Многоцветный светодиод с двумя выводами
Характеристика RGB светодиода
Подсветка, меняющая свой цвет, выглядит эффектно. Ее применяют для рекламных объектов, декоративного освещения объектов архитектуры, во время различных шоу и массовых мероприятий. Один из способов реализации такой подсветки – применение трехцветных светодиодов.
Что такое RGB-светодиод
Обычные светоизлучающие полупроводниковые приборы имеют один p-n переход в одном корпусе, либо представляют собой матрицу из нескольких одинаковых переходов (COB-технология). Это позволяет в каждый момент времени получить один цвет свечения – непосредственно от рекомбинации основных носителей или от вторичного свечения люминофора. Вторая технология дала разработчикам широкие возможности в выборе цвета свечения, но менять окраску излучения в процессе эксплуатации прибор не может.
RGB светодиод содержит в одном корпусе три p-n перехода с разным цветом свечения:
- красным (Red);
- зеленым (Green);
- синим (Blue).
Аббревиатура из английских названий каждого цвета и дала название этому типу LED.
Виды диодов RGB
Трехцветные светодиоды по способу соединения кристаллов внутри корпуса делятся на три типа:
- с общим анодом (имеют 4 вывода);
- с общим катодом (имеют 4 вывода);
- с раздельными элементами (имеют 6 выводов).
От исполнения LED зависит способ управления прибором.
По типу линзы светодиоды бывают:
- с прозрачной линзой;
- с матовой линзой.
Для RGB-элементов с прозрачной линзой для получения смешанных оттенков могут понадобиться дополнительные рассеиватели света. В противном случае могут быть видны отдельные цветовые составляющие.
Принцип работы
Принцип работы RGB-светодиодов основан на смешении цветов. Управляемое зажигание одного, двух или трех элементов позволяет получить различное свечение.
Включение кристаллов по отдельности дает три соответствующих цвета. Попарное включение позволяет достичь свечения:
- красный+зеленый p-n переходы в итоге дадут желтый цвет;
- синий+зеленый при смешивании дают бирюзовый;
- красный+синий позволяют получить фиолетовый.
Включение всех трех элементов позволяет получить белый цвет.
Намного больше возможностей дает смешивание цветов в различных пропорциях. Сделать это можно, раздельно управляя яркостью свечения каждого кристалла. Для этого надо индивидуально регулировать ток, протекающий через светодиоды.
Управление RGB-светодиодом и схема включения
Управляется RGB-светодиод так же, как и обычный LED — приложением прямого напряжения анод-катод и созданием тока через p-n переход. Поэтому подключать трехцветный элемент к источнику питания надо через балластные резисторы – каждый кристалл через свой резистор. Рассчитать его можно через номинальный ток элемента и рабочее напряжение.
Даже при объединении в одном корпусе различные кристаллы могут иметь различные параметры, поэтому параллельно соединять их нельзя.
Типовые характеристики для маломощного трехцветного прибора диаметром 5 мм приведены в таблице.
Красный (R) | Зеленый (G) | Синий (B) | |
Максимальное прямое напряжение, В | 1,9 | 3,8 | 3,8 |
Номинальный ток, мА | 20 | 20 | 20 |
Очевидно, что красный кристалл имеет прямое напряжение в два раза ниже, чем у двух остальных. Параллельное включение элементов приведет к разной яркости свечения или выходу одного или всех p-n переходов из строя.
Постоянное подключение к источнику питания не позволяет использовать все возможности RGB-элемента. В статическом режиме трехцветный прибор лишь исполняет функции монохромного, а стоит намного больше обычного LED. Поэтому гораздо интереснее динамический режим, в котором цветом свечения можно управлять. Реализуется это посредством микроконтроллера. Его выводы в большинстве случаев обеспечивают выходной ток в 20 мА, но это каждый раз нужно уточнять в даташите. Подключать LED к портам вывода надо через токоограничивающий резистор. Компромиссный вариант при питании микросхемы от 5 В – сопротивление 220 Ом.
Элементы с общими катодами управляются подачей на выход логической единицы, с общими анодами – логического нуля. Изменить программным способом полярность управляющего сигнала труда не составляет. LED с раздельными выходами можно подключать и управлять любым способом.
Если выходы микроконтроллера не рассчитаны на номинальный ток светодиода, подключать LED надо через транзисторные ключи.
В этих схемах оба типа LED зажигаются подачей положительного уровня на входы ключей.
