Каких цветов бывают светодиоды?

Какие бывают светодиоды?

Все светодиоды можно классифицировать по определенным признакам – назначению, мощности, цветности и т.д. Предлагаем рассмотреть каждую классификацию в отдельности.

По типу применения

Все светодиоды по типу применения можно разделить на 2 большие группы – индикаторные и осветительные, а также лазерные.

  1. Индикаторные. Используются в качестве индикаторов, которые встраиваются в габаритные огни автомобилей, светофоры, LED-ленты, гирлянды, электронные устройства и т.д. Эти светодиоды подразделяются на такие виды: DIP, «Пиранья», Strow Hat, SMD.
  2. Осветительные. Их применяют для создания светодиодных светильников разного типа – для улиц, жилых и общественных помещений. Например, модель LeDron 9073-A создана для эксплуатации в сухих помещениях. Из осветительных диодов можно назвать: SMD LED, COB, Filament LED.
  3. Лазерные. Это малая группа светодиодов, которые нельзя отнести ни к осветительным, ни к индикаторным. По конструкции это полупроводниковые элементы, обработанные особым образом так, чтобы генерировать сверхузкий луч света. Используются в устройствах для нанесения точной разметки, лазерных указках, компьютерных мышах и т.д.

Каких цветов бывают светодиоды?

Различие диодов по цветам излучения – первое, что приходит на ум. Действительно, это самая заметная разница между полупроводниковыми элементами. Цвет свечения будет зависеть от длины волны излучения.

Самый распространенный цвет свечения светодиодов – белый. В зависимости от цветовой температуры (измеряется в Кельвинах) он может быть нейтральным, теплым или холодным. Также встречаются зеленый оттенок свечения светодиодов, синий, красный, желтый, оранжевый и белый.

Это все касалось только монохромных оттенков свечения. Но есть и формат RGB, когда светодиодное устройство (например, RGB LED лента) может воспроизводить разноцветный спектр излучения. Фактически это достигается установкой монохромных диодов вместе. Это полупроводниковые кристаллы с красным излучением (R – “red”), зеленым (G – “green”) и синим (B – “blue”).

При подключении контроллера к осветительному прибору начинается воспроизведение свечения кристаллов в заданном порядке, что и создает светодинамический эффект многоцветного излучения.

Какой мощности бывают светодиоды?

Еще одна характеристика, по которой различают полупроводниковые элементы – мощность. Мощность диода, как правило, напрямую связана с его яркостью – чем мощнее элемент, тем более яркий поток света он создает. При этом он будет и потреблять больше электроэнергии, и требовать более эффективного отвода тепла в корпусе осветительного прибора.

Светодиоды с самой малой мощностью – индикаторные, а также диоды поверхностной установки (SMD). В среднем, показатель их мощности равен 0,06-0,2 Ватт. К мощным моделям будут относиться брендовые полупроводниковые кристаллы (таких производителей, как CREE, Osram и других). Показатель их мощности будет достигать значения в 2,6 Ватт.

На какое напряжение бывают светодиоды?

Как такового понятия напряжения у светодиодов нет. Фактически определяется лишь величина напряжения на выходе диода после прохождение через него номинального тока, а через эту величину определяется напряжение на самом кристалле.

Зависит это напряжение от цвета излучения LED-элемента. К примеру, для красных и желтых диодов напряжение будет варьироваться от 1,8 до 2,4 вольт, а для белых, синих и зеленых будет доходить до 3 вольт.

Какой формы и размеров бывают диоды?

Также LED-элементы можно разделять по формам и размерам. Они могут иметь различную форму:

  • Цилиндрическую;
  • Квадратную;
  • Прямоугольную.

Размеры будут определяться в миллиметрах. Для цилиндрических диодов указываются размеры высоты и диаметра, для квадратных и прямоугольных – размеры сторон. Например, распространенный ЧИП-светодиод SMD 3528 имеет размеры сторон 3,5 x 2,8 мм.

Все светодиоды имеют свое предназначение и могут использоваться в разных сферах – в конструкциях светильников для жилых помещений (к примеру, в модели LeDron SCOPE B), в светодиодных лентах разного назначения, в прожекторной подсветке и т.д.

Чтобы подробнее узнать про конструкцию светодиодов, их составные части и устройство, советуем прочитать статью «Как делают светодиоды».

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

Светодиод состоит из нескольких частей:

  • анод, по которому подается положительная полуволна на кристалл;
  • катод, по которому подается отрицательная полуволна на кристалл;
  • отражатель;
  • кристалл полупроводника;
  • рассеиватель.

