Кварцевый резонатор принцип работы

Кварцевые резонаторы: назначение, применение, принцип работы, особенности использования

Для чего нужны кварцевые резонаторы

Современная цифровая электроника, изобилующая микропроцессорами и микроконтроллерами, просто немыслима без тактовых колебаний. А где получение тактовых колебаний — там функционирование генератора и колебательной системы, и где колебательная система — там обязательно проявляют себя и явление резонанса и такой важный параметр как добротность. Здесь то и знакомимся мы с кварцевыми резонаторами (генераторами).

Кварцевый резонатор (кварц) — генератор электромагнитных колебаний с высокой степенью постоянства частоты, в котором используются пьезоэлектрические и механические свойства кварцевой пластинки.

По принципу работы кварцевый резонатор является автогенератором с кварцевой стабилизацией частоты. Такие генераторы применяется как высокостабильный генератор задающий в измерительной аппаратуре, эталонах частоты и времени, кварцевых часах, а также в различной электронной аппаратуре.

Недостаток кварцевых резонаторов заключается в том, что он может генерировать только на фиксированных частотах, определяемых резонансной частотой кварца, и практически не допускает перестройки частот.

Все схемы кварцевые резонаторы подразделяются на две большие группы в зависимости от того, какой вид резонанса кварца (параллельный или последовательный) в них применен. Наибольшее распространение получили схемы кварцевые резонаторы, в которых кварц работает вблизи своей частоты параллельного резонанса.

Итак, кварцевый резонатор в электронной схеме выступает непревзойденной альтернативой любому колебательному контуру, состоящему из конденсатора и катушки индуктивности. Суть в высочайшей добротности кварцевых резонаторов. Тогда как хороший LC-контур достигает добротности 300, добротность кварцевого резонатора может доходить до 10000000. Как видим, превосходство составляет десятки тысяч раз. Таким образом, ни один колебательный контур не сравнится с кварцевым резонатором по добротности.

Что и говорить о влиянии температуры на резонансную частоту. Резонансная частота того же колебательного контура сильно зависит от ТКЕ (температурного коэффициента емкости) входящего в него конденсатора. Кварц же обладает очень высокой температурной стабильностью, именно по этой причине кварцевые резонаторы прочно удерживают свои позиции в роли источников колебаний для генераторов тактовой частоты различного назначения.

Как работает кварцевый резонатор

Чтобы понять как устроен и работает кварцевый резонатор, достаточно вспомнить о том, что такое пьезоэлектрический эффект. Представьте себе пластинку низкотемпературного кварца (диоксид кремния), вырезанную из кристалла определенным образом. То, под каким углом данная пластинка вырезана из кристалла, определяет электромеханические свойства изготавливаемого резонатора. Теперь на эту пластинку с двух сторон прикрепляют электроды, путем нанесения слоев никеля, платины, золота или серебра, а к ним присоединяют жесткие проволочные выводы. Всю конструкцию помещают в небольшой герметичный корпус.

Итак, получилась электромеханическая колебательная система, обладающая (благодаря природным особенностям низкотемпературного кварца) пьезоэлектрическим эффектом, и имеющая собственную резонансную частоту.

Если теперь на электроды подать переменное напряжение, частота которого близка к резонансной частоте полученной колебательной системы, то пластинка начнет механически сжиматься-расширяться с максимальной амплитудой, причем благодаря пьезоэлектрическому эффекту, чем ближе частота прикладываемого напряжения к резонансу — тем меньше будет сопротивление резонатора. В этом и заключается сходство кварцевого резонатора с высокодобротным колебательным контуром. Получился по сути аналог последовательного LC-контура.

Особенности кварцевого резонатора

Кварцевый резонатор можно представить в виде эквивалентной схемы, в которой C0-это монтажная электроемкость, образуемая металлическими выводами-держателями и электродами. C1, L и R – это емкость, индуктивность и активное сопротивление непосредственно пластинки с электродами, как аналога реального колебательного контура, получаемого за счет электромеханических свойств пластинки.

Если исключить из схемы монтажную емкость C0, то получится в явном виде последовательный колебательный контур. Что же касается обозначения резонатора на схеме, то он похож на конденсатор с прямоугольником, символизирующим кристалл кварца, между обкладками.

В процессе монтажа и демонтажа кварцевых резонаторов на платы путем пайки, следует помнить, что перегрев кварца выше 573°C чреват утратой кристаллом пьезоэлектрических свойств.