Упоминалось, что яркостью свечения управляют, изменяя ток через светоизлучающий элемент. Цифровые выводы микроконтроллера напрямую управлять током не могут, потому что имеют два состояния – высокое (соответствующее напряжению питания) и низкое (соответствующее нулевому напряжению). Промежуточных положений не бывает, поэтому для регулировки тока используются другие пути. Например, способ широтно-импульсной модуляции (ШИМ) управляющего сигнала. Его суть состоит в том, что на LED подается не постоянное напряжение, а импульсы определенной частоты. Микроконтроллер в соответствии с программой меняет соотношение импульса и паузы. При этом изменяется среднее напряжение и усредненный ток через светодиод при неизменной амплитуде напряжения.
Существуют специализированные контроллеры, разработанные специально для управления свечением трехцветных LED. Они продаются в виде готового прибора. В них также используется метод ШИМ.
Распиновка
Если имеется новый, не паяный светодиод, то расположение выводов можно определить визуально. Для любого типа соединения (общий анод или общий катод) вывод, подключенный ко всем трем элементам, имеет наибольшую длину. Если повернуть корпус так, что длинная ножка окажется в левой части, то левее его будет находиться «красный» вывод, а в правую сторону – сначала «зеленый», потом «синий». Если LED уже был в употреблении, его выводы могли быть укорочены произвольным образом, и для определения распиновки придется прибегнуть к другим способам:
- Можно определить общий провод с помощью мультиметра. Надо включить прибор в режим тестирования диодов и подключить зажимы прибора к предполагаемой общей ножке и к любой другой, потом сменить полярность подключения (как при обычной проверке полупроводникового перехода). Если предполагаемый общий вывод определен правильно, то (при всех трех исправных элементах) в одном направлении тестер покажет бесконечное сопротивление, в другом – конечное (точное значение зависит от типа LED). Если в обоих случаях на дисплее тестера будет сигнал обрыва, значит, вывод выбран неверно, и надо повторить проверку с другой ножкой. Может получиться, что испытательного напряжения мультиметра хватит для зажигания кристалла. В этом случае можно дополнительно убедиться в правильности распиновки по цвету свечения p-n перехода.
- Другой способ – подать питание на предполагаемый общий вывод и любую другую ножку светодиода. Если общая точка выбрана правильно, в этом можно убедиться по свечению кристалла.
Важно! При проверке с помощью источника питания надо плавно поднимать напряжение с нуля и не превышать значение 3,5-4 В. Если регулируемого источника нет, можно подключить LED к выходу постоянного напряжения через токоограничивающий резистор.
У светодиодов с раздельными выводами определение распиновки сводится к выяснению полярности и расположения кристаллов по цветам. Сделать это также можно перечисленными методами.
Плюсы и минусы светодиодов RGB
RGB-светодиодам присущи все достоинства, имеющиеся у полупроводниковых светоизлучающих элементов. Это низкая стоимость, высокая энергоэффективность, долгий срок службы и т.д. Отличительным плюсом трехцветных LED является возможность получения практически любого оттенка свечения простым способом и за небольшую цену, а также смена цвета в динамике.
К основному минусу RGB-светодиодов относят невозможность получения чистого белого цвета за счет смешения трех цветов. Для этого потребуется семь оттенков (в качестве примера можно привести радугу – ее семь цветов являются результатом обратного процесса: разложения видимого света на составляющие). Это накладывает ограничения на использование трехцветных светильников в качестве осветительных элементов. Чтобы несколько компенсировать эту неприятную особенность, при создании светодиодных лент применяется принцип RGBW. На каждый трехцветный LED устанавливается один элемент белого свечения (за счет люминофора). Но стоимость такого осветительного устройства заметно возрастает. Также бывают светодиоды исполнения RGBW. У них в корпусе установлено четыре кристалла – три для получения исходных цветов, четвертый – для получения белого цвета, он излучает свет за счет люминофора.
Срок службы
Период эксплуатации прибора из трех кристаллов определяется временем наработки на отказ самого недолговечного элемента. В данном случае он у всех трех p-n переходов примерно одинаковый. Производители заявляют срок службы RGB-элементов на уровне 25 000-30 000 часов. Но к этой цифре надо относиться осторожно. Заявленное время жизни эквивалентно непрерывной работе в течение 3-4 лет. Вряд ли кто-то из производителей проводил ресурсные испытания (да еще в различных тепловых и электрических режимах) в течение столь долгого периода. За это время появляются новые технологии, испытания надо начинать заново – и так до бесконечности. Гораздо более информативен гарантийный срок эксплуатации. А он составляет 10 000-15 000 часов. Все, что дальше – в лучшем случае математическое моделирование, в худшем – голый маркетинг. Проблема в том, что на распространенные недорогие светодиоды сведения о гарантии производителя, как правило, отсутствуют. Но ориентироваться можно на 10 000-15 000 часов и держать в голове еще приблизительно столько же. А дальше уповать только на везение. И еще один момент – период службы очень сильно зависит от теплового режима во время эксплуатации. Поэтому один и тот же элемент в разных условиях прослужит разное время. Для продления срока жизни LED надо внимательно относиться к проблеме отведения тепла, не пренебрегать радиаторами и создавать условия для естественной циркуляции воздуха, а в некоторых случаях прибегать и к принудительной вентиляции.
