Лейденская банка принцип работы

Лейденская банка. Виды и устройство. Работа и применение

Лейденская банка – это первый в своем роде электрический конденсатор, который появился на свет благодаря стараниям немецких и голландских ученых. В 1745 году подобную банку смастерил Эвальд Георг фон Клейст. Через год подобное устройство, но с некоторыми отличиями, создали в Лейденском университете. Этим устройством заинтересовался аббат Нолле из Франции, который продемонстрировал его королю. Именно благодаря демонстрации первая конструкция электрического конденсатора получила название банка из Лейдена.

До изобретения этой банки ученые вырабатывали электричество с помощью диэлектриков в виде стекла или янтаря, а также электростатических генераторов. Клейст решил провести эксперимент, зарядив электрическим зарядом воду в банке посредством штыря из железа. В то же время банка находилась на металлической тарелке. Проведя опыты, он понял, что в банке конденсируется электрический ток.

Виды
Лейденская банка почти всегда имела одно и то же строение. Однако конструкция банки с течением времени усовершенствовалась:
  • Изначально вода в ней была заменена на дробь.
  • Затем в качестве наружной поверхности стали использоваться тонкие пластины из свинца.
  • В последующем вместо пластин из свинца стали применяться листы из оловянной фольги.

Одним из вариантов устройства была батарейка лейденских бутылок, которые имели проводящую жидкость. В них были вставлены стержневые выводы, которые соединялись между собой. Сосуды соединяются с помощью общего вывода, вследствие чего получался большой конденсатор. Это устройство было изобретено Павлом Николаевичем Яблочковым. Указанные блоки можно было соединять последовательно либо параллельно. Конструкция в виде блоков в итоге получила довольно обширное применение в различных отраслях промышленности.

Устройство

Это сосуд из стекла, внутри и снаружи покрытый фольгированным листом. Посредством пробки из резины в сосуд вставляется стержень из металла таким образом, что он касается фольги, расположенной внутри банки. В результате листы фольги, расположенные внутри и снаружи, играют роль электродов при подсоединении их к наружному источнику электроэнергии. Для этого может быть использована батарейка, какой-нибудь аккумулятор, либо палка из эбонита, которую заранее потерли о мех.

Лейденская банка напоминала закрутку. Сверху накручивалась крышка из металла, которая входила в электрод. Через некоторое время банки объединялись с батареями, после чего их помещали в один ящик.

Эти устройства применялись порядка 150 лет. Так как везде был распространен постоянный ток, то не было необходимости изобретать что-то еще. Поэтому в основном довольствовались банками, чтобы обеспечить работу применявшихся в то время телеграфов.

Принцип действия

Лейденская банка имеет принцип действия, свойственный обычному электрическому конденсатору. Основное достоинство банки перед конденсаторами пластинчатого вида кроется в довольно большой поверхности, а также в наличии замкнутого контура при разных и одинаковых параметрах. В качестве источника заряда для банки может применяться батарея, аккумулятор либо другое устройство. Электрический заряд способна выдавать и палочка из эбонита, которая заранее была потерта о шерстяной материал. Она имеет свободные электроны.

При соприкосновении стержня из металла с крышкой сосуда электроны перемещаются от палочки на поверхность внутреннего электрода. В результате отрицательные заряды накапливаются на внутреннем электроде, так как банка имеет ограниченную способность к накоплению зарядов. В виду взаимного отталкивания не весь электрический заряд может перейти на электрод. Возможность накапливания или удерживания заряда как раз и зовется емкостью.

Емкость увеличивается благодаря присутствию второго электрода, который расположен на внешних стенках банки. При заземлении этого электрода, заряд который накапливается внутри, может притягивать с поверхности земли плюсовой заряд, равный такой же величине. Плюсовой заряд на электроде внутри банки притягивает отрицательные электроны, что приводит к частичному сдерживанию сил отталкивания. В результате можно несколько увеличить емкость банки.

Емкость может быть увеличена двумя способами:
  1. Повышение площади электродов, что позволит рассредоточить заряды, а также снизить взаимно отталкивающие силы.
  2. Можно также снизить толщину стенки банки. Однако необходимо понимать, что если оставить излишне тонкое стекло, то заряды будут рассеиваться.

Другим способом является подбор изоляционных материалов.

Применение

Лейденская банка считается одним из самых важных изобретений, что дало толчок к дальнейшему изучению электричества. Благодаря этому стали изучаться электропроводящие свойства многих материалов. Именно при помощи этой банки была получена электрическая искра искусственным путем. Сегодня банка в большинстве случаев используется лишь для демонстраций в виде элемента электрофорной машины. Ее заменили устройства в виде современных конденсаторов, которые отличаются большей емкостью и удобством использования.

Тем не менее, использование данного вида конденсатора позволяет наглядно продемонстрировать, как работает это устройство. Но банка имеет определенные ограничения по хранению электронов. Вызвано это не идеальностью применяемых изоляционных материалов. В то же время электроэнергия в такой банке может храниться достаточно долгое время, если отключить ее от цепи.

Благодаря изобретению банки удалось установить влияние элктроразрядов на человека. В результате появилась электромедицина. Именно в этой области стали широко применяться банки для проведения экспериментов и лечения человека. Банки использовались для телеграфов, ведь они давали необходимый сигнал. Устройство заряжалось вручную. Выяснилось, что устройства большего объема могли обеспечивать более сильный разряд.

При этом имелась и определенная зависимость от толщины стекла. При применении банок с тонкими стеклами можно было получать разряд на порядок сильнее, чем с толстыми стеклами. Именно благодаря изучению силы электрического удара появились плоские конденсаторы.