Кварцевый резонатор — структура, принцип работы, как проверить

Современная цифровая техника требует высокой точности, поэтому совсем неудивительно, что практически любое цифровое устройство, какое бы не попалось сегодня на глаза обывателю, содержит внутри кварцевый резонатор.

Кварцевые резонаторы на различные частоты необходимы в качестве надежных и стабильных источников гармонических колебаний, чтобы цифровой микроконтроллер мог бы опереться на эталонную частоту, и оперировать с ней в дальнейшем, в процессе работы цифрового устройства. Таким образом, кварцевый резонатор — это надежная замена колебательному LC-контуру.

Если рассмотреть простой колебательный контур, состоящий из конденсатора и катушки индуктивности, то быстро выяснится, что добротность такого контура в схеме не превысит 300, к тому же емкость конденсатора будет плавать в зависимости от температуры окружающей среды, то же самое произойдет и с индуктивностью.

Не даром есть у конденсаторов и катушек такие параметры как ТКЕ — температурный коэффициент емкости и ТКИ — температурный коэффициент индуктивности, показывающие, насколько изменяются главные параметры этих компонентов с изменением их температуры.

В отличие от колебательных контуров, резонаторы на базе кварца обладают недостижимой для колебательных контуров добротностью, которая измеряется значениями от 10000 до 10000000, причем о температурной стабильности кварцевых резонаторов речи не идет, ведь частота остается постоянной при любом значении температуры, как правило из диапазона от -40°C до +70°C.

Так, благодаря высоким показателям температурной стабильности и добротности, кварцевые резонаторы применяются всюду в радиотехнике и цифровой электронике.

Для задания микроконтроллеру или процессору тактовой частоты, ему всегда необходим генератор тактовой частоты, на который он мог бы надежно опереться, и генератор этот всегда нужен высокочастотный и при том высокоточный. Здесь то и приходит на помощь кварцевый резонатор. Конечно, в некоторых применениях можно обойтись пьезокерамическими резонаторами с добротностью 1000, и таких резонаторов достаточно для электронных игрушек и бытовых радиоприемников, но для более точных устройств необходим кварц.

В основе работы кварцевого резонатора — пьезоэлектрический эффект, возникающий на кварцевой пластинке. Кварц представляет собой полиморфную модификацию диоксида кремния SiO2, и встречается в природе в виде кристаллов и гальки. В свободном виде в земной коре кварца около 12%, кроме того в виде смесей в составе других минералов также содержится кварц, и в общем в земной коре более 60% кварца (массовая доля).

Для создания резонаторов подходит низкотемпературный кварц, обладающий ярко выраженными пьезоэлектрическими свойствами. Химически кварц весьма устойчив, и растворить его можно лишь в гидрофторидной кислоте. По твердости кварц превосходит опал, но до алмаза не дотягивает.

При изготовлении кварцевой пластинки, от кристалла кварца под строго заданным углом вырезают кусочек. В зависимости от угла среза полученная кварцевая пластинка будет отличаться по своим электромеханическим свойствам.

От типа среза зависит многое: частота, температурная стабильность, устойчивость резонанса и отсутствие либо наличие паразитных резонансных частот. На пластинку затем наносят с обеих сторон по слою металла, коим может быть никель, платина, серебро или золото, после чего жесткими проволочками крепят пластинку в основание корпуса кварцевого резонатора. Последний шаг — корпус герметично собирают.

Так получается колебательная система, обладающая собственной резонансной частотой, и кварцевый резонатор, полученный таким образом, обладает собственной резонансной частотой, определяемой электромеханическими параметрами.

Теперь если приложить к металлическим электродам пластики переменное напряжение данной резонансной частоты, то проявится явление резонанса, и амплитуда гармонических колебаний пластинки весьма значительно возрастет. При этом сопротивление резонатора сильно понизится, то есть процесс аналогичен происходящему в последовательном колебательном контуре. В силу высокой добротности такого «колебательного контура», энергетические потери при его возбуждении на резонансной частоте пренебрежимо малы.

На эквивалентной схеме: C2 – статическая электроемкость пластинок с держателями, L – индуктивность, С1 — емкость, R – сопротивление, отражающие электромеханические свойства установленной пластинки кварца. Если убрать монтажные элементы, останется последовательный LC-контур.

В процессе монтажа на печатную плату, кварцевый резонатор нельзя перегревать, ведь конструкция его довольно хрупка, и перегрев может привести к деформации электродов и держателя, что непременно отразится на работе резонатора в готовом устройстве. Если же разогреть кварц до 5730°C, он вовсе утратит свои пьезоэлектрические свойства, но, к счастью, нагреть элемент паяльником до такой температуры невозможно.