Эти элементы есть в любом светодиоде, вне зависимости от его модели.

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:

  • ширина запрещенной зоны должна быть близка к энергии кванта света;
  • полупроводниковый кристалл должен иметь минимум дефектов.

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды. Осветительные приборы используются для создания яркого освещения в помещении.

По типу исполнения выделяют:

    Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света. Dip светодиоды

  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.
    • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам. Smd

    • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров. Cob
    • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
    • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий. Filament

    • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
    • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.

    Светодиоды могут быть:

    • мигающими – используются для привлечения внимания;
    • многоцветными мигающими;
    • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
    • RGB;
    • монохромными.

    Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.

    Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К).

    По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.

    Полярность светодиодов

    При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.

    Полярность моно определить несколькими способами:

    • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
    • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
    • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
    • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

    Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.

    Расчет сопротивления для светодиода

    Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.

    Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.

    Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.

    Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.

    Когда нужно использовать токоограничивающий резистор:

    • когда вопрос эффективности схемы не является основным – например, индикация;
    • лабораторные исследования.

    В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах.

    Онлайн – сервисы и калькуляторы для расчета резистора:

    Светодиоды: виды и схема подключения

    Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode).

    Содержание статьи

    • Устройство светодиода
    • Как работает светодиод?
    • Виды и основные параметры светодиодов
    • Применение светодиодов
    • Основные правила подключения светодиодов
    • Основные характеристики светодиодов
    • Способы подключения
    • Как подключить светодиоды к сети переменного тока 220 В через блок питания
    • Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

    Устройство светодиода

    Хотя и существует множество светодиодов, самая распространённая форма состоит из 5-миллиметрового полимерного корпуса с линзой, медного или алюминиевого основания, катода, параболического рефлектора (отражателя) и кристалла, который соединяется с анодом при помощи тонкой золотой проволоки.

    Как работает светодиод?

    Принцип работы изделия основывается на взаимодействии двух полупроводников, положительного и отрицательного типа (p-n-переход). Когда электрический ток проходит через полупроводники, в месте соприкосновения выделяется энергия, излучающая свет. Это обусловлено переходом от одного типа проводимости к другому, когда ионы положительно заряженных дырок соединяются с отрицательными зарядами электронов.

    Виды и основные параметры светодиодов

    На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер. В продаже имеется большое количество типов светодиодов, которые различаются между собой функциональным назначением, конструкцией, мощностью, цветом свечения и другими свойствами.

    По назначению светодиоды разделяют на два вида – индикаторные и осветительные.

    • светодиоды SMD;
    • сверхъяркие Super Flux “Piranha”;
    • DIP светодиоды (Direct In-line Package);
    • Straw Hat («соломенная шляпа»).
    • COB (Chip On Board) светодиоды;
    • SMD LED;
    • филаментные (Filament LED).

    Индикаторные светодиоды отличаются малой мощностью и умеренной яркостью свечения. Используются для цветовой индикации режимов работы различных приборов и оборудования, а также для подсветки дисплеев и приборных щитов. Разновидности индикаторных светодиодов:

    • DIP-светодиоды. Кристалл-излучатель находится в выводном корпусе, который чаще всего представляет собой выпуклую линзу. Минус – малый угол рассеивания излучения.
    • «Пиранья» – излучатель сверхвысокой яркости с четырьмя выводами, обеспечивающими его удобное крепление на плате. Востребован для подсветки приборов в автомобилях и в рекламных вывесках.
    • «Соломенная шляпа». Цилиндрический двухвыводный прибор со значительным углом рассеивания излучения и увеличенным диаметром линзы. Применяется в декоративных конструкциях и светосигналах тревоги.
    • SMD-светодиоды. Приборы сверхвысокой яркости располагаются в корпусах, рассчитанных на SMT-монтаж. В их маркировке указываются размеры в дюймах (их сотых долях) или в мм. На базе SMD-светодиодов изготавливаются светодиодные ленты.

    Осветительные светодиоды встречаются в конструкции фонарей, фар, лент. Отличаются мощностью и яркостью свечения. Большинство осветительных приборов размещают в корпусах для SMT-монтажа. Изготавливаются в двух разновидностях белого цвета:

    • cool white – холодный;
    • warm white – теплый.

    Осветительный SMD-светодиод представляет собой теплоотводящую подложку, на которой смонтирован излучающий кристалл, обработанный люминофорным составом.