Лейденская банка своими руками

Сегодня подобную банку можно смастерить самостоятельно и в довольно короткие сроки. Для этого потребуется банка из пластмассы, пластина из жести, которой припаивается изолированный провод, фильтровальная бумага, уголь активированный, соленая вода, а также крышка с выводом-контактом. Пластина помещается на дно банки, конец провода выводится наверх. Закрывается бумагой и слоем угля. Наливается вода, а банка закрывается крышкой с выводом. В результате банка будет иметь два изолированных провода. При подведении напряжения появится эффект конденсации.

Лейденская банка

Лейденская банка – прибор, запасающий электрический заряд.

Математическое выражение емкости

Находятся люди, ненавидящие исторические экскурсы, веселые анекдоты, приведенные ниже, подробное изложение. Посещают интернет, выуживая формулу электроемкости лейденской банки, хотят немедленно видеть. Пожалуйста:

C = q/U, q – накапливаемый лейденской банкой заряд, U – разница потенциалов между выводами. Иное выражение позволяет выразить электроемкость конденсатора площадью обкладок, расстоянием меж ними:

электроемкость конденсатора повышается ростом площади, уменьшением зазора. ε – диэлектрическая проницаемость вещества между обкладками, ε(0) – электрическая постоянная, равная 8,85 пФ/м.

По указанным причинам наибольшей электроемкостью обладают электролитические конденсаторы оксидного типа. Обкладки расположены впритык.

Из истории

Двигатель прогресса

Большинство великих изобретателей увлекались историей естествознания. Тесла заинтересовался электричеством, когда увидел искры с шерсти обыкновенного кота. В давние времена далеко не каждый имел образование. Георг Ом имел несчастье родиться в бедной семье, облагодетельствованный отцом, читал книги по математики, получил наставника. Задача, которая в 20-е годы XIX многим показалась непосильной, решена с получением закона Ома для участка цепи.

После Второй мировой страны добились невероятного развития. Россия, к сожалению, в число не входит. Несомненный успех найден, где ранее ученые умы закладывали фундамент. Достаточно посмотреть ВВП сверхдержав:

  1. Первое место взяло США. Дикая земля с завидным постоянством служила пристанищем ученых. Промышленники постоянно думали, как заработать. Эдисон известен, побежден Николой Тесла, обманутым воротилой чуть раньше. Большая часть бытовой техники запатентована, придумана США. Миксеры, блендеры, кофеварки. Карол Поллак на конденсатор взял патент США.
  2. КНР занимает почетное второе место. Аналитики предрекают сверхдержаве большое будущее. Другим – не нравится Китай, постоянно копирующий чужую технику. Иосиф Сталин занимался выпуском автомобилей СССР, избегая оплачивать копейки по патентам иностранных фирм. По производству конденсаторов Китай наверняка догнал тройку лидеров.
  3. Третье место занимает Япония, ставка сделана на политику Большого рывка. До Второй мировой войны феодальная держава, последующие сорок пять лет Страна восходящего солнца последовательно занималась инновациями в наукоемкие отрасли. Изобретения пришли с островов, в силу недостаточности межнационального общения лишены должной мировой известности.
  4. Четвертое, пятое, шестое места занимают Германия, Великобритания, Франция. Непрерывно ссорящиеся в прошлом державы переняли манеру ученых кругов, постоянно обменивающихся опытом, идеями. Предпринимались продолжительные поездки (вспомнив Дэви и Фарадея). Начало электролитических конденсаторов заложено Германией, первенство оспаривается Нидерландами (18 место).

Вывод напрашивается: научное достояние важнее сиюминутной выгоды. Достаточно придумать новый конденсатор, придумать способы использования, взять патент, немедленно начнете зарабатывать. Господь благословил Америку, утверждают жители США неофициальным гимном. Стоял позади, выступал щитом, как обещано Ветхим Заветом. Изобретатели волей провидения приносили прибыль.

Лейденская банка

Отбрасывая слухи, первым изобретателем лейденской банки, считается Эвальд фон Клейст. Явление накопления заряда обнаружили на примере бутылки из-под вина. Фон Клейст опустил в ртуть провод электростатического генератора, придерживая конденсатор. После разрыва с источником оказалось: торчащий кончик бьется током. Гораздо сильнее электростатической машины. Эффект оценивался нервной системой естествоиспытателя.

Сделан правильный вывод: заряд удаётся запасать электроемкостью, механизм остался тайной. Предполагалось, что дело в стекле (Бенджамин Франклин). Накапливает заряд. Реально провод с ртутью служили одной обкладкой образованного конденсатора. Отсутствовали инструменты оценить электроемкость прибора. На момент середины XVIII века существовал электроскоп, говорилось: заряд присутствует, доводилось делать предположение о знаке (фон Герике обнаружил: наэлектризованный шарик, притянутый человеческим носом, после соприкосновения начинает отталкиваться).

Оказалось, алкоголь проводит электрический ток. Вставив в пробку железный гвоздь, запечатав, фон Клейст наслаждался ударами запасенного тока от электроемкости конденсатора. Постепенно конструкция стала больше напоминать нынешнюю. В колбу термометра опускался провод со свинцовым шаром на конце. Емкость заполнялась водой. Отсутствовала важная деталь – вторая обкладка. Электричество могло храниться несколько часов, вызывать на демонстрациях легкие всполохи, окружающих впечатляло.

Об электрическом токе не было известно ровным счетом ничего, могло помочь проверить наличие заряда щадящими методами. Фон Клейст касался контакта пальцем, когда уставал терпеть, брал рукой кусочек золотой пластинки. Описываемые события заканчиваются октябрем 1745 года, месяцем спустя фон Клейст докладывает о своих достижениях двум другим ученым:

  1. В Берлин доктору Либеркуну.
  2. В Галле доктору Крюгеру.