Обозначение кварцевого резонатора на схеме похоже на обозначение конденсатора с прямоугольником между пластинами (кварцевая пластинка), и с надписью «ZQ» или «Z».

Часто причиной повреждения кварцевого резонатора является падение или сильный удар устройства, в котором он установлен, и тогда необходимо заменить резонатор на новый с той же резонансной частотой. Такие повреждения свойственны малогабаритным приборам, которые легко уронить. Однако, по статистике, подобные повреждения кварцевых резонаторов встречаются крайне редко, и чаще неисправность прибора оказывается вызвана иной причиной.

Чтобы проверить кварцевый резонатор на исправность, можно собрать небольшой пробник, который поможет не только убедиться в работоспособности резонатора, но и увидеть его резонансную частоту. Схема пробника представляет собой типичную схему кварцевого генератора на одном транзисторе.

Включив резонатор между базой и минусом (можно через защитный конденсатор на случай короткого замыкания в резонаторе), остается измерить частотомером резонансную частоту. Эта схема подойдет и для предварительной настройки колебательных контуров.

Когда схема включена, исправный резонатор станет способствовать генерации колебаний, и на эмиттере транзистора можно будет наблюдать переменное напряжение, частота которого будет соответствовать основной резонансной частоте тестируемого кварцевого резонатора.

Подключив к выходу пробника частотомер, пользователь сможет наблюдать эту резонансную частоту. Если частота стабильна, если небольшой нагрев резонатора поднесенным паяльником не приводит к сильному уплыванию частоты, то резонатор исправен. Если же генерации не будет, или частота будет плавать или окажется совсем другой, чем должна быть для тестируемого компонента, то резонатор неисправен, и его следует заменить.

Данный пробник удобен и для предварительной настройки колебательных контуров, в этом случае конденсатор C1 обязателен, хотя при проверке резонаторов его можно из схемы исключить. Контур просто подключается вместо резонатора, и схема начинает генерировать колебания аналогичным образом.

Пробник собранный по приведенной схеме замечательно работает на частотах от 15 до 20 МГц. Для иных диапазонов вы всегда можете поискать схемы в интернете, благо их там много, как на дискретных компонентах, так и на микросхеме.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Кварцевый резонатор принцип работы

Что такое кварц

На самом деле, кварц – это один из самых распространенных минералов в земной коре.

Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц также состоит из кремния, но в связке с кислородом.

Его формула SiO2.

Выглядит он примерно вот так:

Что такое кварц

На самом деле, кварц – это один из самых распространенных минералов в земной коре. Его доля составляет около 60%! Если полупроводниковые радиокомпоненты в основном делают из кремния, то кварц также состоит из кремния но в связке с кислородом. Его формула SiO2.

Выглядит он примерно вот так:

Кварцевый резонатор

Резонатор – (от лат. resono – звучу в ответ, откликаюсь) – это система, которая способна совершать колебания с максимальной амплитудой, то есть резонировать, при воздействии внешней силы определенной частоты и формы.

Кварцевые резонаторы выглядят в основном вот так:

Что такое обертоны

Обертоны, или как еще их называют, моды или гармоники – это кратные частоты, выше основной частоты кварца.

С помощью фильтров гасят основную частоту кварца и выделяют обертон.

В кварцевом резонаторе в режиме обертонов используют нечетные обертоны.

Если основная частота кварца F – это первый обертон, то его рабочие обертоны будут как 3F, 5F, 7F, 9F. Стоит также отметить, что амплитуда обертона убывает с ростом его частоты, поэтому далее 9 обертона смысла брать уже нет, так как выделять амплитуду маленького сигнала очень трудно.

Обозначение кварца на схеме

Кварц является диэлектриком. А что будет если тонкий диэлектрик разместить между двумя металлическими пластинами? Получится конденсатор! Конденсатор получается очень маленькой емкости, так что замерить его емкость вряд ли получится. Зато не стали мудрить со схемотехническим обозначением кварца, и на схемах его показывают как прямоугольный кусочек кристалла, заключенный между двумя пластинками конденсатора:

Принцип работы кварца

Для того, чтобы понять принцип работы кварцевого резонатора, надо рассмотреть его эквивалентную схему:

С – это собственно емкость между обкладками конденсатора. То есть если убрать кристалл кварца, то останутся две пластины и их выводы. Именно они и обладают этой емкостью.

