Как устроен светодиод?
Как устроен и работает светодиод
С момента открытия монохромных красных светодиодов в 1962 году началось активное развитие полупроводниковых источников света.
Открытие синего и белого диодов перевело технологию на новый уровень.
С тех пор постоянно меняется устройство светодиода, его характеристики и конструкция. Сейчас они широко используются в светотехнике, электронике и других областях.
Что такое светодиод простыми словами
Светодиод – это полупроводниковое устройство, создающее излучение при прохождении через него электрического тока. Из чего состоит светодиод: из кристалла, заключенного в защитный корпус с выводами. Кристалл расположен на непроводящей подложке и излучает определенный цвет. Для получения нужного свечения используются химические составы из различных полупроводников и люминофоры.
Кристалл состоит из двух и более полупроводников разного типа проводимости. Принцип работы светодиода следующий – в прямом направлении через него пропускают электрический ток. В электронно-дырочном переходе на границе двух веществ происходит движение электронов и дырок, в результате чего выделяется энергия в виде кванта света и прибор начинает светить.
- высокая светоотдача;
- высокая механическая прочность и виброустойчивость;
- долгий срок работы;
- малый нагрев;
- от количества циклов включения-выключения не зависит срок работы;
- различный спектр белых светодиодов – от 2700 К до 6500 К;
- спектральная чистота, полученная благодаря принципу устройства;
- отсутствует задержка при включении;
- широкий диапазон углов излучения (от 15 градусов до 180 градусов);
- электрическая безопасность, так как не требуются высокие напряжения;
- отсутствие чувствительности к низким температурам;
- надежность;
- разнообразие форм;
- экономичность;
- экологичность, ввиду отсутствия в конструкции светодиода ртути и других вредных компонентов в составе светоизлучающего диода.
- нельзя допускать работы при высоких температурах – кристалл начинает деградировать;
- высокая стоимость готового изделия.
Применение:
- уличное, домашнее и производственное освещение;
- индикация;
- уличная реклама, бегущие строки;
- фонари и светофоры;
- подсветка экранов телефона, телевизора, компьютера и других жидкокристаллических дисплеев;
- игрушки, значки и другие развлекательные элементы;
- диодные дорожные знаки;
- световые шнуры Дюралайт;
- в фитолампах.
Осветительный прибор на основе светодиодов состоит из:
- излучающего диода;
- драйвера;
- цоколя;
- корпуса.
Из крупных производителей светодиодов можно выделить японскую фирму Nichia Corporation и ее подразделение Nichia Chemical. Они являются лидерами по изготовлению сверхъярких диодов синего, белого и зеленого цвета. Также изготовлением излучающих диодов занимаются компании Phillips, Cree, Seoul Semiconduction из российских можно выделить Оптоган и Светлана-Оптоэлектроника.
В Nichia Chemical впервые разработали белый и синий светодиод.
Как устроены и чем отличаются светодиоды разных типов
Светодиоды можно классифицировать по разным критериям. Основное отличие – в технологии и электрических параметрах.
Сокращение DIP пошло от слов Direct In-line Package. Такие светодиоды известны еще с конца прошлого века. Устройство представляет собой стеклянную или пластиковую прозрачную колбу размером 3 или 5 мм, в которой находится полупроводниковый кристалл. Колба является линзой и формирует направленный пучок света. Кристалл закрепляется на катоде, который с помощью провода соединяется с анодом. Из корпуса выходят контакты в виде металлических ножек, через которые светодиод и включается в схему.
По форме бывают круглые, овальные, прямоугольные. Напряжение питания – до 5 В при 25 мА.
Обычно внутри линзы располагается один кристалл, но есть модели с двумя и более разных цветов. Такие модели могут оснащаться тремя и четырьмя выводами. Принцип работы светодиода подобного вида задает микрочип.
Dip светодиоды являются малоточными, они используются в гирляндах, для индикации, в подсветке, уличном освещении. По сравнению с SMD диодами они имеют следующие преимущества:
- яркость;
- направленный световой поток;
- долгий срок службы при работе на улице;
- потребление электроэнергии.
Основной недостаток – большой размер, от 3 мм.
Важно! С течением времени яркость свечения может уменьшаться. Это связано с деградацией кристалла и материалов, из чего делают светодиоды.
Светодиоды SMD – это приборы для крепления на поверхность. В настоящее время этот тип диодов является самым востребованным. С их появлением расширились возможности создания осветительных систем. Начали уменьшаться размеры светильника, монтаж автоматизирован.