    Применение светодиодов

    Такая продукция активно применяется в разных областях: световая реклама, домашние и промышленные осветительные приборы, автомобильная светотехника, светофоры и дорожные знаки, дизайн помещений, ландшафтная и архитектурная подсветка, а также многое другое.

    • значительная длительность эксплуатации;
    • экологическая безопасность;
    • высокая надежность и безотказность;
    • экономия электроэнергии;
    • высокое качество освещения;
    • низкие эксплуатационные расходы.

    Основные правила подключения светодиодов

    Конструкция светодиодов рассчитана на их подключение только к источникам постоянного тока с соблюдением полярности. Существует три варианта определения полярности:

    • По длине ножки (кроме SMD). Более длинная ножка является катодом, а короткая – анодом. В SMD-светодиодах имеется срез (ключ), который всегда располагается ближе к катоду.
    • С помощью мультиметра. Прибор устанавливают в режим «Прозвонка». Красный и черный щупы устанавливают на выводы. Если прибор засветился, то, значит, что красный щуп был подключен к аноду, а черный – к катоду. Если свечение не возникло, значит, надо поменять положение щупов. Если результат не изменился (свечение отсутствует), значит, прибор вышел из строя.

    Основные характеристики светодиодов

    Две главные характеристики, указываемы в паспорте светоизлучающего прибора:

    • Падение напряжения на приборе. Типичное значение – 3,2 В. Также для каждого светодиода существуют максимально допустимые напряжения Umax и Umaxобр – для прямого и обратного включений.
    • Номинальный ток. Обычно эти приборы рассчитаны на силу тока в 20 мА.

    Способы подключения

    Простейший вариант – подключение к низковольтному источнику постоянного тока.

    Самый удобный и безопасный вариант – подключить светодиод к батарейке или аккумулятору с помощью включения в схему маломощного резистора. Его функция – ограничение тока, протекающего через p-n-переход, определенным значением. Без этого элемента LED быстро утратит рабочие свойства.

    Резистор выбирают по сопротивлению и мощности. Расчет сопротивления по формуле:

    R = (Uпитания – Uпаспорт.)/Iном., Ом, в которой:

    • Uпитания – напряжение электропитания, В;
    • Uпаспорт. – падение напряжения, паспортное значение, В;
    • Iном. – номинальный ток.

    Полученное значение округляют в большую сторону до ближайшей номинальной величины из ряда Е24. После этого рассчитывают мощность, которую должен рассеивать резистор.

    P = Iном. 2 х R, где R – выбранное по таблице значение сопротивления.

    Провести все эти действия можно быстро и просто с использованием онлайн-калькулятора.

    Как подключить светодиоды к сети переменного тока 220 В через блок питания

    Существует несколько типов блоков питания:

    • Стабилизированные источники постоянного напряжения для светодиодов на 5 Вольт и 12 Вольт. При колебаниях параметров сети напряжение на выходе такого источника питания остается постоянным и равным заявленной в паспорте величине. LED-светильники подсоединяют через резисторы.
    • Драйвер – импульсный блок питания со стабилизированным током. Характеристики, которые учитывают при его выборе: максимальное и минимальное выходное напряжение, выходной (рабочий) ток. В драйвере присутствует схема, стабилизирующая ток при скачках входного напряжения 220 В. При подключении светодиодного излучателя к драйверу резистор не требуется.

    Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

    При подключении нескольких светоизлучающих приборов к источнику питания может использоваться два варианта соединения – последовательное и параллельное.

    Последовательное соединение представляет цепь полупроводниковых приборов, в которой катод первого излучателя спаян с анодом следующего – и так далее. Через все элементы последовательной цепи протекает ток одного значения, а падение напряжения суммируется. Мощность БП выбирается равной или превышающей сумму мощностей каждого элемента.

    Минусы последовательного соединения:

    • При значительном количестве элементов цепи необходимо выбирать БП большого вольтажа.
    • При выходе из строя одного LED-диода перестает работать вся цепь.

    В длинных лентах на 60-70 диодов на каждом элементе происходит падение напряжения примерно на 3 В, то есть такие ленты можно присоединять к сети 220 В через выпрямитель.

    При параллельном подсоединении напряжение на всех элементах цепи будет равным, а суммируются токи каждого LED. Основная проблема в данном случае состоит в том, что LED-светильники, даже из одной партии, часто имеют различные характеристики. Поэтому, если поставить один общий резистор, на лампочки может подаваться ток разного значения, вследствие чего некоторые элементы будут светить слишком ярко, а некоторые – тускло. Решение проблемы – установка отдельных резисторов для каждого диода.