С1 – это динамическая емкость самого кристалла. Динамическая – это значит проявляется при работе кварца. Ее значение несколько фемтоФарад. Фемто – это 10-15 !

L1 – это динамическая индуктивность кристалла. Она может достигать несколько тысяч Генри!

R1 – динамическое сопротивление, при работе кварца может достигать от нескольких Ом и до нескольких КилоОм

Можно заметить, что С1, L1 и R1 образуют последовательный колебательный контур, который обладает своей резонансной частотой.

Принцип работы кварцевого резонатора такой: если к обкладкам кварцевого резонатора подвести переменное напряжение, то его пластинка начнет колебаться с частотой подведенного напряжения.

Если подведенная частота будет совпадать с собственной резонансной частотой колебания кварца, то наступит резонанс.

Напряжение на обкладка кварца резко возрастает. В этом случае кварцевый резонатор ведет себя, как настроенный на определенную частоту колебательный контур с очень высокой добротностью.

Каждый кварц имеет разные частоты последовательного и параллельного резонанса.

Если мы видим на кварце вот такую надпись

это говорит нам о том, что на частоте последовательного резонанса мы можем возбудить этот кварц на частоте 8 Мегагерц.

В основном кварц работает на частоте последовательного резонанса.

Здесь также есть еще одно правило: если частота маркируется в целых числах в Килогерцах – это работа на основной гармонике, а если в Мегагерцах через запятую – это обертонная гармоника.

Например: РГ-05-18000кГц – резонатор для работы на основной частоте, а РГ-05-27,465МГц – для работы на 3-ем обертоне.

Кварцевый резонатор

Принцип работы и свойства кварцевого резонатора

В современной электронике, особенно в цифровой сложно не найти электронный компонент под названием кварцевый резонатор. По своей сути, кварцевый резонатор является аналогом колебательного контура на основе ёмкости и индуктивности. Правда, кварцевый резонатор превосходит LC-контур по очень важным параметрам.

Как известно, колебательный контур характеризуется добротностью . Резонаторы на основе кварца обладают очень высокой добротностью, которая недостижима при использовании обычного колебательного LC-контура. Если добротность обычных контуров лежит в пределах 100 – 300, то для кварцевых резонаторов величина добротности достигает 10 5 – 10 7 .

Ёмкость конденсатора довольно сильно зависит от температуры окружающей среды. У конденсаторов даже есть параметр, который называется ТКЕ (температурный коэффициент ёмкости). Он показывает насколько измениться ёмкость конденсатора при изменении температуры.

Естественно, при применении конденсатора в составе LC-контура, частота его колебаний будет очень сильно зависеть от внешней температуры среды. То же касается и индуктивности, у которой также есть своя температурная характеристика — ТКИ.

Понятно, что для использования в цифровой технике (в том числе и в технике связи) требуется более стабильный и надёжный источник гармонических колебаний.

Резонаторы на основе кварца обладают очень высокой температурной стабильностью . Именно благодаря высокой добротности и температурной стабильности кварцевые резонаторы применяются в радиотехнике очень активно.

Любой процессор или микроконтроллер работает на определённой тактовой частоте. Понятно, что для задания тактовой частоты необходим генератор. Такой генератор в качестве источника высокоточных гармонических колебаний, как правило, использует кварцевый резонатор. В тех схемах, где высокая добротность не требуется, могут применяться резонаторы на основе керамики – керамические резонаторы. Добротность резонаторов на основе пьезокерамики составляет не более 10 3 . Их можно встретить в пультах дистанционного управления, электронных игрушках, бытовых радиоприёмниках.

Принцип работы кварцевого резонатора.

Принцип работы кварцевого резонатора целиком и полностью опирается на пьезоэлектрический эффект . Основой любого кварцевого резонатора является пластинка из кварца. Кварц – это одна из разновидностей кремнезема SiO2 . Для изготовления резонаторов пригоден только лишь низкотемпературный кварц, который обладает пьезоэлектрическими свойствами. В природе такой кварц встречается в виде кристаллов и бесформенной гальки.


Кристалл кварца

Химически кварц очень устойчив и не растворяется ни в одной из кислот, за исключением плавиковой. Также кварц очень твёрдый. На шкале твёрдости он занимает седьмое место из десяти.

Чтобы изготовить кварцевую пластинку берётся кристалл кварца и из него под определённым углом вырезается пластинка. От угла, под которым происходит срез, зависят электромеханические свойства кварцевой пластины. Тип среза существенно влияет на температурную стабильность, количество паразитных резонансов, резонансную частоту.