Как устроен светодиод SMD – излучающий кристалл закреплен на подложке, от которой отводится тепло. К ней вмонтированы выходы. Внутри размещен управляющий чип. Защитой является овальная или сферическая линза из стекла или пластика.
- небольшая цена;
- надежность;
- срок службы;
- высокая светоотдача.
SMD светодиоды в смеху включаются при помощи специального клея. Самые маленькие диоды имеют размер 0,6х0,3 мм. Максимальная яркость – 8000 кд/кв.м.
Существует технология, при которой кристалл наносится на проводящую подложку без использования корпуса. В качестве защиты используется специальный слой, который выбирается по назначению светодиодов.
Используются для подсветки интерьеров, уличных билбордов, рекламных экранов с широким разрешением.
Chip On Board (COB) светодиоды имеют большое количество кристаллов на одной подложке. Также их называют светодиодной матрицей. Сверху заливается люминофором.
- простота монтажа;
- хороший поток света;
- высокий CRI;
- разнообразие форм.
- стоимость;
- самый срок службы;
- светоотдача ниже, чем у SMD.
КОБы активно используются в создании ярких прожекторов и в других светильниках, где требуется акцентированная подсветка.
Важно! Из-за высокого нагрева требуется силиконовая оптика. Она устойчива к высоким температурам. Перед подключением ее нужно подготовить, иначе подложка деформируется и кристалл повредится.
Как работают светодиоды: принцип действия
Электрический ток преобразуется в свет в кристалле. Он состоит из двух полупроводников различного типа проводимости – n и p. N-проводимость обеспечивается легированием электронов в полупроводник, p – дырок.
Принцип действия светодиода заключается в появлении свечения при рекомбинации электронов и дырок в p-n переходе под действием тока, приложенного в прямом направлении. В результате перехода электронов с одного энергетического уровня на другой появляются фотоны.
Не все полупроводниковые материалы способны давать свет при рекомбинации. Для создания светодиодов используются прямозонные полупроводники, в которых разрешен прямой оптический переход зона-зона. К таким материалам относятся A3B5 (InP, GaAs), A2B4 (CdTe). В зависимости от состава можно получать светодиоды от ультрафиолетовых до инфракрасных.
Как работает светодиод, зависит от электронно-дырочного перехода. Условия пропускания света p-n переходом:
- близость ширины запрещенной зоны к энергии кванта света;
- минимальное содержание дефектов в полупроводниковом кристалле.
Для реализации этих требований одного p-n перехода недостаточно. Нужно создавать многослойные структуры – гетероструктуры, состоящие из нескольких полупроводников.
Получение светодиода определенного цвета
Для получения светодиода того или иного цвета используется три технологии – покрытие люминофором, использование RGB светодиодов и применение разных полупроводниковых материалов.
Покрытие люминофором
Люминофором называется вещество, которое может преобразовать поглощаемую энергию в свет. Получение светодиодов путем нанесения люминофора на поверхность имеет свои преимущества:
- простота конструкции;
- низкая стоимость производства;
- экономия.
К недостаткам относятся:
- снижение светоотдачи из-за потери световой энергии;
- влияние на цветовую температуру;
- быстрее стареет при эксплуатации.
Люминофор используется в белых светодиодах. С помощью люминофорного покрытия создаются диоды с различной цветовой температурой.
RGB-технология
Смешивание цветов по RGB технологии также помогает получить светодиоды различного спектра (обычно используются для белого). На матрице устанавливаются 3 монокристалла, каждый из них дает свой спектр RGB. Путем конструирования оптической системы цвета смешиваются и дают нужный оттенок.
- возможность поочередного включения того или иного цвета вручную или автоматически;
- можно вызывать разные оттенки, меняющиеся по времени;
- создание эффектных осветительных конструкций для рекламы и дизайна.
- неравномерность светового пятна;
- неравномерность нагрева и отвода тепла.
Отрицательные качества вызваны расположением кристаллов полупроводника на поверхности. Из-за этого качественно организовать RGB модель сложно.
Применение различных примесей и полупроводников
Работа светодиода напрямую зависит от материала, из которого он выполнен. Использование полупроводников с различной шириной запрещенной зоны можно добиться нужного света от диода. От ширины запрещенной зоны зависит длина волны.