    Минусы параллельного подключения:

    • большое количество элементов цепи из-за необходимости использования индивидуальных резисторов для каждого диода;
    • существенный рост нагрузки при перегорании одного LED-диода (если используется один мощный резистор на всю цепь).

    Это самый подходящий вариант соединения светодиодов, поскольку он позволяет хотя бы частично скомпенсировать недостатки последовательного и параллельного подключений. В этом случае параллельно соединяются цепочки последовательно расположенных элементов. Этот способ применяется в современных елочных гирляндах или лентах. Преимущество такого решения: если даже выйдут из строя одна или несколько параллельных цепочек, остальные будут исправно светить.

    Что такое светодиод (LED)

    Что такое LED и с чем его едят?

    В повседневной жизни мы очень часто встречаемся с аббревиатурой LED, например, когда речь заходит о дисплеях. Что же это такое? Так вот, с английского LED расшифровывается как Light Emitting Diode, что можно дословно перевести, как “диод, испускающий свет”. Теперь все становится намного понятнее. Значит это все-таки один из видов диода, а точнее даже его особый вид. Давайте попробуем разобраться, где в повседневной жизни мы встречаемся с такими диодами и как вообще они работают.

    Чаще всего можно увидеть эти 3 буквы при просмотре характеристик техники, которая имеет дисплеи. Например, матрицы телевизоров, телефонов и мониторов довольно часто оснащаются именно LED подсветкой. Если говорить проще, то LED – это световой диод, или светодиод. Уже проще, верно? Так как же он работает?

    Почему светодиоды вообще работают?

    Начну с того, что светодиод очень напоминает диод с PN переходом. Он работает по такому же принципу, то есть пропускает ток в одном направлении и не пропускает в другом. Зачем это нужно? Если электроны будут двигаться в одном направлении, то будут создавать ток, который в дальнейшем и будет источником света.

    Теперь подробнее именно про светодиод. Он устроен не сильно сложнее простого диода. Внутри находится полупроводник с высокой степенью легирования. Спектр излучения зависит от степени легирования и материала, из которого изготовлен полупроводник. Для того, чтобы светодиод работал, нужно воздействовать на него извне, то есть к полюсу p подается напряжение (это называется прямым смещением).

    Далее все происходит следующим образом. Диод смещен в прямом направлении, поэтому электроны рекомбинируют с дырками из валентной зоны и высвобождается энергия, которой достаточно для производства фотонов. Эти самый фотоны излучают свет одного света (монохромный). Правда, слой очень тонкий, и поэтому большая часть фотонов покидает переход, тем самым создавая поток света из множества основных цветов видимого спектра.

    А в чем же отличие от обычного диода?

    Оказывается, световой диод все же отличается от обычного (сигнального) диода. Основное отличие, конечно же, заключается именно в конструкции. Так, у светодиода есть специальная полусферическая защита, которая хранит его от ударов и других механических воздействий извне. Также очень любопытен тот факт, что светодиодный переход самостоятельно излучает довольно мало фотонов. Именно по этой причине корпус светодиода специально делают из эпоксидной смолы, которая позволяет направить фотоны, идущие в другие стороны строго вверх.

    Встречаются иногда и очень необычные формы светодиодов. Среди них и прямоугольная, и цилиндрическая и даже форма в виде стрелки. Все зависит от того, куда нужно концентрировать свет, а это зависит от цели, для которой этот светодиод создается.

    В чем самые главные плюсы технологии LED?

    Одной из главных особенностей светодиодов является его высокий КПД. Дело в том, что обычная лампа накаливания при работе выделяет очень много тепла, а вот светодиод, напротив, остается достаточно холодным. Все это происходит из-за того, что он в большую часть света производит именно в видимом для человека спектре и не расходует энергию на ненужные длины волн. Это позволяет технологии LED серьезно доминировать над уже устаревшими лампами накаливания. Кроме того, светодиоды гораздо меньше по размеру и их можно располагать благодаря этому как угодно и где угодно.

    Можно выстраивать из них целые фигуры и даже программировать последовательность того, как они загорятся с помощью мини-компьютеров. Таким образом, это дает очень большой толчок для дальнейшего развития и совершенствования, но довольно лирики.

    Какие цвета может излучать светодиод?