Доказывая окружающим состоятельность работ, фон Клейст заставлял «целоваться» с конденсатором, утверждая: редкий мазохист захочет продолжения вечеринки. От излишнего усердия терщика колбы иногда разбивались. Войска конденсаторов несли потери, Бенджамин Франклин ввел термин батарея. Настолько сильным оказался шок заряда, запасенного электростатическим генератором! Фон Клейст временами втихомолку удивлялся, если конденсатор рукой не придерживать, разряд отсутствует: отсутствовало понятие электрической цепи. Предметы отказывались электризоваться контактом, фон Клейст решил: человеческое тело определенно относится к работе конденсатора.

Мушенбрук

Следует напомнить: закон об охоте за ведьмами недавно отменен, Бенджамин Франклин мог спокойно охотиться за молниями воздушным змеем, эстафету немецкого ученого перенял некто Питер ван Мушенбрук. Исторические источники говорят: муж науки изобрел лейденскую банку (конденсатор) совершенно независимо от фон Клейста. Видимо, мысль заполняла эфир, человек просто подхватил, как иные подхватывают простуду. Результат был более впечатляющим, нежели выздоровление.

В Лейденском Университете поныне опыты фон Клейста замалчивают. Лавры отданы Мушенбруку, дата открытия конденсатора с задокументированной демонстрации января 1746 года переносится на таинственный день 1745. Передавая честь изобретения, Мушенбрук таинственно молчал, уподобляясь рыбе…

Ученый Питер ван Мушенбрук

В начале 1746 года уведомлен Рене Антуан Реомюр. Нельзя сказать, чтобы деятель науки занимал видный пост, но 40 лет освещал присутствием круги, мог оценить значимость изобретения конденсатора. Главное, Реомюр знал лично священника, члена Академии наук (Франции) Жана-Антуана Нолле, большого энтузиаста, весельчака. Предполагают, последний хотел измерить на монахах, руководствуясь лейденской банкой скорость движения электрического тока. Задуманное провалилось: 700 человек заорали одновременно. Мгновенно уверовали в науку, существование электроемкости конденсатора. 180 королевских мушкетеров не смогли ответить железной стойкостью, подвергнувшись экзекуции – уверовал Людовик XV. Кадры решают все – в отличие от фон Клейста, ван Мушенбрука Нолле нашел немедленное признание, конденсатор обрел известность.

Однако! Ван Мушенбруку повезло больше предшественника. Многие утверждают: первый удар током получил студент на январской демонстрации, сама постановка вопроса намекает: ученый знал последствия разряда электроемкости конденсатора, хитро улыбаясь, наблюдал учащихся. Иные источники говорят: открытие было сделано ранее. В лаборатории Мушенбрук пытался получить искры, заручившись помощью дула ружья: видимо, быстро понял, как обращаться со стеклянным шаром статического электрогенератора, чтобы остаться в живых. Получилось волей случая, на столе покоилась банка, заполненная водой, к стволу зачем-то привязан медный провод, опускаемый внутрь сосуда.

Искра почему-то отсутствовала. Мушенбрук, задумавшись, одной рукой опер стол, коснувшись банки, другой взялся за ствол, закоротив цепь разряда электроемкости конденсатора. Мгновенно понял истинное предназначение – недаром говорят: незаряженное ружье раз в жизни стреляет. Нужно было стать фокусником или факиром! Шутка ли, сотворить с обычным охотничьим ружьем. Отдача вышла весьма сильная, ощущение – будто попала молния. Ученый пришел к открытию. Сумел обнаружить: цепь легко замыкалась через металлическую столешницу. Объяснить явление не смог.

Конструкция лейденской банки

Лейденская банка стала напоминать закрутки. Заменили винную бутылку. Поверх плотно накручивали металлическую крышку, входящую в электрод. Банки стали объединять батареями (показано рисунком), ставили в ящик. Мушенбрук заметил: без присмотра прибор быстро теряет заряд.

Лейденские банки Маркони

Лейденские банки использовала техника по простой причине. Давали сильный сигнал, позволяющий функционировать телеграфу. Зарядить прибор можно было вручную, неплохая альтернатива. Определение покажется странным, раньше приборами телеграфной связи оборудовали корабли. Моряки избегают шуток. Представленное изображение демонстрирует продукцию фирмы Маркони, оборудование стояло на затонувшем Титанике.

После лейденской банки

Устройства использовались свыше полутораста лет с большим успехом. При помощи лейденской банки построен первый колебательный контур. Поскольку везде использовался постоянный ток, потребности изобретать не было. Довольствовались гальваническими элементами, лейденскими банками. Позже появились аккумуляторы, разновидность электрохимического источника тока.

Забавно, серьезные предпосылки появления первых конденсаторов в сегодняшнем виде создал опять-таки Никола Тесла. Много написано о сербе, не перечесть заслуг. Ученый начал для моделирования устройств использовать колебательные цепи. Знаменитая башня Вондерклифф – резонансный электрический контур впечатляющих размеров.

В конце XIX века стали появляться на свет конденсаторы различного толка.

Лейденская банка

Ле́йденская ба́нка — первый электрический конденсатор, изобретённый голландским учёным Питером ван Мушенбруком и его учеником Кюнеусом в 1745 в Лейдене. Параллельно и независимо от них сходный аппарат под названием «медицинская банка» изобрёл немецкий учёный Клейст.