Для получения приборов в инфракрасном и красном цветовом спектре используются твердые растворы на основе арсенида галлия. Оранжевые, желтые и зеленые цвета получаются при помощи фосфида галлия. Синие, фиолетовые и ультрафиолетовые изготавливаются на основе нитрида галлия.
Основные выводы
Светодиоды – это компоненты, которые активно используются во многих сферах деятельности. Их можно встретить в освещении улиц и домов, подсветке экранов мобильного телефона и компьютера, в качестве индикаторов. Строение элемента: полупроводниковый кристалл, подложка, линза и электроды.
Излучающие диоды бывают нескольких типов – SMD, DIP, COB, они различаются по конструкции и техническим характеристикам. Получить устройство нужного цвета можно с помощью RGB технологии, нанесения люминофора на поверхность и путем подбора полупроводников для кристалла. Производство светодиодов активно развивается, и появляются все новые приборы с улучшенными характеристиками.
Устройство и принцип работы светодиодов
С момента открытия красного светодиода (1962 г.) развитие твердотельных источников света не останавливалось ни на миг. Каждое десятилетие отмечалось научными достижениями и открывало для ученых новые горизонты. В 1993 году, когда японским ученым удалось получить синий свет, а затем и белый, развитие светодиодов перешло на новый уровень. Перед физиками всего мира стала новая задача, суть которой заключалась в использовании светодиодного освещения в качестве основного.
В наше время можно сделать первые выводы, свидетельствующие об успехах становления светодиодного освещения и продолжающейся модернизации светодиода. На прилавках магазинов появились светильники со светодиодами, изготовленными по технологии COB, COG, SMD, filament.
Как устроен каждый из перечисленных видов, и какие физические процессы вынуждают полупроводниковый кристалл светиться?
Что такое светодиод?
Перед разбором устройства и принципа работы, кратко рассмотрим, что светодиод из себя представляет.
Светодиод – это полупроводниковый компонент с электронно-дырочным переходом, создающий оптическое излучение при пропускании электрического тока в прямом направлении.
В отличие от нити накала и люминесцентных источников света, испускаемый свет светодиодом лежит в небольшом диапазоне спектра. То есть кристалл светоизлучающего диода испускает конкретный цвет (в случае со светодиодами видимого спектра). Для получения определенного спектра излучения в светодиодах используют специальный химический состав полупроводников и люминофора.
Устройство, конструкция и технологические отличия
Существует много признаков, по которым можно классифицировать светодиоды на группы. Одним из них является технологическое отличие и небольшое различие в устройстве, которое вызвано особенностью электрических параметров и будущей сферой применения светодиода.
Цилиндрический корпус из эпоксидной смолы с двумя выводами стал первым конструктивом для светоизлучающего кристалла. Закругленный цветной или прозрачный цилиндр служит линзой, формируя направленный пучок света. Выводы вставляются в отверстия печатной платы (DIP) и с помощью пайки обеспечивают электрический контакт.
Излучающий кристалл располагается на катоде, который имеет форму флажка, и соединяется с анодом тончайшим проводом. Существуют модели с двумя и тремя кристаллами разного цвета в одном корпусе с количеством выводов от двух до четырёх. Кроме этого, внутри корпуса может быть встроен микрочип, управляющий очередностью свечения кристаллов либо задающий чистоту его мигания. Светодиоды в DIP корпусе относятся к слаботочным, используется в подсветке, системах индикации и гирляндах.
В попытках нарастить световой поток, появился аналог с усовершенствованным устройством в DIP корпусе с четырьмя выводами, известный как «пиранья». Однако увеличенная светоотдача нивелировалась размерами светодиода и сильным нагревом кристалла, что ограничило область применения «пираньи». А с появлением SMD технологии их производство практически прекратилось.
Полупроводниковые приборы с креплением на поверхность печатной платы коренным образом отличаются от предшественников. Их появление расширило возможности конструирования систем освещения, позволило снизить габариты светильника и полностью автоматизировать монтаж. Сегодня SMD-светодиод – это самый востребованный компонент, используемый для построения источников света любых форматов.
Основа корпуса, на которую крепится кристалл, является хорошим проводником тепла, что в разы улучшило отвод тепла от светоизлучающего кристалла. В устройстве белых светодиодов между полупроводником и линзой присутствует слой люминофора для задания нужной цветовой температуры и нейтрализации ультрафиолета. В SMD-компонентах с широким углом излучения линза отсутствует, а сам светодиод имеет форму параллелепипеда.
