Нулевая защита электродвигателя

Нулевая защита

Вариант №1

Схема защиты на рис. 109, а, применяется в случае, если в ней только один или два ( реверсивных ) контактора.

Для включения двигателя в сеть нажимают кнопку SB1 «Пуск», вследствие чего включается линейный контактор КМ, который замыкает главные контакты КМ1. КМ3 и вспомогательный КМ4.

Если после этого кнопку SB1 отпустить, ток в катушке КМ контактора поддерживается через вспомогательный контакт КМ4.

При снижении напряжения до недопустимого якорь контактора отпадает, контакты КМ1…КМ3 размыкаются, двигатель отключается от сети и останавливается.

Кроме того, размыкается контакт КМ4, поэтому ток в катушке КМ контактора исчезает.

При восстановлении напряжения до номинального ток в катушке КМ появится только после нажатия кнопки SB1 «Пуск».

Таким образом, данная схема исключает автоматическое повторное включение электродвигателя после восстановления напряжения. Пуск возможен только при участии человека.

Схема на рис. 109, б применяется как часть более сложной схемы управления в электроприводах, с числом контакторов более двух. К таким электроприводам относятся грузовые лебедки и краны, якорно-швартовные устройства и другие, управляемые при помощи командоконтроллера.

Как следует из схемы, рукоятка командоконтроллера имеет 5 положений: нерабочее «0» и по два рабочих «I» и «II» в обе стороны ( «Вперед» — «Назад» ).

В исходном положении «0» контакт SA командоконтроллера замкнут. Поэтому при подаче напряжения на зажимы А и В ( род тока не играет роли ) через этот контакт образуется цепь тока катушки реле напряжения KV.

Реле KV включается и замыкает три своих контакта: KV1, KV2 и KV3. Контакт KV1 шунтирует контакт SA ( но только в нулевом положении ), через контакты KV2 и KV3 поступает питание на остальную часть схемы управления.

Схема готова к работе.

При работе, например, в направлении «Вперед», рукоятку командоконтроллера выводят из положения «0» и устанавливают в положение «I». При этом контакт SA размыкается, но остается замкнутым контакт KV1. Через него катушка KV продолжает получатьпитание из сети.

При переводе рукоятки в положение «II» схема не изменяется.

При снижении напряжения ниже допустимого якорь реле KV отпадает, все три его контакта размыкаются.

При размыкании контакта KV1 ток в катушке реле KV пропадает, а при размыкании контактов KV2 и KV3 снимается питание с остальной части схемы управления. Двигатель отключается от сети и останавливается.

При восстановлении напряжения до номинального ток в катушке КМ появится только после возврата рукоятки командоконтроллера в нулевое положение. Только тогда замкнется контакт SA, через который снова получит питание катушка реле KV и повторно замкнутся контакты KV1, KV2 и KV3.

. Таким образом, и эта схема исключает автоматическое повторное включениеэлектродвигателя после восстановления напряжения. Пуск возможен только при участии человека ( надо нажать кнопку SB1 «Пуск» ).

4.3.3.Схема нулевой защиты с аварийным выключателем

У электроприводов, управляемых при помощи командоконтроллера, заедание рукоятки в промежуточном положении может привести к аварии, т.к. электродвигатель не останавливается.

Чтобы избежать аварии, в цепь катушки реле напряжения KV включают пакетный выключатель S1 ( рис. 110 ). Этот выключатель называют аварийным или выключателем управления. Выключатели устанавливают на тумбе командоконтроллера сбоку или сверху.

Рис. 108. Схема нулевой защиты с аварийным выключателем S1

При работе этот выключатель постоянно включен, поэтому включено реле напряжения KV. Через контакт KV:2 этого реле питание подается на основную часть схемы управления.

В случае возникновения аварийной ситуации оператор ( лебедчик ) выключает S1.

Реле KV теряет питание и размыкает контакты KV:2 и KV:1.

При размыкании контакта KV:2 снимается питание с основной части схемы управления, двигатель отключается от сети и затормаживается.

Размыкание контакта KV:1 делает невозможным включение реле KV до тех пор, пока не замкнется контакт SM1 командоконтроллера, т.е. пока не рукоятка командоконтроллера не будет возвращена в нулевое положение.

После этого реле KV получит питание и можно продолжить работу.

Выключатели управления могут быть одно- или двухполюсными.

9. Типовые комплектные устройства. Реостаты. Магнитные пускатели. Станции управления и магнитные контроллеры.

Способы защиты от обрыва или отгорания нуля

Способы защиты от обрыва или отгорания нуля

Всем известно, что ток в электрической сети течет по замкнутому контуру, питая при этом разнообразную бытовую технику и промышленное оборудование. Сеть подачи электроэнергии в частные дома, квартиры и дачи является одним из направлений распределения электричества в глобальной системе энергоснабжения разнообразных объектов. Все это говорит о том, что для питания бытовых электроприборов необходимы как минимум два электрических проводника, которые создадут замкнутую цепь электропитания домашней техники.