Устройство

По энциклопедии Ф. А. Брокгауза и И. А. Ефрона, «этот конденсатор имеет форму банки, то есть цилиндра с более или менее широким горлом или же просто цилиндра, обыкновенно стеклянного. Банка оклеена внутри и снаружи листовым оловом (наружная и внутренняя обкладки), примерно до 2/3 её высоты и прикрыта деревянной крышкой. Банка может не иметь внутренней обкладки, но тогда в ней должна быть жидкость, например вода; банка может не иметь и внешней обкладки, но в таком случае при заряжении надо её обхватить ладонями рук; такова и была банка в первоначальном виде, когда её устроил (1745) голландский физик Мушенбрук и когда впервые испытал удар от разряда банки лейденский гражданин Кюнеус». Сквозь крышку в банку был воткнут металлический стержень. Лейденская банка позволяла накапливать и хранить сравнительно большие заряды, порядка микрокулона.

Применения

Изобретение лейденской банки стимулировало изучение электричества, в частности, скорости его распространения и электропроводящих свойств некоторых материалов. Выяснилось, что металлы и вода (кроме дистиллированной) — лучшие проводники. Благодаря Лейденской банке удалось впервые искусственным путём получить электрическую искру. В современном мире лейденская банка применяется только для демонстраций, как компонент электрофорной машины, в электротехнике она вытеснена куда более удобными и ёмкими высоковольтными конденсаторами закрытого типа.

Ссылки

  • Исправить статью согласно стилистическим правилам Википедии.

Wikimedia Foundation . 2010 .

  • Рудольф Агрикола
  • Хадис

Смотреть что такое «Лейденская банка» в других словарях:

ЛЕЙДЕНСКАЯ БАНКА — (по имени города Лейдена, где была изобретена). Прибор, служащий для скопления большого количества электричества электрическ. конденсатор. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЛЕЙДЕНСКАЯ БАНКА по имени… … Словарь иностранных слов русского языка

ЛЕЙДЕНСКАЯ БАНКА — ЛЕЙДЕНСКАЯ БАНКА, первое в истории и простейшее устройство для накопления СТАТИЧЕСКОГО ЭЛЕКТРИЧЕСТВА. Перво начально это был электрический КОНДЕНСАТОР, созданный в 1745 г. в г. Лейдене (Голландия). Лейденская банка состоит из стеклянного сосуда,… … Научно-технический энциклопедический словарь

ЛЕЙДЕНСКАЯ БАНКА — ЛЕЙДЕНСКАЯ БАНКА, один из весьма распространенных электрических конденсаторов. Представляет собой стеклянную банку, изнутри, и снаружи оклеенную станиолем. Внутренняя обклейка непосредственно соединяется с металлическим стержнем, заканчивающимся… … Большая медицинская энциклопедия

лейденская банка — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Leyden jar … Справочник технического переводчика

лейденская банка — Leideno stiklinė statusas T sritis fizika atitikmenys: angl. Leyden jar vok. Leydener Flasche, f rus. лейденская банка, f pranc. bouteille de Leyde, f … Fizikos terminų žodynas

Лейденская банка — один из видов электрических конденсаторов (см.); называется иногда банкою Клейста. Этот конденсатор имеет форму банки, т. е. цилиндра с более или менее широким горлом или же просто цилиндра, обыкновенно стеклянного. Банка обклеена листовым оловом … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Лейденская банка — название электрического конденсатора, по форме внешне похожего на банку, название по городу Лейден (Голландия), месту создания: ஐ . после чего отправились пировать; и пока полные до краев лейденские банки ходили меж ними, друзья настолько … Мир Лема — словарь и путеводитель

лейденская банка — Старинный прибор, предшественник современных электрических конденсаторов … Словарь многих выражений

лейденская — банка [ Словарь иностранных слов русского языка

БАНКА — (польск. banka, уменьш. от bania горшок). 1) цилиндрический, сверху открытый сосуд. 2) рожки, которыми вытягивают кровь из насечек на теле. 3) пространство между двумя орудиями в деке корабля; предназначается для жилья матросов. 4) на гребном… … Словарь иностранных слов русского языка

«Мушенброкова машина», или лейденская банка

Способность накапливать заряды присуща и уединенным проводникам, и устройствам, называемым конденсаторами. После того как получена формула плоского конденсатора и дана формула емкости уединенного шара, я часто на уроках в 10-м классе предлагаю разобрать несколько задач из сборника задач А.В.Цингера [1].

№ 1116. Емкость конденсатора тем больше, чем больше поверхность обкладок и чем меньше расстояние между ними. Почему же для увеличения емкости лейденской банки не оклеивают станиолем всю ее поверхность доверху? Почему лейденские банки не делают из более тонкого стекла?

№ 1118. Диаметр основания лейденской банки D=15см, высота слоя станиоля h=25см, толщина стекла d=2мм (рис. 1). Диэлектрическая проницаемость стекла e =6. Вычислите приблизительно емкость этой банки и радиус R изолированного шара, который обладал бы такой емкостью.

Указанные в задаче размеры лейденской банки несколько превосходят размеры конденсаторов электрофорной машины и близки к модели, когда-то выпускавшейся для физических кабинетов. Показав лейденскую банку и ее устройство «в натуре» и обсудив задачу № 1116, приступаем к расчету радиуса изолированного шара, равного по емкости лейденской банке (расчет самой емкости оставляю на дом).

Итак, диаметр шара, способного накопить заряд, какой накапливает банка, умещающаяся в руках, – примерно 65 м, что сравнимо с высотой 20-этажного дома. Так ученики получают наглядное представление о конденсаторе как о накопителе заряда.

Электрофорная машина – самый удивительный прибор из демонстрационного оборудования школьного кабинета. Стоит обратить внимание ребят на то, что возникающие мощные электрические искры связаны со способностью конденсаторов быстро накапливать и отдавать значительный электрический заряд (энергию). Именно возможность получать мощные электрические разряды заставила ученых XVIII в. обратить внимание на лейденскую банку – простейший конденсатор.