Далее на две стороны кварцевой пластины наносят металлизированный слой (из серебра, никеля, золота или платины) и посредством жёстких проволочных контактов закрепляют в кварцедержателе. Всю эту конструкцию помещают в герметичный корпус.

Кварцевый резонатор является электромеханической колебательной системой. Как известно, любая колебательная система обладает своей резонансной частотой . У кварцевого резонатора также есть своя номинальная резонансная частота . Если приложить к кварцевой пластине переменное напряжение, которое совпадает с резонансной частотой самой кварцевой пластины, то происходит резонанс частот и амплитуда колебаний резко возрастает.

При резонансе электрическое сопротивление резонатора уменьшается. В результате получается эквивалент последовательной колебательной системы. Поскольку потери энергии в кварцевом резонаторе очень малы, то он фактически представляет собой электрический колебательный контур с очень большой добротностью .

Эквивалентная электрическая схема кварцевого резонатора изображена на рисунке.


Эквивалентная электрическая схема кварцевого резонатора

Здесь С – это постоянная (статическая) ёмкость образующаяся за счёт металлических пластин-электродов и держателя. Последовательно соединённые индуктивность L1,конденсатор С1 и активное сопротивление Rакт. отражают электромеханические свойства кварцевой пластинки. Как видим, если отбросить ёмкость монтажа и кварцедержателя С, то получиться последовательный колебательный контур.

При монтаже кварцевого резонатора на печатную плату стоит позаботиться о том, чтобы не перегреть его. Эта рекомендация наверняка связана с тем, что конструкция кварцевого резонатора довольно тонкая. Температурный перегрев может вызвать деформацию кварцедержателя и пластинок-электродов. Естественно, всё это может отразиться на качестве работы резонатора в схеме.

Также известно, что если кварц нагреть свыше 573 0 С, то он превращается в высокотемпературный кварц и лишается своих пьезоэлектрических свойств. Конечно, довести температуру кварца до такой температуры оборудованием для пайки нереально.

Обозначение кварцевого резонатора.

На принципиальных схемах и в технической документации кварцевый резонатор обозначается наподобие конденсатора, только между пластинами добавлен прямоугольник, который символизирует пластинку кварца. Рядом с графическим изображением указывается буква Z или ZQ.


Условное обозначение кварцевого резонатора на схемах

Как проверить кварцевый резонатор?

Многие начинающие радиолюбители задаются вопросом: “Как проверить кварцевый резонатор?”

К сожалению, достоверно проверить кварцевый резонатор можно только заменой. Причиной неисправности кварцевого резонатора может быть сильный удар либо падение электронного прибора, в котором он был установлен. Поэтому если есть подозрение в исправности кварцевого резонатора, то его стоит заменить новым. К счастью в практике ремонта неисправность кварцевого резонатора встречается редко, конечно, есть и исключения, но они относятся к портативной электронике, которую частенько роняют.

Более подробную информацию о кварцевых резонаторах вы узнаете из книги, которую найдёте здесь.

Кварцевые резонаторы. Виды и применение. Устройство и работа

Современная цифровая аппаратура нуждается в высокой точности, поэтому часто в цифровых устройствах содержится кварцевый резонатор, который является стабильным и надежным генератором гармонических колебаний. Цифровые микроконтроллеры работают на основе этой постоянной частоты, и используют ее для работы цифрового прибора. Кварцевые резонаторы являются надежной заменой контура колебаний, собранного на конденсаторе и катушке индуктивности.

Добротность контура колебаний на основе катушки и конденсатора не превышает 300. Она является характеристикой контура колебаний, определяющей величину полосы резонанса. Добротность показывает, во сколько раз энергия колебательной системы превышает потери энергии в течение одного периода колебаний. Чем больше добротность, тем меньше теряется энергии за один период, и медленнее затухают колебания. Емкость конденсатора в обычном контуре колеблется в зависимости от температуры среды. Величина индуктивности катушки также зависит от многих факторов. Существуют даже соответствующие коэффициенты, определяющие зависимость параметров этих элементов от температуры.

Разновидности

Кварцевые резонаторы, в отличие от вышеописанных контуров колебаний, обладают очень большой добротностью, достигающей значения в несколько миллионов. При этом температура в пределах -40 +70 градусов никак не влияет на этот параметр. Высокая стабильность работы кварцевых резонаторов при любой температуре послужила их широкому применению в цифровой электронике и радиотехнике.