Chip-On-Board – одно из новейших практических достижений, которое в ближайшем будущем займет лидерство по производству белых светодиодов в искусственном освещении. Отличительная черта устройства светодиодов по технологии COB заключается в следующем: на алюминиевую основу (подложку) через диэлектрический клей крепят десятки кристаллов без корпуса и подложки, а затем полученную матрицу покрывают общим слоем люминофора. В результате получается источник света с равномерным распределением светового потока, исключающий появление теней.
Разновидностью COB является Chip-On-Glass (COG), которая подразумевает размещение множества мелких кристаллов на поверхности из стекла. В частности, широко известны филаментные лампы на 220 В, в которых излучающим элементом служит стеклянный стержень со светодиодами, покрытыми люминофором.
Принцип работы светодиода
Несмотря на рассмотренные технологические особенности, работа всех светодиодов базируется на общем принципе действия излучающего элемента. Преобразование электрического тока в световой поток происходит в кристалле, который состоит из полупроводников с разным типом проводимости. Материал с n-проводимостью получают путем его легирования электронами, а материал с p-проводимостью – дырками. Таким образом, в сопредельных слоях создаются дополнительные носители заряда противоположной направленности. В момент подачи прямого напряжения начинается движение электронов и дырок к p-n-переходу. Заряженные частицы преодолевают барьер и начинают рекомбинировать, в результате чего протекает электрический ток. Процесс рекомбинации дырки и электрона в зоне p-n-перехода сопровождается выделением энергии в виде фотона.
Вообще, данное физическое явление применимо ко всем полупроводниковым диодам. Но в большинстве случаев длина волны фотона находится за пределами видимого спектра излучения. Чтобы заставить элементарную частицу двигаться в диапазоне 400-700 нм ученым пришлось провести немало экспериментов с подбором подходящих химических элементов. В результате появились новые соединения: арсенид галлия, фосфид галлия и более сложные их формы, каждая из которых характеризуется своей длиной волны, а значит, и цветом излучения.
Кроме полезного света, испускаемого светодиодом, на p-n-переходе выделяется некоторое количество теплоты, которая снижает эффективность полупроводникового прибора. Поэтому в конструкции мощных светодиодов должна быть продумана возможность реализации эффективного отвода тепла.
Светодиоды – как работает, полярность, расчет резистора
Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.
Устройство светодиода
Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.
Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.
Светодиод состоит из нескольких частей:
- анод, по которому подается положительная полуволна на кристалл;
- катод, по которому подается отрицательная полуволна на кристалл;
- отражатель;
- кристалл полупроводника;
- рассеиватель.
Эти элементы есть в любом светодиоде, вне зависимости от его модели.
Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.
Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.
Цвета светодиодов
Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.
Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.
RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.
Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.
Принцип работы светодиодов
Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.
При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.
Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:
- ширина запрещенной зоны должна быть близка к энергии кванта света;
- полупроводниковый кристалл должен иметь минимум дефектов.
Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.
Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).
Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.
Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.
Виды светодиодов, классификация
По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды. Осветительные приборы используются для создания яркого освещения в помещении.
По типу исполнения выделяют:
-
Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света. Dip светодиоды
- Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам. Smd
- Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров. Cob
- Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
- Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий. Filament
- Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
- В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.
Светодиоды могут быть:
- мигающими – используются для привлечения внимания;
- многоцветными мигающими;
- трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
- RGB;
- монохромными.
Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.
Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К).
По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.
Полярность светодиодов
При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.
Полярность моно определить несколькими способами:
- Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
- При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
- При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
- По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.
Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.
Расчет сопротивления для светодиода
Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.
Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.
Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.
Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.
Когда нужно использовать токоограничивающий резистор:
- когда вопрос эффективности схемы не является основным – например, индикация;
- лабораторные исследования.
В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах.
Онлайн – сервисы и калькуляторы для расчета резистора:
Устройство и принцип работы светодиода
Светодиоды присутствуют везде: в домах, автомобилях, телефонах. С их помощью обеспечивается яркая подсветка экранов гаджетов, выпускаются экономичные источники освещения. Сейчас это незаменимые источники света. Рассмотрим устройство светодиода и принцип работы.
Что такое светодиод
Светодиод – это тип диодов, преобразующий электрическую энергию в световое излучение. Английское название светодиода – light emitting diode, или LED.