Существует много версий того, как возникла «мушенброкова машина» (такое название дал М.В.Ломоносов [2]). Вот одна из них [3]: «В 1745 г. немецкий каноник Эвальд Юрген фон Клейст, пытаясь, по-видимому, изготовить себе электризованную воду, которая считалась полезной для здоровья, и независимо от него лейденский физик Мушенбрук, продев в горлышко банки с водой гвоздь, дотронулись им до проводников электрической машины; затем, прервав контакт, они притронулись другой рукой к гвоздю и испытали очень сильный удар, вызвавший онемение руки и плеча, а у Мушенбрука даже “все тело содрогнулось, как от молнии”» (рис. 2).


Рис. 2. Опыт Мушенбрука

В пользу этой версии (хотя есть и другие* говорит то, что в середине XVIII в. проводились «широкомасштабные» опыты по электризации воды. «Вода – то же вещество, писал Л.Эйлер [5], – которое легко получает электричество путем передачи. Удавалось наэлектризовать целый пруд, так что, когда к нему приближали палец, видно было как из него выскакивали искры, и чувствовалась боль». Хотя в другом письме сам Эйлер высказывает осторожный пессимизм относительно возможности наэлектризовать целый пруд. Но в письме № 149 он специально пишет «О лейденском опыте» и приводит подробный рисунок установки. На рисунке видна самая обыкновенная банка с водой! И хотя Л.Эйлер дает объяснение действия лейденской банки в духе развиваемой им теории эфира, предваряет он его такими словами: «…знаменитый лейденский опыт, который тем более удивителен, что трудно понять, каким образом колба и вода резервуара способствуют усилению эффекта электричества до столь ужасных размеров» [5]. Недаром М.В.Ломоносов называет этот конденсатор «машиной», как нечто неизведанное и хитроумное (в словаре В.И.Даля: машинистый – сложный и хитрый устройством), а производимое действие таково, что упоминает о ней он в связи с гибелью Г.Рихмана в 1753 г.: «Мушенброковой машины при том не было» [2], – не она виновата!»


Рис. 3. Пара лейденских банок, изготовленная студентами в 1890–1910 гг. Банки имеют разные наконечники – сферический и игольчатый. Скорее всего они использовались при изучении электрических разрядов в воздухе

Для нас более, наверное, непостижимо, как от банки с водой ученые пришли к современным конденсаторам: «…воду заменили дробью, а затем наружная поверхность покрывалась тонкими свинцовыми пластинами; позднее внутреннюю и наружную поверхности стали покрывать оловянной фольгой, и банка приобрела современный вид. При проведении исследований с банкой в 1746 г. было установлено, что количество электричества, собираемое в банке, пропорционально размеру обкладок и обратно пропорционально толщине изоляционного слоя» [4].

Урок должен пробуждать интерес к знанию и познанию (рис. 3–5). Эту банальную истину часто легче высказать, чем претворить в жизнь. Поэтому задача, допускающая наглядную демонстрацию (а школьникам в сильной степени еще присуще конкретное мышление!), сопровождаемая небольшим экскурсом в историю (нужно показать, как удивительно человеческая мысль через воду, ртуть, свинцовые дробинки дошла до тонких листов фольги, разделенных бумагой), может оживить изложение материала и в обычном классе, и в классе с углубленным изучением физики. Закончить урок (или часть урока) можно демонстрацией «начинки» современного бумажного конденсатора.


Рис. 4. Батарея из девяти лейденских банок. При закорачивании раздается звук, как при выстреле батареи ружей


Рис. 5. Лейденская банка из Королевского шотландского музея в Эдинбурге

Литература

1. А.В.Цингер. Задачи и вопросы по физике. – ГОНТИ, 1938.
2. М.В.Ломоносов. Изъяснения, надлежащие к слову о электрических воздушных явлениях. /ПСС. Т. 3. Труды по физике. – М.–Л.: Изд. АН СССР, 1952.
3. М.Льоцци. История физики. – М.: Мир, 1970.
4. О.Н.Веселовский, Я.А.Шнейберг. Очерки по истории электротехники. – М.: Изд. МЭИ, 1993.
5. Л.Эйлер. Письма к немецкой принцессе о разных физических и философских материях./Письмо № 138. – СПб.: Наука, 2002.

*«Зная, что стекло не проводит электричества, Мушенбрук (1692–1761 гг.) в 1745 г. взял стеклянную банку (колбу), наполненную водой, опустил в нее медную проволоку, висевшую на кондукторе электрической машины и, взяв банку в правую руку, попросил своего помощника вращать шар машины. При этом он правильно предположил, что заряды, поступавшие с кондуктора, будут накапливаться в стеклянной банке. После того, как, по его мнению, в банке накопилось достаточное количество зарядов, он решил левой рукой отсоединить медную проволоку. При этом он ощутил сильный удар, ему показалось, что пришел конец. В письме к Реомюру в Париж (1746 г.) он писал, что этот “новый и страшный опыт советую самим никак не повторять” и что “ради короны Франции” он не согласится подвергнуться “столь ужасному сотрясению”» [4].

Лейденская банка или как сделать простой конденсатор

Здравствуйте. Хотелось бы показать, как делается лейденская банка или самый простой конденсатор.
Но для начала немного информации для тех, кто не знает, что это такое ну а те, кто в курсе может и пропустить или почитать, дабы освежить память.
Лейденская банка — первый электрический конденсатор, изобретённый голландским учёным Питером Ван Мушенбруком и его учеником Кюнеусом в 1745 в Лейдене. Параллельно и независимо от них сходный аппарат под названием «медицинская банка» изобрёл немецкий учёный Эвальд Юрген фон Клейст.
Этот старинный прибор, может накапливать статическое электричество, чем меня и привлек.