Но даже уменьшенные сроки — это несколько лет эксплуатации (ведь LED не будет работать без пауз). Поэтому появление трехцветных светодиодов позволяет дизайнерам широко применять полупроводниковые приборы в их задумках, а инженерам – эти идеи реализовывать «в железе».
Двухцветный светодиод с двумя выводами
При изготовлении различных электронных конструкций часто применяют светодиод, например в узлах индикации или сигнализации работы аппаратуры. С обычными индикаторными светодиодами работали наверняка все, а от двухцветный светодиод с двумя выводами применяют далеко не все, потому что о нем мало кто знает из начинающих электронщиков. Поэтому я немного расскажу о нем и естественно мы подключим двухцветный светодиод в сеть переменного напряжения 220 В, поскольку эта тема по неизвестной мне причине имеет повышенный интерес.
И так, мы знаем, что «обычный» светодиод пропускает ток только в одном направлении: когда на анод подан плюс, а на катод – минус источника питания. Если изменить полярность источника напряжения, то ток протекать не будет.
Двухцветный светодиод с двумя выводами состоит из двух встречно-параллельно соединенных диодов, размещенных в общем корпусе. Причем корпус или, точнее говоря, линза имеет стандартные размеры и также всего два вывода.
Особенностью является то, что каждый вывод светодиода служит анодом одного светодиода и катодом второго.
Если на один вывод подать плюс, а второй минус источника питания, то один светодиод будет заперт, а второй засветится, например зеленым цветом.
При смене полярности источника питания – зеленый светодиод окажется запертым, а красный – засветится.
Двухцветные светодиоды выпускаются в таких цветовых комбинациях:
Как подключить двухцветный светодиод с двумя выводами к сети 220 В
Такой светодиод удобно применять на переменном токе, поскольку пропадает необходимость в применении обратного диода. Поэтому, чтобы подключить двухцветный светодиод к 220 В переменного напряжения достаточно добавить лишь токоограничивающий резистор.
Следует здесь сразу же сделать поправку, что номинальное напряжение в сети, оно же и в розетке, начиная с октября 2015 года, уже не привычные нам 220 В, а 230 В. Эти и другие данные отражены в ГОСТ 29433-2014. В этом же стандарте приводятся допустимые отклонения от номинального значения напряжения 230 В:
— номинальное значение 230 В;
— максимальное 253 В (+10 %);
— минимальное 207 В (-10 %);
— минимальное под нагрузкой 198 В (-14 %).
Исходя из этих допущений, необходимо рассчитать сопротивление токоограничивающего резистора из таких соображений, чтобы он не перегревался и через светодиод протекал достаточный ток для его нормального свечения при максимально допустимых колебания напряжения в сети.
Расчет токоограничивающего резистора
Поэтому, хотя номинальная величина тока 20 мА, мы примем за расчетное значение тока двухцветного светодиода 7 мА = 0,007 А. При этом значении он нормально светит, так как яркость светодиода не прямопропорциональна, протекающему через него току.
Определим сопротивление токоограничивающего резистора при номинальном напряжении в розетке 230 В:
R = U/I = 230 В / 0,007 А = 32857 Ом.
Из стандартного ряда номиналов резисторов выбираем 33 кОм.
Теперь рассчитаем мощность рассеивания резистора:
P = I 2 R = 0,007 2 ∙33000 = 1,62 Вт.
Принимаем 2-х ваттный резистор.
Выполним пересчет для случая максимально допустимого напряжения при заданном значении сопротивления резистора:
I = U/R = 253 / 33000 = 0,0077 А = 7,7 мА.
P = I 2 R = 0,0077 2 ∙33000 = 1,96 Вт.
Как видно, при увеличении напряжения на допустимые 10 %, ток также вырастит на 10 %, однако мощность рассеивания резистора не превысит 2 Вт, поэтому он не будет перегреваться.
При снижении напряжения на допустимую величину, ток также снизится. При этом рассеиваемая мощность резистора тоже снизится.
Отсюда вывод: в качестве индикатора наличия сетевого напряжения 230 В достаточно лишь применить двухцветный светодиод с двумя выводами и токоограничивающий резистор сопротивлением 33 кОм с мощностью рассеивания 2 Вт.