По типу корпуса:

  • Для объемной установки (цилиндрические и стандартные).
  • Для поверхностного монтажа.
По материалу корпуса:
  • Металлические.
  • Стеклянные.
  • Пластиковые.
По форме корпуса:
  • Круглые.
  • Прямоугольные.
  • Цилиндрические.
  • Плоские.
По количеству резонансных систем:
  • Одинарные.
  • Двойные.
По защите корпуса:
  • Герметичные.
  • Негерметизированные.
  • Вакуумные.
По назначению:
  • Фильтровые.
  • Генераторные.

Важным свойством кварцевых резонаторов для успешной работы является их активность. Но она не определяется только собственными свойствами. Вся электрическая схема влияет на его активность.

В резонаторах, используемых в фильтрах, применяются такие же виды колебаний, как и в генераторных резонаторах. В фильтрах используются 2-х и 4-х электродные вакуумные резонаторы. Для многозвенных фильтров чаще всего применяются 4-х электродные, так как они более экономичные.

Принцип действия и устройство

Кварцевые резонаторы работают на основе пьезоэлектрического эффекта, образующегося на кварцевой пластинке. Кварц – это природный кристалл. Он представляет собой модификацию соединения кремния с кислородом, и имеет химическую формулу Si O2. Массовая доля кварца в земной коре составляет около 60%, в свободном виде 12%. В других минералах также может содержаться кварц.

Для производства кварцевых резонаторов используют низкотемпературный кварц. Он обладает выраженным пьезоэлектрическим эффектом. Химическая устойчивость кварца очень высока, растворить кварц способна только гидрофторидная кислота. По твердости кварц стоит на втором месте после алмаза. Кварцевую пластинку для резонатора изготавливают путем вырезания из кварца кусочка под заданным определенным углом. В зависимости от этого угла среза кварцевая пластинка отличается разными электромеханическими параметрами.

От вида среза зависит наличие или отсутствие паразитных частот, стабильность работы при любых температурах, частота колебаний. На обе стороны кварцевой пластинки наносят слой одного из дорогостоящих металлов: серебра, платины, никеля или даже золота. После этого пластинку фиксируют прочными проволочками в корпусе резонатора. Затем производят герметичную сборку корпуса.

В результате образуется колебательный контур, обладающий собственной частотой резонанса, определяющей работу всего резонатора. Если к электродам пластинки приложить переменное напряжение с частотой резонанса, то возникнет резонансный эффект, а амплитуда колебаний пластинки значительно повысится. При этом резонатор уменьшит свое сопротивление на значительную величину. Этот процесс подобен тому процессу, который происходит в контуре колебаний последовательного вида (на основе катушки и конденсатора). Потери энергии при возбуждении кварцевого резонатора на частоте резонанса очень малы, так как добротность кварцевого контура колебаний очень высока.

Эта эквивалентная схема состоит из:
  • R – Сопротивление.
  • С1 – Емкость.
  • L – Индуктивность.
  • С2 – Статическая электрическая емкость пластинок вместе с держателями.

Эти элементы определяют электромеханические параметры кварцевой пластинки. Если удалить монтажные элементы, получается последовательный контур . При установке на монтажную плату, кварцевый резонатор не переносит чрезмерного нагрева, так как его конструкция очень хрупкая. Сильное нагревание может деформировать держатель и электроды, что отражается на функционировании готового кварцевого резонатора. Кварц полностью теряет свои свойства пьезоэлектрика при нагревании до температуры 5370 градусов. Однако паяльник не способен так сильно разогреваться.

На электрических схемах кварцевый резонатор обозначается по аналогии с конденсатором, но между пластин изображен прямоугольник, символизирующий кварцевую пластинку. На схеме резонатор обозначен «QX».

Обычно причиной неисправностью кварцевого резонатора становится сильный удар или падение устройства, в котором он находится. В этом случае резонатор подлежит замене на новый, с такими же параметрами. Такие неисправности возникают в маленьких приборах, которые проще уронить, или повредить. Но такие повреждения резонаторов встречаются не часто, и обычно неисправность устройства кроется совсем в другом.

Как проверить кварцевые резонаторы

Для проверки резонатора на его работоспособность, собирают специальный простой тестер, помогающий проверить кроме работы резонатора, еще и его частоту резонанса. Схема такого устройства похожа на кварцевый генератор, собранный на транзисторе.

