие же деньги, а вот мощности заметно не хватает. Подключение прямое — три фазы на вилку. Все управление сосредоточено в блоке. Раньше на каждом станке стояло по пусковому конденсатору (разные номиналы, разные мощности, различные проблемы).
Схема подключения:
- Силовой вход 1 фаза L-N (можно без заземления, можно с заземлением. можно установить защитный автомат).
- Силовой выход 3 фазы WVU, которые подключаются к розетке, подключение аналогично подключению двигателей (W — 1й контакт, V — 2й контакт, U — 3й контакт). Если при запуске направление вращения отличается от нужного, то следует или переключить контакты в вилке, или использовать «REV» реверс на пульте.
Можно настроить любое напряжение до 380В и частоту до 400Гц.
Не обязательно подавать 50Гц на двигатель.
Нет ничего страшного с настройкой подобных устройств. Как правило, все инструкции в доступе (см. ссылки внизу), в базовых параметрах разобраться не сложно. Конкретно, для этой модели достаточно выставить первые два основных параметра: «Р0» рабочее напряжение (220 В или 380 В) и «Р1» рабочую частоту (50 Гц). Все остальное можно оставлять как есть. Регулировка оборотов (скорости вращения) по умолчанию доступна прямо с панели потенциометром.
Если используете внешнее управление кнопками (Х4… Х6 на панели), то нужно в параметре «Р11» изменить значение на «2» («0» — управление с пульта, «1» удаленное управление по RS485).
Если требуется более детальная настройка, то есть смысл реализовать внешнее управление ЧП — это кнопки, аналоговое или цифровое управление.
Что касается управления оборотами двигателя (конечно, конкретные настройки зависят от используемого типа двигателя), то я предпочел оставить подстройку оборотов с панели ЧП. Для этого проверяем/устанавливаем в меню «Р10» параметр «1» (управление потенциометром с панели). Соответственно, если используете внешний потенциометр, то следует выставить «2». Управление в цифровом виде «3».
Таким образом был восстановлен строгально-рейсмусовый станок. Замена двигателя прибавила необходимой мощности.
А также распиловочный циркулярный станок. Система подключения одинакова для всех (отличаются мощности используемых двигателей, но для частотного преобразователя это не важно).
Что понравилось:
— быстрота подключения и настройки. Если не считать приведение в порядок механики станков, то на сборку коробочки с ЧП ушло 40 минут (из них половина на обжимку проводов, а половина — на проверку параметров ЧП).
— функциональность. Есть плавный пуск, реверс, регулировка оборотов и т.п.
— универсальность. Реально можно подключить все станки/двигатели дома, в том числе насосы и вентиляторы. Под каждый можно подобрать настройку.
— удобство. Можно реализовать внешнее аналоговое или цифровое управление, в том числе удаленное.
— дешевизна. У нас можно найти ЧП на 2….4 кВт примерно за 10-12 тыс рублей (новый). Б/у можно найти, но подавляющее большинство б/у частотников — снятые с производства трехфазные модели. А мне нужно было именно под однофазную бытовую сеть.
— высокий КПД. В отличие от фазосдвигающего конденсатора, тут не теряется мощность при запуске и работе.
Еще отмечу, что в такой связке (двигатель 2 кВт) не греется ни частотник, ни сам двигатель.
Работает в таком виде уже достаточно долго, были опасения за качество китайских комплектующих, но «полет нормальный».
Если у вас серьезные задачи, то можно подключить данный ЧП по Modbus/RS485 и управлять от контроллера. Частотник, в том числе, умеет управлять с помощью встроенного PID-регулятора, что подойдет для использования его в связке с насосом.
Удобство работы повысилось в разы. Очень удобно для модернизации деревообрабатывающих станков для домашнего использования.