Если посмотреть на такой полупроводниковый прибор при протекании через него переменного тока, то будет видно, что оба светодиода светятся одновременно.
На самом деле они поочередно мерцают с частотой 50 Гц, но наши глаза не успевают отслеживать столь быстрые мерцания и выдают нам непрерывное изображение.
Как устроены многоцветные светодиоды
RGB – английская аббревиатура, расшифровывающаяся как «красный, зеленый, синий». Соответственно, rgb светодиод имеет внутри три самостоятельных источника света. В зависимости от своего строения. Такие светодиоды могут иметь один общий анод либо катод. Весь эффект заключается в особенностях нашего зрения. Если рядом друг с другом расположить диоды, дающие красное и синие свечение, на дальности в несколько метров свет от них сольется и получится фиолетовый.
Если в этот спектр добавить еще и зеленый, в данном случае свет станет просто белым. В статья изложены все особенности строения, устройства rgb светодиода, а также в каких сферах они используются. В качестве бонуса в статье есть несколько видеоматериалов и одна интересная научная статья по этому вопросу.
Устройство и сферы применения
Конструктивно RGB–светодиоды представляют собой три светодиодных кристалла с одной оптической линзой, расположенные в одном корпусе. Управление цветом происходит с помощью подачи электрических сигналов на выводы каждого светодиодного кристалла, а сочетание излучений всех трех светодиодов позволяет регулировать итоговый цвет. Для примера, ниже представлен самый популярный RGB–светодиод SMD 5050.
Светодиод RGB – это полноцветный светодиод, смешивая три цвета в разной пропорции можно отобразить любой цвет. К примеру, если зажечь все три цвета на полную мощность, получится свечение белого цвета.
Сферы применения RGB светодиодов напрямую связаны с развитием рынка рекламы и развлекательных мероприятий. Также готовые RGB–светильники и ленты применяются в области светового оформления архитектурных и дизайнерских решений — ночная подсветка зданий или фонтанов, интерьерный свет, индикаторный системы автомобилей и т.д.
Разнообразие сфер применения многоцветных светодиодных источников света определяет основные виды внешнего оформления RGB–светодиодов: изделия небольшой мощности выпускаются в стандартных круглых корпусах со сферической линзой и выводами под обычную пайку; маломощные RGB–светодиоды в SMD-корпусах поверхностного монтажа широко применяются в светодиодных лентах или полноцветных светодиодных экранах большой площади; в корпусах типа Emitter выпускают мощные RGB–источники света с независимым управление каждым светодиодным кристаллом; сверх яркие светодиоды в корпусах.
Для упрощения систем управления светом в корпуса некоторых серий многоцветных LED–источников света вмонтированы управляющие микросхемы. Схемы расположения выводов (распиновка) Несколько стандартных схем управления определяют структуру внешних выводов RGB–светодиодов и их соединение внутри корпуса. Существует три основных схемы распиновки, которые соблюдаются на большинстве выпускаемых изделий:
- В схеме с общим катодом для управления используется три независимых вывода анода, а катодные выводы LED-кристаллов соединены между собой;
- Распиновка с общим анодом управляется отрицательными импульсами на катодные выводы, а вместе соединены уже анодные электроды светодиодных кристаллов;
- Независимая схема соединения имеет шесть выводов по числу LED кристаллов, соединений внутри корпуса не производится.
Единого стандарта на распиновку не существует, конкретный тип расположения внешних выводов применяют в зависимости от поставленных задач. При отсутствии документов на светодиодное изделие тип внешних выводов легко определить с помощью мультиметра. В режиме прозвонки светодиод будет светиться (мощные светодиоды очень слабо), а мультиметр издавать звук соединения, если красный щуп мультиметра подсоединен к аноду светодиодного кристалла, а черный к его катоду. В случае обратного подключения никаких видимых и слышимых эффектов просто не будет.
Простейший способ подключения и управления режимами работы RGB–светодиодов реализуется с помощью стандартных микроконтроллеров Arduino. Общий вывод подключается к единой шине микроконтроллера, а управляющие сигналы подаются на выводы LED–кристаллов через ограничительные резисторы.Управление режимами свечения светодиодных кристаллов происходит с помощью широтной-импульсной модуляции, где скважность импульсов определяет силу света. Программирование ШИМ–модулятора определяет итоговый цвет всего прибора или циклические режимы работы каждого цвета.