Состоит он из емкости (банки) обернутой фольгой с внешней стороны и внутренней обклеенной собственно той же фольгой на две трети высоты, они и будут обкладками нашего конденсатора, а емкость (кстати, не должен пропускать электричество) будет диэлектриком между ними.

Из инструментов мне понадобились:
1) Ножницы.
2) Шило.
3) Плоскогубцы.
4) Паяльник.
Из материалов:
1)Емкость.
2)Фольга.
3)Кусочек медного провода.
4)Скотч.
5)Шарик от подшипника.

И так. За основу я взял емкость от закончившейся холодной сварки. Поначалу хотел из стеклянной баночки, но они все были толстостенные и большие.

Отрезал кусочек фольги для донышка, (чтобы увеличить полезную площадь и благодаря этому повысить производительность).

Следом я обернул фольгой снаружи стенку своей емкости, старался, чтобы фольга как можно плотнее прилегала к ней, ведь это тоже влияет на то, сколько она заряда будет накапливать.

Кстати в первой лейденской банке эту фольгу успешно заменила рука ученого Мусхенбрук (Мушенбрек) (1692—1761 гг.), обхватывавшего сосуд и понявшего, что лучше не стоило трогать провод, который был соединен к электростатической машине зарядившей лейденскую банку.
Поискав в закромах, нашел шарик от подшипника, жаль, конечно, что не нашлось большего диаметра, но он тоже неплохо собирает статическое электричество.

Решил закрепить посредством пайки. Для начала зачистил место пайки наждачной бумагой.

Затем полудил канифолью и спаял медную проволоку с шариком.

Дальше просто проткнул шилом крышку емкости и засунул туда провод с шариком.

На нижней фотографии видно цепочку, которую я ставил для контакта с внутренней обкладкой, но впоследствии отказавшись от фольги (ввиду отсутствия клея или фольгоскотча), которая внутри и заменив фольгу водой, она была демонтирована.

А вот и он в укомплектованном виде.

Электростатической машины чтобы проверить, у меня пока нет.
Пришлось заряжать его при помощи телевизора (зомбоящика). Поелозив два-три раза по экрану шариком, насобирал достаточное количество электрических зарядов для разряда искры.

А бьет, я вам скажу не хило, сильнее, чем пьезоэлемент зажигалки.
Не хотел я, конечно же, повторять опыт Питера Ван Мушенбрука но пришлось ввиду своей неаккуратности и легко отвлекаемости.

Тем, кто захочет сделать лейденскую банку собственными руками и не знает, как это сделать могу сказать следующее:

Сосуд может быть и стеклянный. Для маленькой лейденской банки лучше, если стенки будут тоньше.

Вместо фольги удобнее использовать фольгоскотч и следите за тем, чтобы пузырьки воздуха не оставались между скотчем и сосудом.

Если Вы решите внутреннюю сторону банки обклеить фольгоскотчем, то необходимо проследить за тем, чтобы проволока с шариком касались с внутренней обкладкой (можно запаять многожильный провод и сделать как бы кисточку или сделать типа пружинки из одножильного провода, в общем, вариантов масса). А если с водой, то провод обязательно должен касаться воды.

Шарик можно из любого материала даже диэлектрик только его нужно будет тоже покрыть фольгой (и чтобы фольга касалась провода), если захотите по быстрей можете просто скатать шарик из фольги.

Зарядить его можно даже расческой, ручкой и т.д. только это малоэффективно лучше если нет электрофорной машины, зарядить от экрана телевизора (подходят только те которые с электронно-лучевой трубкой).

И напоследок хотелось бы напомнить о технике собственно безопасности ведь это главное. Не повторяйте мою ошибку будьте бдительны. Конечно, от накопленного заряда небольшой лейденской банки Вы не умрете (зависит от многих факторов в том числе и от состояния Вашего здоровья ), а вот если сделаете его большим и или подключите к электрофорной машине, то вполне возможно. Именно благодаря лейденским банкам электрофорная машина развивает свою мощь и испускает такие длинные устрашающие (некоторых) искры, так как в банках накапливается собранный электрический заряд.

Северяне, это точно для вас Лейденская банка под капотом – гостья из будущего

Опции темы
  • Подписаться на эту тему…
  • Поиск по теме

    Северяне, это точно для вас Лейденская банка под капотом – гостья из будущего

    Лейденская банка под капотом – гостья из будущего

    Первая партия таких конденсаторов поступила в магазин «Святослав» более года назад. Новинка в своё время вызвала много вопросов. Результаты испытаний ещё более интересны. Эта статья напомнит вам уже известные вещи и позволит ответить на многочисленные вопросы покупателей.

    Лейденской банкой в прошлом веке называли конденсатор. Конденсатор известен давно и использовался в электро- и радиотехнике для накапливания энергии. Он способен моментально накапливать заряд и моментально его отдавать. Другое дело, что ёмкость обычного конденсатора мала по сравнению с ёмкостью гальванических источников тока и измеряется миллионными долями Фарада — микрофарадами. Будь ёмкость побольше – можно было бы и отказаться от гальванических батарей. Въедливый читатель спросит – а чем вам не угодила обычная аккумуляторная батарея? Вопрос хороший, и я постараюсь на него ответить.

    Свинцовая аккумуляторная батарея была изобретена 140 лет назад и до сих пор пока находится вне конкуренции. Принцип её действия основан на реакции электролита с электродными пластинами. При стартерном запуске реакция не успевает происходить вовремя и батарея не отдаёт всю свою ёмкость. На морозе тем более, реакция замедляется и ёмкость батареи ещё сильнее снижается. Если температура, при которых определяются емкости аккумуляторов меньше, то приведение емкости к другой температуре необходимо производить из расчета 1% на 1° С. При минус 30 градусов по Цельсию ёмкость при медленной разрядке составит 45%, а при стартерном пуске – 5% от паспортного значения.