Подключив резонатор между отрицательным полюсом и базой транзистора через защитный конденсатор, с помощью частотомера измеряют частоту резонанса. Такая схема подходит для настройки контуров колебаний. При включенной схеме исправный резонатор создает колебания. В результате на эмиттере транзистора возникает переменное напряжение с частотой резонанса тестируемого резонатора.

Если к выходу тестера подключить частотомер, то можно измерить частоту резонанса. При стабильной частоте и небольшом нагревании корпуса резонатора паяльником частота не должна значительно изменяться. Если частотомер не обнаруживает возникновение частоты, либо она сильно изменяется или имеет большие отличия от номинала, то резонатор негоден и требует замены.

При использовании такого тестера для настройки контуров, емкость С1 обязательна. Но при проверке исправности резонаторов ее присутствие в схеме не требуется. При этом колебательный контур просто подсоединяют на место кварцевого резонатора и тестер начинает создавать колебания таким же образом.

Тестер, выполненный по рассмотренной схеме, хорошо зарекомендовал себя на частоте 15-20 мегагерц. Для других интервалов можно найти другие схемы, собранные на микросхемах и других компонентах.

Сфера применения
Благодаря стабильности параметров кварцевых резонаторов, они нашли широкое использование в различных областях:
  • Многие измерительные устройства работают на основе таких резонаторов, при этом точность измерений очень высока.
  • Пьезокварцевая пластина применяется в качестве резонатора в морском эхолоте для выявления объектов, расположенных в воде, исследования дна моря, определения нахождения отмелей и рифов. Это дает возможность изучения жизни в океане в глубоководных районах, а также создания точных карт морского дна.
  • Кварцевые резонаторы нашли широкую популярность в кварцевых часах, так как частота колебаний кварцевой пластины практически не зависит от температуры, и имеет малое относительное изменение частоты.

Кварцевые резонаторы расширяют свою сферу использования, потребность в них постоянно увеличивается, так как они обладают повышенными метрологическими параметрами, эффективностью работы.

Кварцевый резонатор

Кварцевый резонатор – радиодеталь, использующая пьезоэлектрический эффект. Он характеризуется тем, что под механическим воздействием между противоположными сторонами диэлектрика возникает электрическое поле. Эффект может быть обратным. То есть электрический потенциал может вызывать деформацию тела диэлектрика. Идеальным материалом для резонатора служит минерал – кварц.

Что такое кварцевый резонатор

Многих людей интересует, что представляет собой кварцевый резонатор (КР), и для чего он нужен. Радиоэлемент является источником гармонических колебаний. Первые КР были применены в схемах радиостанций в 30-е годы прошлого века. Они заменили аналоги, работавшие на кристаллах сегнетовой соли. Приборы были успешно использованы в электронных часах и таймерах.

Разновидности

Кварцевые радиокомпоненты бывают различных видов, в зависимости от предъявляемых к ним требований. КР разделяют по следующим признакам.

Тип корпуса

  1. Объёмные радиокомпоненты.
  2. Плоские поверхностные модели.

Материал корпуса

  • Металл;
  • Стекло;
  • Полимер.

Форма прибора

  • Диск;
  • Цилиндр;
  • Прямоугольный параллелограмм.

Количество резонансных систем

  1. Одиночная.
  2. Двойная.

Защита корпуса

  • Герметичная;
  • Проницаемая;
  • Вакуумная.

Назначение

  1. Фильтрация.
  2. Генерация.

Свойства кварцевого резонатора

Во многих приборах резонансный радиокомпонент является незаменимым элементом. К положительным свойствам КР относятся:

  • Хорошая добротность превышает этот показатель аналогичных устройств. Добротность характеризует ширину резонанса, определяющую, во сколько раз запас энергии больше её потери за время изменения фазы на 1 радиан. Кварц достигает значений добротности в 104-106 раз больше, чем эквивалентный колебательный контур.
  • Невосприимчивость к перепадам температуры окружающей среды;
  • Каскадные фильтры на кварцевых радиодеталях позволяют обходиться без ручной настройки;
  • Большой срок службы;
  • Простота устройства прибора делает КР доступной деталью на радиорынке.

Принцип работы кварцевого резонатора

Работа устройства основана на пьезоэффекте минеральной пластинки. Её вырезают из массива минерала под определённым углом. Параметр уклона обеспечивает необходимые электрохимические характеристики радиокомпонента.

Пластинку покрывают с обеих сторон драгоценным металлом (в основном серебром). К покрытию минерала припаивают выводные электродные ножки. Конструкцию заключают в герметичный корпус прибора. Прибор представляет собой колебательный контур, который имеет собственную резонансную частоту.