    Многие заблуждаются в том, что светодиоды светят тем цветом, в который окрашен их корпус, хотя как мы уже говорили ранее, для регулировки цвета и регулировки его интенсивности нужно подбирать подходящий полупроводниковый материал. Именно он является определяющим фактором, если нужно подобрать цвет. Однако, светодиоды могут излучать не все цвета и есть точный спектр, который получить возможно.

    Наиболее распространенные цвета – это красный, желтый, зеленый и оранжевый. Это все потому, что их легче производить, а соответственно и стоят они в разы дешевле ново появившихся синих и белых. Взгляните на эту таблицу, чтобы понять, какому напряжению соответствуют итоговые цвета:

    Цвета, которые бывают у светодиодов

    Давайте теперь подробно остановимся на конкретных материалах, которые влияют на выбор цвета:

    • арсенид галлия для получения инфракрасного (например, в пульте);
    • фосфид арсенида, чтобы получить оранжевый и весь спектр от красного и до инфракрасного;
    • фосфид арсенида галлия алюминия для ярко-красного, красно-оранжевого и даже желтого;
    • фосфид алюминия-галлия для зеленого;
    • фосфид галлия для желтого, зеленого и красного;
    • нитрид галлия, чтобы получить изумрудно-зеленый;
    • нитрид галлия-индия для бирюзового, синего и ближнего ультрафиолетового;
    • карбид кремния для синего;
    • селенид цинка и опять для синего;
    • нитрид алюминия-галлия для ультрафиолета.

    Взглянув на этот список можно заметить, что для некоторых цветов подойдет сразу несколько полупроводников и это действительно так. Это уже сам производитель выбирает, какие полупроводники ему выбрать. Может быть, ему легче достать именно этот тип, а не другой, или он просто дешевле. Да, вот так много разных материалов нужно, чтобы создать даже очень простенький современный телевизор, например.

    Подробнее про работу светодиода

    Теперь, когда мы знаем достаточно много про работу светодиода, давайте еще немного поговорим о том, как он устроен изнутри. Каждый светодиод состоит из следующих деталей:

    • катод;
    • анод;
    • кристалл;
    • отражатель;
    • рассеиватель.

    Каждая из этих деталей очень важна для работы светодиода. Но давайте поговорим о том, что каждый из них делает конкретно. Самые главные детали внутри светодиода – это катод и анод.

    Светодиод (или led по другому)

    Электроны идут от катода к аноду при подаче напряжения на устройство, благодаря чему электроны идут к PN переходу и там занимают свободные места. После этого электроны переходят на новый энергетический уровень, выделяется множество фотонов. Как мы уже говорили ранее, фотоны направляются вверх с помощью отражателя и рассеивателя.

    Чем отличаются разные светодиоды и зачем нужен каждый из них?

    Если говорить об основных видах LED или светодиодов, то это конечно же осветительные (используются для яркого света в помещении) и индикаторные (они для декоративных целей, например, чтобы украсить стадион или телебашню). Однако светодиоды также различают по типу конструкции:

      DIP светодиоды. Это довольно простые и не очень эффективные индикаторные светодиоды. Зато стоят они достаточно дешево. Линза у них цилиндрической формы, размер, как правило, немаленький, освещение со временем ухудшается на 30%, а угол распространения света всего 120 градусов.

    Так выглядит DIP

  • А вот более совершенная версия этих светодиодов называется Spider LED. Они уже имеют целых 4 выхода, благодаря чему теплоотвод работает гораздо лучше, а это повышает надежность и долговечность компонентов. Хочется отметить, что они часто используются в различных индикаторах салонов авто.
  • Если же светодиоды нужно крепить на поверхность и места вертикально очень мало, то специально для этого придумали светодиоды SMD. Они намного более плоские и как раз используются для монтажа на поверхности.

    Это SMD светодиод
    Оказывается, габариты SMD еще далеко не предел. Сейчас для освещения используются новые инновационные светодиоды, которые называются COB (расшифровать можно как Clip On Board). Название прямо нам намекает о том, что светодиод, а точнее несколько светодиодов закрепляется прямо на плату. Да-да, именно несколько, ведь на одной подложке может быть закреплено до девяти светодиодов сразу! Это поразительно, ведь они очень плоские и кажется, что совсем не занимают места. Кроме маленьких габаритов среди плюсов также можно отметить и то, что они очень равномерно освещают и хорошо защищены от окисления. Благодаря этим преимуществам сейчас они используются для создания фар, а также поворотников для автомобилей среднего и премиального уровня.