Виды диодов
Диоды подразделяются по материалу, конструкции, функциональности. Основными читаются три вида: DIP, COB, SMD.
DIP – этот тип популярен с 20 в. Он выглядит как колбочка из стекла или прозрачного пластика. Такие светодиодные колбочки служат линзами, через которые фокусируются световые потоки в том или ином направлении. Внутрь помещен полупроводниковый кристалл, который может быть синим, зеленым или красным.
Кристалл помещается на катод, с анодом его соединяет тонкий провод. Контакты выходят за границы линзы, образуя металлические ножки, которые удобно припаивать к печатной плате. Расстояние между платой и светодиодами заполняется термоклеем либо другим веществом, которое предохраняет конструкцию от попадания влаги и короткого замыкания.
Внутри колбочек есть микрочипы, регулирующие яркость, частоту мерцания и порядок подачи тока на кристаллы. Средний диаметр подобного светодиода – 3 мм. Яркость – до 14 000 кд/м².
Часто такие диоды применяют в качестве индикаторов для компьютеров, видеокамер, аккумуляторов, пылесосов и других устройств.
COB – это конструкция в виде матрицы, которая содержит от нескольких десятков до сотен светоизлучающих кристаллов. Такие диоды называют еще «кристаллами на плате».
В СОВ-матрицах цена одного люмена может составлять от 0,07 до 0,2 руб. Плотность кристаллов доходит до 70 на 1 см². Люминофор может быть изготовлен в виде линзы, формирующей нужную диаграмму светового потока.
COB-матрица меньше размером, чем SMD-матрица.
Мощность – до 100 Вт, светоотдача – 120-160 Лм/Вт. Прослужить СОВ может около 50 000-60 000 часов. Ремонт такой матрицы светильника обойдется дешевле, чем покупка нового.
Кристалл у светодиодов SMD-типа крепится на подложке, которая отводит тепло. Анодный провод соединяет кристалл с анодом, внутри находится чип управления.
В верхней части закреплена сферическая линза из стекла или прозрачного пластика. «Ножки» у SMD отсутствуют, светодиоды припаиваются термоклеем к печатной плате. Наименьший размер SMD-светодиодов 0,6 х 0,3 мм.
Яркость – до 8000 кд/м². Общая масса кристаллов излучает 6000-7000 кд на 1 м². Миниатюрный размер позволяет приобретать их для дизайна, экранов больших размеров с высоким качеством разрешения.
Как устроен светодиод
Устройство светодиода достаточно простое. Кристалл с защитным корпусом располагается на подложке, излучающей тот или иной цвет. Для определенного свечения используют химический состав и люминофор.
Кристалл имеет два и более полупроводника разной проводимости.
У светодиода два контактных вывода – анод и катод, катод короче анода. Если длина одинаковая, то определить их можно пальчиковой батарейкой. Если появился свет, значит, перед вами анод.
Корпус заканчивается линзой. Рефлектор и линза образуют оптическую систему, формирующую угол потока. В нижней части корпуса можно увидеть алюминиевый или латунный поясок, выступающий в роли радиатора для отвода тепла, которое выделяется во время работы.
Из чего делают
Пластина подложки помещается в камеру, заполненную газообразными химическими веществами. Для пластины используют различные материалы, например, искусственный сапфир с подходящей кристаллической решеткой. Камеру нагревают, химические вещества оседают на пластине. Так образуется несколько слоев.
При помощи трафарета наносят золотые контакты. Затем пластину разрезают и получаются отдельные кристаллы с контактами. После этого кристаллы вставляются в корпус и покрываются люминофором.
Нет идентичных светодиодов. Они, как отпечатки пальцев — у каждого свои характеристики. Светодиоды распределяют по цветам.
Производство светодиодов
В светодиодах свет излучает p-n переход, образованный двумя полупроводниковыми материалами огромной степени чистоты. В миллионах и десятках миллионов атомов полупроводникового кремния или германия, может присутствовать один или несколько атомов другого вещества-примеси. Если в полупроводник n- или p-типа ввести строго определенное количество легирующего металла, то получается сплав с требуемыми характеристиками.
Для изготовления кристалла светодиода с p-n переходом необходимо провести десятки технологических операций. Это:
- нагрев до строго определенной температуры;
- испарение металла в вакууме;
- осаждение металлических паров на поверхность полупроводника строго определенное время;
- поверхность должна иметь заданную температуру;
- давление в камере – точно соответствовать требуемому и мн. др.