Важно! Переменное напряжение, сообщаемое электродам, заставляет кристалл деформироваться (изгибаться, сжиматься или сдвигаться). Одновременно с этим на его поверхности появляется ЭДС. Когда частота тока совпадает с частотой колебаний кварца, возникает эффект резонанса. В результате увеличивается амплитуда колебаний элемента, и сильно падает величина сопротивления радиодетали.

Обозначение кварцевого резонатора на электросхеме

Схематичное изображение КР похоже на обозначение конденсатора, только между вертикальными линиями помещают прямоугольник. Эта фигура символизирует кварцевую пластинку. Обозначать прибор принято буквами «QX».

Маркировка рабочей частоты нанесена на корпусе резонатора. Например, 12000 означает, что прибор работает в диапазоне 12 тыс. МГц.

Эквивалентная электрическая схема

Основным элементом КР является кристалл кварца, который воспроизводит электромеханические колебания. Электронный элемент можно заменить эквивалентной электрической схемой – колебательным контуром с аналогичными параметрами.

Сопротивление эквивалента равно сопротивлению пьезоэлектрического прибора с близкими к резонансу частотами. Последовательно соединённые в одну схему динамические элементы (катушка индуктивности Lk, ёмкость Cx, сопротивление Rk) выстроены совместно с параллельно соединёнными ёмкостями кварца Co и его держателя C1. Эквивалентная электрическая схема имеет численное значение механических колебаний, соответствующее этому параметру у КР.

Как проверить кварцевый резонатор

Резонатор – довольно хрупкий прибор. При резком динамическом воздействии на корпус радиоэлектронного устройства КР может выйти из строя. Это скажется на работе всего аппарата. В этой ситуации мастер должен проверить работу кварцевого резонатора. Делают проверку с помощью тестера, схема которого состоит из транзистора КТ3102, пяти конденсаторов и двух резисторов. Собрать такой тестер даже для рядового радиолюбителя не составит особых трудностей. Как это сделать, видно на рисунке.

Выводы резонатора подключают между отрицательным выходом и базой транзистора через защитный конденсатор. По частотомеру определяют величину резонанса. Дополнительно соединяют его вход и выход через конденсатор (частомер). Всю схему запитывают постоянным током напряжением 9 вольт. Если прибор исправен, то на эмиттере транзистора возникает переменное напряжение. При этом частоты тока и прибора совпадают.

Резонатор считают неисправным, если частомер не выдаёт никаких показаний, либо показания отличаются от номинальной характеристики. Повреждённую деталь заменяют новым прибором.

При настройке контуров присутствие ёмкости С1 в тестере обязательно. При проверке КР в схеме контроллера можно обойтись без этой детали.

Обратите внимание! Указанный тестер работает в диапазоне частот 15-20 МГц. Для других частотных интервалов собирают устройства на микросхемах.

Применение

С развитием радиоэлектроники КР нашли своё применение в таких приборах, как:

  • кварцевые часы работают на основе эффекта кварцевого резонанса, что позволяет им функционировать с максимальной точностью;
  • различные измерительные устройства, оснащённые кварцевыми резонаторами, являются высокоточными приборами;
  • морские эхолоты, благодаря кварцевым резонаторам, определяют местонахождение различных объектов на большой глубине под водой (рельеф дна, отмели и разные крупные и мелкие предметы);
  • опорные генераторы;
  • радиостанции;
  • полосовые фильтры радиоприёмников.

Преимущества

Кварцевые резонаторы обладают непревзойдённой точностью метрологических параметров. Высокая эффективность работы вызвала повсеместную замену аналоговых приборов на кварцевые устройства.

Дополнительная информация. Появление нового материала такого, как графен, может в будущем совершенно изменить конструкцию резонатора.

Недостатки

К недостаткам прибора можно отнести тонкость кварцевой пластины, что создаёт риск её повреждения.

Возможные причины выхода из строя

Слабой стороной КР считается непереносимость перегрева. В случае нагрева платы резонатор теряет свои качества и может разрушиться. Учитывая хрупкое крепление кристалла, резонатор нужно уберегать от случайных ударов. В результате резкого толчка кварцевая пластинка может потерять устойчивость и выпасть из рамки.

Область применения кварцевых резонаторов постоянно расширяется. Возможность изготовления радиокомпонентов миниатюрных размеров позволяет использовать их в устройствах небольших габаритов. Широкий ассортимент КР, представленный на радиорынке, даёт возможность подобрать нужную модель устройства по доступной цене.

Видео