    COB светодиод
    Есть еще одна крутейшая инновация. Пока она используется не очень часто, но мы уверены, что скоро она начнет дешеветь. Называется она Filament. Ее главное преимущество, что светодиоды можно монтировать прямо на стекло, благодаря чему свет можно распространять во все стороны (на все 360 градусов!). Однако, некоторые причисляют филаментные светодиоды к COB, хотя это и неверно.

    Лампочка со светодиодами Filament
    В производстве некоторой одежды и обуви сейчас не обойтись без волоконных светодиодов. Ну а как вы думали одежда должна светиться? Они встраиваются внутрь пластиковых волокон и излучают свет. Иногда они используются при производстве игрушек и декоративных предметов.

    Светодиоды в одежде
    Наверняка вы встречали среди множества характеристик смартфонов аббревиатуру OLED. Так вот, это тоже светодиоды, только специальные. Их также иногда называют органическими светодиодами. Почему? Потому что ток в них проводят именно органические вещества. Это позволяет еще сильнее уменьшить габариты. Так, они используются для подсветки экранов смартфонов, мониторов и телевизоров.

    Структура OLED

  • Также добавим и про то, что бывают ультрафиолетовые и даже инфракрасные светодиоды, но в обычной жизни они используются очень редко.
  • Как можно подсоединять светодиоды

    Когда мы уже знаем достаточно много о светодиодах, давайте узнаем, как можно объединять. Для этого нам нужно их соединить. Но каким образом можно это сделать и какой способ будет лучшим?

    Попробуем подсоединить последовательно

    Последовательное соединения нужно, если нужно массово увеличить количество освещенности (например, регулировка уровня яркости). Подсоединив светодиоды таким способом, они будут работать как один. Рекомендуем при этом использовать в цепочке светодиоды одного типа и даже одного цвета.

    Последовательное соединение LED

    Несмотря на то, что ток внутри светодиодов при последовательном подключении идет один и тот же, при установке резисторов нам точно придется учитывать, что напряжение тоже будет падать последовательно. Например, исходное напряжение равно 1.2 В на один светодиод, но тогда напряжение на всех n светодиодах будет уже n * 1.2. То есть если светодиодов 3, то общее падение будет уже 3.6 В. Так как же тогда посчитать падение напряжения на резисторах? Все очень просто. Давайте предположим, что все светодиоды будут питаться от одного и того же логического устройства с напряжением 5 В. Тогда:

    Обращаю ваше внимание, что среди резисторов E12 не встречается сопротивления 140 Ом, поэтому придется вариант с 150 Ом.

    Как же теперь включать и выключать светодиоды?

    Когда мы знаем уже достаточно много о светодиодах, пришло время узнать, как можно легко управлять их включением и выключением. Здесь схемы будут немного сложнее. Для управления мы будем использовать выходные каскады CMOS и TTL (они регулируют напряжение при высоком кпд и почти без искажений). Дело в том, что они могут использоваться как источники, так и как приемники полезного тока. А это как раз дает нам возможность пользоваться ими, как включателями и выключателями. Взгляните на эти примеры:

    Теперь вы знаете достаточно много про светодиоды. Если вам понравилась статья и вы хотели бы узнать о них еще больше, то мы будет очень рады узнать от вас эту информацию в комментариях.

    Светодиоды можно купить на алишке, вот по этой ссылке.

    Вот в передаче “Галилео” подробно рассказывают про светодиоды, можете посмотреть:

    Что такое светодиод, его принцип работы, виды и основные характеристики

    Светодиоды стремительно вытесняют лампы накаливания практически из всех областей, где их позиции казались непоколебимыми. Конкурентные преимущества полупроводниковых элементов оказались убедительными: низкая стоимость, долгий срок службы, а главное – более высокий КПД. Если у ламп он не превышал 5%, то некоторые производители светодиодов декларируют превращение в свет не менее 60% потребленной электроэнергии. Правдивость этих заявлений остается на совести маркетологов, но быстрое развитие потребительских свойств полупроводниковых элементов ни у кого сомнений не вызывает.

    Что такое светодиод и его принцип работы

    Светодиод (СД, LED) представляет собой обычный полупроводниковый диод, изготовленный на основе кристаллов:

    • арсенида галлия, фосфида индия или селенида цинка – для излучателей оптического диапазона;
    • нитрида галлия – для приборов ультрафиолетового участка;
    • сульфида свинца – для элементов, излучающих в инфракрасном диапазоне.