    Характеристики батарей по всем стандартам (по SAE, DIN и ГОСТ) оценивают её пусковые свойства при 0 градусов по Фарегейту (минус 18,4 по Цельсию). Ну скажите, сибиряки, разве это мороз? Вот что будет при минус 37, это стандарты не гарантируют. Итак, свинцовая аккумуляторная батарея эксплуатируется в условиях, для которых она совсем не предназначена. Совсем как у Станислава Лема. Таким образом, характеристики аккумуляторной батареи не удовлетворяют требованиям, предъявляемым пуском двигателя зимой. Чтобы уменьшить этот недостаток, в стартерных аккумуляторах применяют тонкие пластины и возможно более пористую активную массу; этим облегчается диффузия электролита в пластины и уменьшается падение напряжения. Зимой необходимо следить за тем, чтобы аккумуляторная батарея была хорошо заряжена. В условиях сурового климата повышают плотность электролита (чтобы в том же объеме диффундирующего электролита содержалось большее количество серной кислоты), а иногда утепляют батареи.

    Сколько же надо ампер часов для холодного запуска двигателя? Давайте подсчитаем. Запуск исправного двигателя займёт максимум 10 секунд (0,003 часа) при токе максимум 300 ампер (это уже при трёхкратной перегрузке). Итак, требуемая ёмкость составит Q=0,003×300=0,9 А-ч. Зачем же тогда нам 60, а то и 75 ампер-часов ёмкости для той же «Волги»? Такой запас как раз компенсирует недостатки аккумуляторов.

    Что такое ИКЭ?
    Импульсный энергоёмкий конденсатор (ИКЭ) – новый тип мощного источника питания (см. фото). По размерам он даже меньше батареи 6СТ-60ЭМ. Раньше такие конденсаторы использовались для питания боевых лазеров мощностью более 5 квт. Развал оборонки заставил искать новую сферу применения ИКЭ. Рабочие завода-изготовителя и раньше таскали через забор эти конденсаторы для своих машин. Установка ИКЭ позволяла обходиться без батареи вообще. Новая сфера применения оказалась достаточно перспективной. В настоящее время в продажу поставляются три типа конденсаторов: ИКЭ 9/14 – ёмкость 90 фарад и напряжением до 14 вольт, ИКЭ 16/14 – ёмкость 160 фарад и напряжением до 14 вольт, а также ИКЭ 34/28 – ёмкость 86 фарад и напряжением до 28 вольт. Первый тип предназначен для легковых автомобилей с 12 В электрооборудованием, второй – для грузовиков, третий для машин с 24 В электрооборудованием (Toyota Land Cruiser, КамАЗ, МАЗ). Конденсатор не боится мороза, более того он имеет отрицательный температурный коэффициент ёмкости (ТКЕ). То есть, его ёмкость незначительно растёт на морозе. Он безразличен к длительному хранению, токам разряда. Ему вообще несвойственны многочисленные «болячки» аккумуляторных батарей (АКБ) – сульфатация, коррозия пластин, осыпание массы и т.д. ИКЭ уступает батарее только в одном – он меньше запасает энергии, но даже эту энергию он может отдать назад энергичнее, чем АКБ. В ИКЭ нет кислоты и газовыделения, поэтому его можно установить даже под сиденьем в салоне.

    Экспериментальная проверка конденсатора
    Чтобы убедиться в полезности такой покупки, отсутствии негативных последствий для машины, администрация магазина решила организовать экспериментальную проверку конденсатора. Конденсатор «для грузовиков» повышенной мощности – ИКЭ 16/14 был установлен на грузовой автомобиль УАЗ-3303. Умощнённая модификация конденсатора была выбрана потому, что двигатель после ремонта вращался туго и требовал явно больше затрат мощности, чем прокручивание двигателя «Жигулей». При подключении конденсатор был заряжен через лампу фары от батареи автомобиля. Подключение без зарядки вызвало бы мощное искрение на клеммах. Зарядка до 12 вольт заняла 14,3 минут. Если же дать ток зарядки 30 ампер, то потребуется 42 секунды на зарядку. Попробовал я зарядить конденсатор и от девяти батареек для фонарика. Зарядка происходила дольше — 27 минут, но для запуска стартером теплого двигателя этого хватило, ибо ёмкость батареек немного больше 0,9 А-ч. Ток при запуске тёплого двигателя составил 140 А. Для эксперимента специально была взята аккумуляторная батарея в последней стадии истощения. Её возможностей хватало на пару оборотов стартера. В случае фиаско – доставай ручку. После подключения конденсатора батарея поделилась с конденсатором крохами ёмкости. Как только напряжение достигло предела этой батареи – 11,64 В, был включен в работу стартер. Запуск был короткий и энергичный, и это при полумёртвой батарее! Итог следующий: максимальный ток стартера в режиме торможения составил 300 А, время уверенной прокрутки двигателя только конденсатором 11 секунд до напряжения 8,5 В. При включении фар с габаритными огнями напряжение на конденсаторе снижается с 14 до 12 В за 42 секунды. Как долговременный источник тока конденсатор неприменим, – для этого есть аккумулятор. Зато конденсатор может другое, — в любой мороз отдать максимум тока. В 2000 году исследовательскую дипломную работу выполнял выпускник АТФ А.Н. Телепня. Его результаты ещё более интересны. Мало того, что пусковой ток легко достигает 600 ампер несмотря на мороз. За счёт того, что конденсатор берёт на себя максимум нагрузки, аккумуляторная батарея работает в щадящем режиме и не выходит из строя за один-два сезона работы.