С высокой точностью выдержать требуемые параметры всех операций невозможно. Поэтому операций выполняют с технологическими допусками – отклонениями. Даже в одной партии полупроводниковых приборов, изготовленных в один день возможен разброс параметров от десятков процентов до нескольких раз.
Готовые светодиоды в технологические партии сортируют по величине важнейших параметров, например по световому потоку, 10 Лм с точностью ± 5, 10 или 20%.
Американцы и англичане дискрет малой величины назвали bin или rank, а операцию сортировки каких-то предметов – биновка, распиновка или ранжирование.
Производство светодиодов ведут по важнейшим параметрам:
- величина светового потока;
- прямое рабочее напряжение на p-n переходе;
- оттенок свечения или цветовая температура и др. параметры.
Величина дискретизации в бинах конкретного светодиода дает инженерам информацию, как быстро он деградирует, т. е. меняет оттенок свечения, уменьшает яркость, качество света и цветовоспроизведения – Ra или CRI.
Светодиоды по bin-группам, например по цветопередаче сортируют люди-эксперты, а если параметр можно измерить – по приборам.
Что светится в светодиоде
В светодиоде светится полупроводниковый кристалл с p-n переходом, или электронно-дырочный переход. Ширина запрещенной зоны должна быть близка к энергии квантов излучения, а наличие дефектов, которые влияют на рекомбинацию, должно быть сведено к минимуму. Но для работы светодиода выполнения этих условий недостаточно, нужны структуры из двух и более p-n переходов.
Цвета светодиодов
Получают желаемый цвет диода тремя технологиями: покрывают люминофором, используют RGB или полупроводниковые материалы.
Люминофор преобразует поглощаемую энергию в свет.
У этой технологии есть свои преимущества: простая конструкция и экономичность. Но есть и недостатки: из-за потерь световой энергии снижается светоотдача, срок службы небольшой. Обычно вещество используют для белых светодиодов с различной цветовой температурой.
В RGB-технологии при проектировании оптической системы 3 монокристалла со своим спектром цвета смешиваются и появляется нужный оттенок. Преимуществом этой технологии является возможность ручного или автоматического переключения цветов. Недостатки: неравномерный нагрев и отвод тепла.
Для производства светодиодов берут различные полупроводниковые материалы. От величины энергетического барьера и ширины запрещенной зоны зависит излучение различных участков спектра. Для определенных цветов используют соответствующие материалы: для ультрафиолетового и синего цвета берут за основу GaN и InGaN, для зеленого используют систему InGaN-GaN.
Наиболее часто в изготовлении используют красные, зеленые и синие светодиоды.
Какая полярность светодиодов
Если диод не светится, значит ток не движется по прямой. Это значит, что при производстве диода не были учтены катод и анод. Полярность светодиодов практически не подлежит визуальному определению. Выявить ее можно при помощи мультимера, технической документации и простого монтажа по схеме.
В диоде плюсом выступает анод, минусом – катод. Ток в светодиоде направлен от анода к катоду, поэтому потенциал анода выше катода. Только это условие обеспечивает правильную работу элемента. При ошибке подключения светодиод работать не будет.
P-n переход подключают к источнику постоянного напряжения в зависимости от полярности выводов. Под действием напряжения начинают двигаться свободные отрицательно заряженные электроны и дырки с положительным зарядом в направлении к полюсам.
В p-n переходе заряды создают рекомбинацию, электроны перемещаются из зоны проводимости в зону валентности, преодолевая уровень Ферми. Часть энергии выходит с выделением волн света разного спектра и яркости.
Почему светодиод может не светиться
В некоторых случаях светодиод может не светить, причин несколько. Светодиоды белого свечения могут иметь свой разброс порога «открывания», средние пределы – от 2,9 до 3,2 В, иногда они не горят при подключении к 3-вольтной батарейке. Причины:
- деталь некондиционная;
- плохой монтаж или пайка;
- проблема в стабилизации напряжения;
- завышение параметров производителем;
- ошибка в проектировании схемы или радиатора.
Приобретать такие источники света лучше у проверенных производителей, которые не завышают параметры, не допускают брака. Осведомленность о типичных неисправностях диода помогает сделать правильный выбор.
Чтобы предупредить перегрев детали, время пайки нужно сократить до 1 секунды. Для этого температуру жала паяльника нужно довести до 250°С, а само жало должно быть хорошо заточенным. Рекомендуется пользоваться припоем ПОС-61, а ПОС-41 исключить.