Как устроены 3 цветные led диоды
Конструктивно трехцветный светодиод представляет собой 3 цветных светодиода, смонтированных в общем корпусе, а если быть более точным, 3 кристалла, интегрированных на одной матрице. На рис.1 представлена микрофотография интегрального rgb светодиода. Цветные квадраты на фото – это кристаллы основных цветов. Для отображения всей палитры оттенков вполне достаточно три цвета, используя RGB синтез (Red — красный, Green — зеленый, Blue — синий). RGB палитра используется не только в графических редакторах, но и в сайтостроении. Смешивая цвета в разной пропорции можно получить практически любой цвет. Преимущества RGB светодиодов в простоте конструкции, небольших габаритах и высоком КПД светоотдачи.
Виды
Для адаптации к разным вариантам схемы управления, ргб диоды производятся в нескольких модификациях:
- Исполнение с общим катодом
- Исполнение с общим анодом
- Без общего анода или катода, с шестью выводами
В первом случае светодиод управляется сигналами положительной полярности, поступающими на аноды, во втором – отрицательными импульсами, подаваемыми на катоды. Третья модификация исполнения допускает любые варианты коммутации и выпускается обычно в виде SMD компонента.
Подключение
В качестве примера приведем схему подключения ргб диодов к универсальному блоку автоматики Arduino, созданному на базе микроконтроллера ATMEGA. На рис. 2 показана схема подключения rgb led с общим катодом. Выводы RGB в обоих случаях подключаются к цифровым выходам (9, 10,12). Общий катод на Рис.2 соединен с минусом (GND), общий анод на Рис.3 – с плюсом питания (5V). Arduino — простой контроллер для начинающих роботехников, позволяющий создавать на своей базы различные устройства, от обычной цветомузыки на светодиодах до интеллектуальных роботов.
Управление
Включение светодиода происходит при прохождении прямого тока, когда анод подключен к плюсу, катод к минусу. Многоцветный спектр излучения можно получить, изменяя интенсивность свечения каналов (RGB). Результирующий оттенок определяется соотношением яркостей отдельных цветов. Если все 3 цвета одинаковы по интенсивности свечения, результирующий цвет получается белым.
Для тех, кто забыл. Скважностью называется отношение длительности периода следования импульсов к длительности импульса. Чем ниже скважность импульсов канала, тем ярче свечение соответствующего led диода. Программа управления скважностью импульсов цветовых каналов зашита в микросхеме контроллера. Такое изменение скважности импульсов, осуществляемое в целях управления процессом, называется ШИМ (широтно – импульсной модуляцией). Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ. На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета.
Катоды одного цвета всех диодов объединены, и через резисторы R4.1, R4.2, R4.3 соединяются с эмиттером соответствующего транзистора. Таким образом, все светодиоды красного цвета подключены к транзистору VT1.1, зеленые светодиоды – к VT1.2, синие – к VT1.3. При перемещении движков потенциометров R1.1, R1.2, R1.3 изменяется ток базы соответствующего транзистора. Величина тока базы определяет степень открытия перехода «эмиттер – коллектор», и, в конечном счете, яркость свечения соответствующего цвета. Перед подключением нужно правильно определить полярность светодиода, иначе он не будет светиться.
RGBW светодиоды
Для того чтобы получить чисто белый цвет, используя разноцветный rgb светодиод, необходима точная балансировка яркости свечения по кристаллу каждого цвета. На практике это бывает затруднительно. Поэтому, для воспроизведения белого цвета и увеличения разнообразия цветовых эффектов, rgb диод стали дополнять четвертым кристаллом белого свечения. Чаще всего, RGBW светодиоды используются в светодиодных лентах RGBW SMD. Для питания таких светодиодных лент созданы специальные RGBW контроллеры, как правило, управляемые пультами дистанционного управления на инфракрасных лучах.
Смешение цветов
Чем RGB-светодиод, лучше трех обычных? Всё дело в свойстве нашего зрения смешивать свет от разных источников, размещенных близко друг к другу. Например, если мы поставим рядом синий и красный светодиоды, то на расстоянии несколько метров их свечение сольется, и глаз увидит одну фиолетовую точку. А если добавим еще и зеленый, то точка покажется нам белой. Именно так работают мониторы компьютеров, телевизоры и уличные экраны.
Матрица телевизора состоит из отдельно стоящих точек разных цветов. Если взять лупу и посмотреть через нее на включенный монитор, то эти точки можно легко увидеть. А вот на уличном экране точки размещаются не очень плотно, так что их можно различить невооруженным глазом. Но с расстояния несколько десятков метров эти точки неразличимы.
Получается, что чем плотнее друг к другу стоят разноцветные точки, тем меньшее расстояние требуется глазу чтобы смешивать эти цвета. Отсюда вывод: в отличие от трех отдельностоящих светодиодов, смешение цветов RGB-светодиода заметно уже на расстоянии 30-70 см. Кстати, еще лучше себя показывает RGB-светодиод с матовой линзой.