    Выбор данных материалов обусловлен тем, что p-n переход диодов, изготовленных из них, при приложении прямого напряжения излучает свет. У обычных диодов из кремния или германия такое свойство выражено очень слабо – свечение практически отсутствует.

    Излучение светодиода не связано со степенью нагрева полупроводникового элемента, его вызывает переход электронов с одного энергетического уровня на другой при рекомбинации носителей зарядов (электронов и дырок). Свет, испускаемый в результате, является монохроматическим.

    Особенностью такого излучения является очень узкий спектр, и выделить нужный цвет светофильтрами затруднительно. А некоторые цвета свечения (белый, синий) при таком принципе изготовления недостижимы. Поэтому в настоящее время распространена технология, при которой внешняя поверхность светодиода покрывается люминофором, а его свечение инициируется излучением p-n перехода (которое может быть видимым или лежать в УФ-диапазоне).

    Устройство светодиода

    Светодиод изначально был устроен так же, как и обычный диод – p-n переход и два вывода. Только корпус из прозрачного компаунда или из металла с прозрачным окном для наблюдения свечения. Но в оболочку прибора научились встраивать дополнительные элементы. Например, резисторы – чтобы включать светодиод в цепь нужного напряжения (12 В, 220 В) без внешней обвязки. Или генератор с делителем для создания мигающих светоизлучающих элементов. Также корпус стали покрывать люминофором, который светится при зажигании p-n перехода – так удалось расширить возможности LED.

    Тенденция к переходу на безвыводные радиоэлементы не обошла и светодиоды. SMD-приборы стремительно захватывают рынок осветительной техники, имея преимущества в технологии производства. Такие элементы не имеют выводов. P-n переход монтируется на керамическом основании, заливается компаундом и покрывается люминофором. Напряжение подводится через контактные площадки.

    В настоящее время светотехнические устройства стали оснащаться светодиодами, изготовленными по COB-технологии. Суть её в том, что на одной пластине монтируется несколько (от 2-3 до сотен) p-n переходов, соединяемых в матрицу. Сверху все помещается в единый корпус (или формируется модуль SMD) и покрывается люминофором. У такой технологии большие перспективы, но вряд ли она полностью вытеснит другие исполнения СД.

    Какие виды светодиодов существуют и где они применяются

    Светодиоды оптического диапазона применяются в качестве элементов индикации и в качестве осветительных приборов. Для каждой специализации существуют свои требования.

    Индикаторные светодиоды

    Задача индикаторного светодиода – показать состояние прибора (наличие питания, аварийный сигнал, срабатывание датчика и т.п.). В этой сфере широко применяются LED со свечением p-n перехода. Приборы с люминофором применять не запрещено, но особого смысла нет. Здесь яркость свечения не на первом месте. В приоритете контрастность и широкий угол обзора. На панелях приборов применяют выводные светодиоды (true hole), на платах – выводные и SMD.

    Осветительные светодиоды

    Для освещения, наоборот, в основном применяют элементы с люминофором. Это позволяет получить достаточный световой поток и цвета, близкие к естественным. Выводные СД из этой области практически выдавлены SMD-элементами. Широкое применение находят COB-светодиоды.

    В отдельную категорию можно выделить приборы, предназначенные для передачи сигналов в оптическом или ИК-диапазоне. Например, для пультов дистанционного управления бытовой аппаратурой или для охранных устройств. А элементы УФ-диапазона могут использоваться для компактных источников ультрафиолета (детекторы валют, биологических материалов и т.д.).

    Основные характеристики светодиодов

    Как и любой диод, LED имеет общие, «диодные» характеристики. Предельные параметры, превышение которых ведет к выходу прибора из строя:

    • максимально допустимый прямой ток;
    • максимально допустимое прямое напряжение;
    • максимально допустимое обратное напряжение.

    Остальные характеристики носят специфический «светодиодный» характер.

    Цвет свечения

    Цвет свечения – этот параметр характеризует СД оптического диапазона. У осветительных приборов в большинстве случаев белый с различной световой температурой. У индикаторных может быть любым из видимой цветовой гаммы.

    Длина волны

    Этот параметр в определенной степени дублирует предыдущий, но с двумя оговорками:

    • у приборов ИК и УФ диапазонов видимого цвета нет, поэтому для них эта характеристика единственная, характеризующая спектр излучения;
    • этот параметр больше применим для светодиодов с непосредственным излучением – элементы с люминофором излучают в широкой полосе, поэтому однозначно их свечение длиной волны не охарактеризовать (какая длина волны может быть у белого цвета?).