Устройство и принцип действия светодиода
Светодиоды были изобретены около полувека назад как более удобная альтернатива миниатюрным лампам с нитями накаливания. Новые осветительные элементы были более удобны, просты в эксплуатации и энергоэффективны. На протяжении последних 30 лет светодиоды совершенствуются и дорабатываются, захватывая все большую часть рынка. Причиной большой популярности стала эксплуатационная надёжность, большой рабочий ресурс и простой принцип работы светодиода.
Историческая справка
Исторически изобретателями светодиодов считаются физики Г. Раунд, О. Лосев и Н. Холоньяк, которые по-своему дополняли технологию в 1907, 1927 и 1962 годах, соответственно:
- Г. Раунд исследовал излучение света твердотельным диодом и открыл электролюминесценцию.
- О. В. Лосев в ходе экспериментов открыл электролюминесценцию полупроводникового перехода и запатентовал «световое реле».
- Н. Холоньяк считается изобретателем первого светодиода, применяемого на практике.
Светодиод Холоньяка светился в красном диапазоне. Его последователи и разработчики дальнейших лет разработали жёлтый, синий и зелёный светодиоды. Первый элемент высокой яркости для применения в волоконно-оптических линиях был разработал в 1976 году. Синий светодиод LED был сконструирован в начале 1990-х трио японских исследователей: Накамура, Амано и Акасаки.
Эта разработка отличалась крайне малой себестоимостью и, по сути, открыла эпоху повсеместного применения LED-светодиодов. В 2014 году японские инженеры получили за это Нобелевскую премию по физике.
В нынешнем мире светодиоды встречаются повсеместно:
- в наружном и внутреннем освещении светодиодными лампами и лентами;
- как индикаторы для буквенно-цифровых табло;
- в рекламной технике: бегущих строках, уличных экранах, стендах и т.п;
- в светофорах и уличном освещении;
- в дорожных знаках со светодиодным оснащением;
- в USB-устройствах и игрушках;
- в подсветке дисплеев телевизоров, мобильных устройств.
Устройство светодиода
Конструкция светодиода представлена следующими составляющими:
- эпоксидная линза;
- кристалл-полупроводник;
- отражатель;
- проволочные контакты;
- электроды (катод и анод);
- плоский срез-основание.
Рабочие контакты закреплены в основании и проходят сквозь него. Другие компоненты лампы находятся внутри неё в герметичном пространстве. Оно образовано спайкой линзы и основания. При сборке на катоде закрепляется кристалл, а на контактах – проводники, которые через p-n-переход подключены к кристаллу.
Что такое OLED?
OLED – это органические полупроводниковые светодиоды, которые производятся из органических компонентов, которые светятся при прохождении электрического тока. Для их производства применяются многослойные тонкоплёночные структуры из различных полимеров. Принцип действия таких светодиодов также базируется на p-n-переходе. Преимущества OLED проявляются в сфере дисплеев – по сравнению с жидкокристаллическими и плазменными аналогами они выигрывают по яркости, контрастности, энергопотреблению и углам обзора. Технология OLED не используется для производства осветительных и индикаторных светодиодов.
Как работает элемент?
Принцип действия светодиода основывается на функциях и свойствах p-n-перехода. Под ним понимается специальная область, в которой имеет место пространственное изменение типа проводимости (от электронной n-области к дырочной p-области). p-полупроводник является носителем положительного, а n-полупроводник – отрицательного заряда (электронов).
В конструкции светодиода положительным и отрицательным электродами выступают анод и катод, соответственно. Поверхность электродов, которая находится снаружи колбы, имеет металлические контактные площадки, к которым припаяны выводы. Таким образом, после подачи положительного заряда на анод и отрицательного – на катод – на p-n переходе начинает протекание электрического тока.
При прямом включении питания дырки из области p-полупроводника и электроны из области n-полупроводника буду направлено двигаться на встречу друг другу. В результате этого на границе дырочно-электронного перехода происходит рекомбинация, то есть обмен, и выделяется световая энергия в виде фотонов.
Для преобразования фотонов в видимый свет материал подбирается таким образом, чтобы длина их волна оставалась в видимых пределах цветового спектра.