Как изменяется цвет свечения
Регулировка цвета осуществляется путем регулировки яркости излучения каждым из кристаллов. Мы уже рассматривали способ регулировки яркости светодиодов с помощью ШИМ-контроллера. RGB-контроллер для ленты работает по такому же принципу, в нём стоит микропроцессор, который управляет минусовым выводом источника питания – подключает и отключает его от цепи соответствующего цвета. Обычно в комплекте с контроллером идёт пульт дистанционного управления. Контроллеры бывают разной мощности, от этого зависит их размер, начиная от такого миниатюрного.
Так как сечение дорожек на ленте не позволяет подключать последовательно с ней следующий отрезок ленты, если длина первого превышает 5м, нужно подключать второй отрезок проводами напрямую от РГБ-контроллера. Но можно выйти из положения, и не тянуть допоkнительных 4 провода на 5 метров от контроллера и использовать RGB-усилитель. Для его работы нужно протянуть всего 2 провода (плюс и минус 12В) или запитать еще один блок питания от ближайшего источника 220В, а также 4 «информационных» провода от предыдущего отрезка (R, G и B) они нужны для получения команд от контроллера, чтобы вся конструкция светилась одинаково. А к усилителю уже подключают следующий отрезок, т.е. он использует сигнал с предыдущего куска ленты. То есть вы можете запитать ленту от усилителя, который будет расположен непосредственно возле неё, тем самым сэкономив деньги и время на прокладку проводов от первичного RGB-контроллера.
Заключение
Более подробно о светодиодах и способе их управления рассказано в статье Как управлять светодиодом. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Трехцветные светодиоды RGB
В основе идеи создания трехцветного светодиода лежит оптический эффект получения разнообразных оттенков путем смешивания 3-х базовых цветов. В качестве базовых цветов обычно используются красный (R), зеленый (G) и синий (B). Поэтому был создан именно rgb светодиод.
- Как устроены 3 цветные led диоды
- Виды
- Подключение
- Управление
- RGBW светодиоды
- Применение
- Видео
- Вывод
Как устроены 3 цветные led диоды
Конструктивно трехцветный светодиод представляет собой 3 цветных светодиода, смонтированных в общем корпусе, а если быть более точным, 3 кристалла, интегрированных на одной матрице. На рис.1 представлена микрофотография интегрального rgb светодиода. Цветные квадраты на фото – это кристаллы основных цветов.
Рис. 1
Для адаптации к разным вариантам схемы управления, ргб диоды производятся в нескольких модификациях:
- Исполнение с общим катодом
- Исполнение с общим анодом
- Без общего анода или катода, с шестью выводами
В первом случае светодиод управляется сигналами положительной полярности, поступающими на аноды, во втором – отрицательными импульсами, подаваемыми на катоды. Третья модификация исполнения допускает любые варианты коммутации и выпускается обычно в виде SMD компонента.
Подключение
В качестве примера приведем схему подключения ргб диодов к универсальному блоку автоматики Arduino, созданному на базе микроконтроллера ATMEGA. На рис. 2 показана схема подключения rgb led с общим катодом.
Рис. 2
Ниже схема с общим анодом:
Рис. 3
Выводы RGB в обоих случаях подключаются к цифровым выходам (9, 10,12). Общий катод на Рис.2 соединен с минусом (GND), общий анод на Рис.3 – с плюсом питания (5V).
Arduino — простой контроллер для начинающих роботехников, позволяющий создавать на своей базы различные устройства, от обычной цветомузыки на светодиодах до интеллектуальных роботов.
Управление
Включение светодиода происходит при прохождении прямого тока, когда анод подключен к плюсу, катод к минусу. Многоцветный спектр излучения можно получить, изменяя интенсивность свечения каналов (RGB). Результирующий оттенок определяется соотношением яркостей отдельных цветов. Если все 3 цвета одинаковы по интенсивности свечения, результирующий цвет получается белым.
На цифровых выходах платы Arduino формируются периодические прямоугольные импульсы напряжения, как на рисунке 4., с изменяемой скважностью.
Рис. 4
Для тех, кто забыл. Скважностью называется отношение длительности периода следования импульсов к длительности импульса.
Чем ниже скважность импульсов канала, тем ярче свечение соответствующего led диода. Программа управления скважностью импульсов цветовых каналов зашита в микросхеме контроллера. Такое изменение скважности импульсов, осуществляемое в целях управления процессом, называется ШИМ (широтно – импульсной модуляцией).