    Ответ на возможные опасения скептиков
    Появление в продаже конденсаторов сразу вызвало лавину скептических вопросов. Все они сводятся к следующим.

    — а не сгорит ли стартер от чрезмерной перегрузки?

    А перегрузки как раз и нет! Любой электродвигатель быстрее перегорает наоборот, при пониженном напряжении и малой частоте вращения. Сколько электродрелей перегорело из-за малого напряжения на сельских подстанциях. Установка конденсатора не повышает напряжения в бортовой сети, просто на морозе автомобиль заводится так, как если бы вы принесли тёплую батарею из дома. Впрочем, такой вид «спорта» тоже имеет право на существование. Но это тяжело и хлопотно.

    — а нет ли опасности поражения электрическим током, ведь название у конденсатора какое-то угрожающее: импульсный, да ещё и энергоёмкий.

    Такой опасности нет. Название говорят только об отличиях в сравнении со стандартным электролитическим конденсатором. На зажимах ИКЭ напряжение не выше 14 вольт. Такое же напряжение и у аккумуляторной батареи. И я знаю только один несчастный случай, связанный с таким напряжением, – когда на автодоровского электрика рухнула со стеллажа 12-вольтовая батарея.

    Недостатки конденсатора: и в шутку и всерьёз
    1. Данный конденсатор конечно не идеален (а прогресс будет). Мощность его желательно поднять еще раза в три. Поэтому, я бы купил самую мощную модификацию — ИКЭ 16/14. Поэтому, аккумуляторная батарея при конденсаторе всё-таки нужна, но очень маленькая, даже щелочная. И прослужит она намного дольше.

    2. Конденсатор стоит денег, и его установка требует 60 минут свободного времени и квалификацию электрика минимального разряда. Для ленивого автовладельца лишние хлопоты покажутся излишними: «вот если бы вы сами бесплатно принесли и установили, да ещё машину бы отмыли от прошлогодней грязи – тогда ладно, соглашусь.»

    При подключении конденсатора важно соблюдать полярность. Плюсовая клемма имеет обозначение «+». Перепутав полярность, вы рискуете повредить конденсатор. При установке и подключении конденсатора надо его зарядить, пропуская на его напряжение через лампу фары или резистор. Если сразу подключить конденсатор к батарее, конденсатор способен принять ток зарядки и 500 и 600 ампер, а это не совсем полезно для батареи. В случае короткого замыкания из-за неправильной установки искра будет тоже сильнее, чем бы у вас стояла одна батарея. Не забывайте и про надёжность изоляции кабеля, идущего от конденсатора.

    Конденсатор имеет смысл купить тем, кто ездит нечасто и только летом. Аккумуляторная батарея такой режим работы не любит и быстро сульфатируется. При установке конденсатора летом надобность в аккумуляторах отпадает вовсе. Летом конденсатор обеспечивает уверенный пуск двигателя без подстраховки батареей. Срок службы конденсатора не менее 10 лет, а практически вечен. У меня есть конденсаторы от 1972 года и до сих пор они исправны. Подсчитайте, сколько аккумуляторных батарей вам бы пришлось купить за этот срок, и насколько это было бы дороже!

    Конденсатор остро необходим и тем, кто постоянно ездит зимой, а машину ставит на улице. Холодный пуск двигателя облегчается, батарея не страдает от перегрузок и проработает дольше. Вы забудете про утренние хлопоты с батареей, неврозы из-за риска опоздать на работу. Спросите у того, кто поутру не смог завестись, а ехать срочно надо: что он готов отдать за возможность в тот же момент спокойно поехать? Наиболее полезен этот конденсатор (ИКЭ-28/40) при установке на КамАЗ. Дизельный двигатель при холодном пуске в большей степени нуждается в энергичном старте.

    Бешеный спрос на эти конденсаторы в Москве позволил заводу поднять цены. Здесь же первая партия деталей продаётся пока с минимальной наценкой. Модификация конденсатора для грузовиков (повышенной мощности – ИКЭ 16/14) стоит в «Святославе» столько же, сколько легковая модификация у ближайших, и весьма неразворотливых конкурентов.

    P.S. Эта статья была написана год назад, и сейчас лишь немного дополнена. За этот год выяснилось столько интересного, что хоть впору докторскую пиши. В настоящее время этими конденсаторами занялись и «буржуи». Зарубежные автопроизводители поняли, что они чуть не «проспали» новое перспективное направление. В Москве мне довелось побеседовать с автором нижеприведённого учебника Владимиром Евсеевичем Юттом. Его кафедра в МАДИ занимается конденсаторами уже несколько лет. В настоящее время применяются уже электролитические конденсаторы, как раньше. Сейчас разработаны конденсаторы электрохимического действия (их иногда называют молекулярными). Емкость таких конденсаторов обеспечивается двойным электрическим слоем. И здесь огромное поле деятельности для электрохимиков, оставшихся не у дел после сворачивания гальванического производства. Ёмкость наилучших конденсаторов такого типа приближается к ёмкости аккумуляторных батарей. Имеющиеся в «Святославе» конденсаторы относятся именно к «молекулярным» конденсаторам.

    За прошедший год не было ни одного случая брака конденсатора. Только два покупателя обратились с недоумёнными вопросами по поводу купленных конденсаторов. Первый – владелец ГАЗ-21 имел на своей машине изрядно погнившие провода к стартеру, поэтому пусковой ток не доходил до стартера. У другого на ГАЗ-31029 стартер имел межвитковое замыкание, поэтому стартер потреблял двукратный ток. Конденсатора ему хватало лишь на 5 секунд. Ну а на исправном автомобиле все конденсаторы показывали отличные результаты. Из более, чем ста проданных конденсаторов ни одного бракованного – это прекрасный показатель!