Разновидности светодиодов
Последовательное совершенствование открытой в 1962 году технологии привело к созданию разнообразных базовых элементов и моделей светодиодов на их основе. На сегодняшний день классификация проводится по расчётной мощности, типу соединения и типу корпуса.
В первом случае различаются осветительные и индикаторные варианты. Первые предназначены для использования в осветительных целях. Их уровень мощности приблизительно соответствует аналогичным вольфрамовым и люминесцентным лампам. Индикаторные светодиоды не излучают сильный поток света и используются в электронном оборудовании, приборных и навигационных панелях и т.д.
Индикаторные светодиоды между собой различают по типу соединения на тройные AlGaAs, тройные GaAsP и двойные GaP. Аббревиатуры, соответственно, означают алюминий-галлий-мышьяк, галлий-мышьяк-фосфор и галлий-фосфор. AlGaAs светят жёлтым и оранжевым в пределах видимого спектра, GaAsP- красным и жёло-зелёным, а GaP – зелёным и оранжевым.
По типу корпуса представленные в широком применении светодиодные светильники сейчас делятся на:
- DIP. Это старый форм-фактор из линзы, пары контактов и кристалла. Такие светодиоды применяются в световых табло и игрушках для подсветки;
- «Пиранья» или Superflux. Это доработанная модель DIP, которая имеет не два, а четыре контакта. Выделяет меньше тепловой энергии и, соответственно, меньше греется. Сейчас применяется в автомобильной подсветке;
- SMD. Самая популярная технология на современном рынке LED-светильников. Это универсальный чип, монтаж которого был произведён непосредственно на плате. Используется в большинстве источников света, осветительных линий, лент и т.п;
- COB. Это результат совершенствования технологии SMD. У таких светодиодов есть несколько чипов, монтированных на одной плате на алюминиевом или керамическом основании.
Технические характеристики и их зависимость друг от друга
Основными функциональными и эксплуатационными параметрами светодиодных светильников являются:
- интенсивность светового потока (яркость);
- рабочее напряжение;
- сила тока;
- цветовая характеристика;
- длина волны.
Светодиодное напряжение и яркость выступают прямо пропорциональными величинами – чем выше одна, тем выше другая. Но это не напряжение питающего тока, а величина падения напряжения на приборе. Кроме того, от напряжения зависит и цвет светодиода. Таким образом, между собой связаны яркость, длина волны, напряжение и цвет светодиода, а их соотношение представлено в следующей таблице.
Цвет
Длина волны
Напряжение
Цвет свечения светодиодного элемента зависит от длины волны, которая измеряется в нанометрах. Для изменения цвета свечения в материал полупроводника на этапе производства добавляются активные вещества:
- полупроводники обрабатываются аллюминий-индий-галлием (AlInGaP) для получения красного цвета;
- оттенки зелёного и сине-голубого спектра получаются с использованием индий-нитрида галлия (InGaN);
- для получения белого свечения на базе синего светодиода его кристалл покрывают люминофором, который преобразует синий спектр в красный и жёлтый свет;
- для фиолетового свечения применяется индий-галлия нитрид;
- для оранжевого – галлия фосфид-арсенид;
- для синего – селенид цинка, карбид кремния или индий-галлия нитрид.
Аналогично методу получения белого свечения можно использовать люминофоры разных цветов для получения дополнительных оттенков. Так, красный люминофор позволяет выпускать розовые и пурпурные светодиоды, а зелёный – салатных оттенков. В обоих случаях люминофор наносит на основу в виде синего светодиода.
Преимущества
Особенности того, как работает светодиод, дали ему несколько важных эксплуатационных и функциональных достоинств перед другими видами преобразователей электрической энергии в световую:
- современные светодиоды не уступают по параметрам светоотдачи металлогалогенным и натриевым газоразрядным лампам;
- конструкция практически полностью исключает выход из строя каких-либо компонентов из-за вибрации и механических повреждений;
- LED-светильники малоинерционные, то есть моментально достигают полной яркости после включения;
- современный ассортимент позволяет выбирать модели со спектром от 2700 до 6500 K;
- внушительный рабочий ресурс – до 100 000 часов;
- ценовая доступность индикаторных светодиодов;
- светодиодное освещение, как правило, не требует большого напряжения и сохраняет пожарную безопасность,;
- температуры ниже 0˚С почти не сказываются на работоспособности устройств;
- строение светодиода не предусматривает использование фосфора, ртути, других опасных веществ или ультрафиолетового излучения.