    Поэтому длина излучаемой волны – достаточно информативная цифра.

    Потребляемый ток

    Потребляемый ток – это рабочий ток, при котором яркость излучения оптимальна. При его небольшом превышении не происходит скорого выхода прибора из строя – и в этом его отличие от максимально допустимого. Снижение его также нежелательно – интенсивность излучения упадет.

    Мощность

    Потребляемая мощность – здесь все просто. На постоянном токе – это просто произведение потребляемого тока на приложенное напряжение. Путаницу в это понятие вносят производители светотехники, указывая на упаковке крупными цифрами эквивалентную мощность – мощность лампы накаливания, световой поток которой равен потоку данного светильника.

    Видимый телесный угол

    Видимый телесный угол проще всего представить в виде конуса, исходящего из центра источника света. Данный параметр равен углу раскрыва этого конуса. Для индикаторных светодиодов он определяет, как срабатывание сигнализации будет видно со стороны. Для осветительных элементов от него зависит световой поток.

    Максимальная сила света

    Максимальная сила света в технических характеристиках прибора указывается в канделах. Но на практике удобнее оказалось оперировать понятием светового потока. Световой поток (в люменах) равен произведению силы света (в канделах) на видимый телесный угол. Два светодиода с равной силой света дают разное освещение при разном угле. Чем больше угол, тем больше световой поток. Так удобнее для расчета систем освещения.

    Падение напряжения

    Падение напряжения при прямом токе – это напряжение, которое падает на светодиоде в открытом состоянии. Зная его, можно рассчитать напряжение, потребное, например, для открывания последовательной цепочки светоизлучающих элементов.

    Как узнать, на какое напряжение рассчитан светодиод

    Самый простой способ узнать номинальное напряжение светодиода – обратиться к справочной литературе. Но если попался прибор неизвестного происхождения без маркировки, то его можно подключить к регулируемому источнику питания и плавно поднимать напряжение с нуля. При определенном напряжении светодиод ярко вспыхнет. Это и есть рабочее напряжение элемента. При такой проверке надо иметь в виду несколько нюансов:

    • испытуемый прибор может быть со встроенным резистором и рассчитан на достаточно высокое напряжение (до 220 В) – не каждый источник питания имеет такой диапазон регулировки;
    • излучение светодиода может лежать вне видимого участка спектра (УФ или ИК) – тогда момент зажигания визуально не определить (хотя свечение ИК-прибора в некоторых случаях можно увидеть через камеру смартфона);
    • подключать элемент к источнику постоянного напряжения надо со строгим соблюдением полярности, в противном случае легко вывести LED из строя обратным напряжением, превышающим возможности прибора.

    Если нет уверенности в знании цоколевки элемента, лучше поднять напряжение до 3…3,5 В, если светодиод не зажегся — убрать напряжение, поменять подключение полюсов источника и повторить процедуру.

    Как определить полярность светодиода

    Для определения полярности выводов существует несколько методов.

    1. У безвыводных элементов (включая COB) полюсность напряжения питания обозначается прямо на корпусе – символами или приливами на оболочке.
    2. Так как светодиод имеет обычный p-n переход, его можно прозвонить мультиметром в режиме проверки диодов. Некоторые тестеры имеют измерительное напряжение, достаточное для зажигания светодиода. Тогда правильность подключения можно контролировать визуально по свечению элемента.
    3. Некоторые приборы производства CCCP в металлическом корпусе имели ключ (выступ) в районе катода.
    4. У выводных элементов вывод катода более длинный. По этому признаку определить цоколевку можно только у непаянных элементов. У бывших в употреблении LED выводы укорачиваются и изгибаются для монтажа произвольным образом.
    5. Наконец, узнать расположение анода и катода возможно тем же методом, что и для определения напряжения светодиода. Свечение будет возможно только при правильном включении элемента – катод к минусу источника, анод – к плюсу.

    Развитие технологий не стоит на месте. Ещё несколько десятилетий назад светодиод был дорогой игрушкой для лабораторных опытов. Сейчас без него трудно представить жизнь. Что будет дальше – покажет время.

    Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики

    Что измеряется в люменах и какие нормы освещенности на 1 квадратный метр?

    Как правильно рассчитать резистор для светодиода?

    Как выбрать светодиодную ленту для подсветки, типы светодиодных лент, расшифровка маркировки

    Принцип работы и основные характеристики стабилитрона

    Что такое цветовая температура светодиодных ламп?