На Рис.4 приведены примеры диаграмм прямоугольных импульсов различной скважности.
Управление цветом и интенсивностью свечения rgb диода может осуществляться и без ШИМ. На приведенной ниже схеме применено аналоговое управление трехцветными светодиодами. Суть его заключается в регулировании постоянного тока диодов определенного цвета.
Рис. 5
На схеме (Рис.5) rgb диоды (led1- led10) имеют общий анод. Катоды одного цвета всех диодов объединены, и через резисторы R4.1, R4.2, R4.3 соединяются с эмиттером соответствующего транзистора. Таким образом, все светодиоды красного цвета подключены к транзистору VT1.1, зеленые светодиоды – к VT1.2, синие – к VT1.3. При перемещении движков потенциометров R1.1, R1.2, R1.3 изменяется ток базы соответствующего транзистора. Величина тока базы определяет степень открытия перехода «эмиттер – коллектор», и, в конечном счете, яркость свечения соответствующего цвета. Перед подключением нужно правильно определить полярность светодиода, иначе он не будет светиться.
Применение цифровых программируемых контроллеров предоставляет практически безграничные возможности управления цветом. В тех же случаях, когда не требуется создание цветовых динамических образов, может быть применен аналоговый способ управления. Это могут быть наружные или интерьерные светильники для статической подсветки с выбором цвета.
Кстати. Применение такого регулирования в системах подсветки панелей приборов транспортных средств позволяет водителю выбирать любой оттенок и яркость.
RGBW светодиоды
Для того чтобы получить чисто белый цвет, используя разноцветный rgb светодиод, необходима точная балансировка яркости свечения по кристаллу каждого цвета. На практике это бывает затруднительно. Поэтому, для воспроизведения белого цвета и увеличения разнообразия цветовых эффектов, rgb диод стали дополнять четвертым кристаллом белого свечения. Чаще всего, RGBW светодиоды используются в светодиодных лентах RGBW SMD. Для питания таких светодиодных лент созданы специальные RGBW контроллеры, как правило, управляемые пультами дистанционного управления на инфракрасных лучах.
На фотографии представлен мощный четырехцветный светодиодный модуль SBM-160-RGBW-H41-RF100 производства Luminus Devices Ink.
Рис. 6
Применение
Основной сферой применения rgb светодиодов является создание световых эффектов для рекламы, сценическое оформление концертных площадок, развлекательных мероприятий, праздничное декорирование зданий, подсветка фонтанов, мостов, памятников. Интересные результаты получаются при использовании rgb led диодов для дизайнерского светового оформления интерьеров. Для этих целей налажен выпуск разнообразной светотехники на основе rgb и rgbw – диодной технологии, номенклатура которой продолжает расширяться и завоевывать новые области применения.
Видео
Для закрепления рассмотренного материала рекомендуем посмотреть видео, автор которого очень доходчиво и интересно рассказывает про многоцветные RGB светодиоды.
Вывод
Многоцветный RGB светодиод — это разновидность обычного LED. Его конструктивная особенность позволяет получить любой спектр излучаемого цвета радуги. Это одновременно увеличивает его стоимость и усложняет схему подключения. Поэтому перед выбором, задайтесь вопросом, действительно ли Вам нужен RGB светодиод или достаточно воспользоваться обычным LED нужного цвета?
Трёхцветный светодиод
- Офис находится в трёх минутах ходьбы от м. Парк культуры по адресу: ул. Тимура Фрунзе, д. 8/5, подъезд 1.
- При оформлении до 15:00 в будний день заказ можно забрать после 17:00 в тот же день, иначе — на следующий будний день после 17:00. Мы позвоним и подтвердим готовность заказа.
- Получить заказ можно с 10:00 до 21:00 без выходных после его готовности. Заказ будет ждать вас 3 рабочих дня. Если хотите продлить срок хранения, просто напишите или позвоните.
- Запишите номер своего заказа перед визитом. Он необходим при получении.
- Оплатить заказ можно наличными или банковской картой при получении, а также онлайн-платежом при оформлении заказа.
- бесплатно
Доставка курьером по Москве
- Доставляем на следующий день при заказе до 20:00, иначе — через день.
- Курьеры работают с понедельника по субботу, с 10:00 до 22:00.
- При согласовании заказа можно выбрать трёхчасовой интервал доставки (самое раннее — с 12:00 до 15:00).
- Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
- 250 ₽
Доставка в пункт самовывоза
- Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
- Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
- Ближайший к себе пункт вы можете найти на карте PickPoint.
- Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1–2 дня; в Петербурге — 2—3 дня.
- Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
- В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
- Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
- Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
- 240 ₽
- Доставляем через день при заказе до 20:00, иначе — через два дня.
- Курьеры работают с понедельника по субботу, с 11:00 до 22:00.
- При согласовании заказа можно выбрать трёхчасовой интервал доставки (самое раннее — с 12:00 до 15:00).
- Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
- 350 ₽
Доставка в пункт самовывоза
- Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
- Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
- Ближайший к себе пункт вы можете найти на карте PickPoint.
- Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1–2 дня; в Петербурге — 2—3 дня.
- Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
- В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
- Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
- Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
- 240 ₽
- Доставка в пункт самовывоза — современный, удобный и быстрый способ получить свой заказ без звонков и ловли курьеров.
- Пункт самовывоза — это киоск с человеком или массив железных ящичков. Их ставят в супермаркетах, офисных центрах и других популярных местах. Ваш заказ окажется в том пункте, который выберите.
- Ближайший к себе пункт вы можете найти на карте PickPoint.
- Срок доставки — от 1 до 8 дней в зависимости от города. Например, в Москве это 1–2 дня; в Петербурге — 2—3 дня.
- Когда заказ прибудет в пункт выдачи, вы получите SMS с кодом для его получения.
- В любое удобное время в течение трёх дней вы можете прийти в пункт и с помощью кода из SMS получить заказ.
- Оплатить заказ можно наличными при получении или же онлайн при оформлении заказа.
- Стоимость доставки — от 240 руб в зависимости от города и габаритов заказа. Она рассчитывается автоматически во время оформления заказа.
- Доставка осуществляется до ближайшего почтового отделения в любом населённом пункте России.
- Тариф и сроки доставки диктует «Почта России». В среднем время ожидания составляет 2 недели.
- Мы передаём заказ Почте России в течение двух рабочих дней.
- Оплатить заказ можно наличными при получении (наложенный платёж) или же онлайн при оформлении заказа.
- Стоимость рассчитывается автоматически во время заказа и в среднем должна составить около 400 рублей.
- Служба «EMS Почта России» работает быстрее и надёжнее обычной почты и доставляет до двери покупателя.
- Тариф и сроки доставки диктует служба EMS. В среднем по России время ожидания составляет 4–5 дней.
- Мы передаём заказ в EMS в течение двух рабочих дней.
- Оплатить заказ можно только онлайн при оформлении заказа.
- Стоимость рассчитывается автоматически во время оформления заказа и в среднем должна составить 400–800 рублей для России и 1500–2000 рублей для стран СНГ.
- Служба «EMS Почта России» работает быстрее и надёжнее обычной почты и доставляет до двери покупателя.
- Тариф и сроки доставки диктует служба EMS. В среднем по России время ожидания составляет 4–5 дней.
- Мы передаём заказ в EMS в течение двух рабочих дней.
- Оплатить заказ можно только онлайн при оформлении заказа.
- Стоимость рассчитывается автоматически во время оформления заказа и в среднем должна составить 400–800 рублей для России и 1500–2000 рублей для стран СНГ.
Товары из офиса нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.
Офис находится в 3 минутах ходьбы от м. Парк культуры по адресу: ул. Тимура Фрунзе, 8/5.
Товары из магазина-мастерской нельзя заказать через интернет или забронировать. Можно только прийти, схватить и бежать. Доступное количество актуально на момент загрузки страницы.
Магазин-мастерская находится в трёх минутах пешком от метро Лиговский Проспект, на территории пространства «Лофт Проект Этажи», по адресу Лиговский проспект 74Д.
Трёхцветный светодиод или RGB-светодиод — это совмещённые в одном корпусе светодиоды красного, зелёного и синего цветов.
Светодиод имеет 4 ноги. 3 ноги — аноды, соответствующие отдельным цветам и одна — общий катод. Подавая сигнал на один из анодов, можно добиться свечения одним из цветов. Используя широтно-импульсную модуляцию (PWM-сигнал) для всех анодов одновременно, можно получить свечение произвольным цветом.
Красный | Зелёный | Синий | |
---|---|---|---|
Максимальное прямое напряжение (В) | 1,9 | 3,8 | 3,8 |
Сила тока (мА) | 20 | 20 | 20 |
Помните, что светодиоды стоит подключать в последовательном соединении с резистором. Если не требуется перфекционизм, резистор на 220 Ом подойдёт для подключения любого анода к к источнику питания с напряжением 5 В. Таким образом для подключения одного RGB-светодиода понадобится 3 резистора: по одному между анодом и соответствующим выходом микроконтроллера.
Наверняка понадобятся
Десять резисторов номинальным сопротивлением 220 Ом и мощностью 0,25 Вт