Эти проводники называются фазным (L) и рабочим нулевым (N). «Ноль» не опасен для человека при прикосновении к нему, так как на нем отсутствует напряжение сети. Но это не значит, что через него не протекает электрический ток. В идеальном случае, в однофазной сети, величина тока, проходящего через фазный проводник полностью совпадает со значением этого параметра, протекающего через нейтральный провод. В этой статье мы рассмотрим вопрос, причины обрывы или обгорания нулевого проводника, что происходит в случае такой аварийной ситуации, последствия этой аварии и какая защита от обрыва «нуля» способна исключить такое негативное явление.

Внимание! Обгорание нейтрального проводника в трехфазной магистральной линии электроснабжения способен вызвать изменение величины напряжения от минимального до максимального значения в 380 В, а обрыв «нуля» внутренней электропроводки обесточит сеть с появлением фазы на нулевом контакте розетки.

Область применения на практике

Теоретическая часть без предварительной подготовки воспринимается достаточно сложно, поэтом перейдем к практике и ответим на вопрос, где применяется ТЗНП.

Как уже было сказано токовая защита нулевой последовательности используется в ВВ сетях напряжением 110 кВ с заземленной нейтралью. В сетях среднего напряжения 6, 10 кВ и больше с изолированной нейтралью не используется. Это связано с тем, что в сетях с заземленной нейтралью токи КЗ на землю очень большие.

Важно! Так как ТЗНП защищает от КЗ на землю, ее иногда называют земляной защитой (ЗЗ).

2.Токовая направленная защита нулевой последовательности .

Защиты, использующие только один сигнал тока НП, несмотря на свою простоту, имеют существенные недостатки, которые будут приводить к их неселективным действиям. В ходе дальнейшего усовершенствования таких защит стали использовать два сигнала – ток и напряжение НП для определения направления. Большое число направленных защит реагируют на направление мощности нулевой последовательности в установившемся режиме. Чувствительность таких защит выше, чем ненаправленных, так как их ток срабатывания отстраивается только от тока небаланса в максимальном рабочем режиме, а отстройка защиты от собственного ёмкостного тока линии не требуется, поскольку от этого тока она отстроена по направлению. Общим недостатком защит такого типа являются их неселективные действия или отказ в срабатывании при перемежающихся дуговых ОЗЗ.

Тепловое реле

В различных устройствах используется тепловое реле для защиты двигателя от перегрузок под воздействием тока либо перегрева рабочих элементов. Оно создается с помощью металлических пластин, обладающих различным коэффициентом расширения под воздействием тепла. Обычно его предлагают в связке с магнитными пускателями и автоматической защитой.

Чтобы подключить магнитный пускатель нужно понять его принцип действия, изучить конструктивные особенности. Тогда, несмотря на кажущуюся сложность схемы подключения вам не составит труда правильно подключить магнитный пускатель, даже если до этого вам никогда не приходилось иметь дело с ним.

Схема подключения нереверсивного магнитного пускателя

  • QF — автоматического выключателя
  • KM1 — магнитного пускателя
  • P — теплового реле
  • M — асинхронного двигателя
  • ПР — предохранителя
  • (С-стоп, Пуск) — кнопки управления

Рассмотрим работу схемы в динамике. Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя. КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя. При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя.

Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается. После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии. Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей. Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Принцип работы схемы магнитного пускателя с катушкой на 220В тот же, что и с катушкой на 380В

Схема подключения реверсивного магнитного пускателя

Схема состоит аналогично, так же, как на не реверсивной схеме, единственно добавилась кнопка реверса и магнитный пускатель. Принцип работы схемы немного сложнее, рассмотрим в динамике. Что требуется от схемы, реверс двигателя за счет переворачивания местами двух фаз. При этом нужна блокировка, которая не давала бы включиться второму пускателю, если первый находится в работе и наоборот. Если включить два пускателя одновременно то произойдет КЗ – короткое замыкание на силовых контактах пускателя.

Включаем QF – автоматический выключатель, давим кнопку «Пуск [1]» подаем напряжение на КМ1 катушку пускателя, пускатель срабатывает. Силовыми контактами включает двигатель, при этом шунтируется пусковая кнопка «Пуск [1]». Блокировка второго пускателя — КМ2 осуществляется, нормально замкнутым КМ1 — блок контактом. При срабатывании КМ1 — пускателя, размыкается КМ1 — блок контакт тем самым размыкает подготовленную цепочку катушки второго КМ2 — магнитного пускателя.

Чтобы осуществить реверс двигателя, его необходимо отключить. Отключаем двигатель, нажатием кнопку «С — стоп», снимается напряжение с катушки, которая находилась в работе. Пускатель и блок контакты под действием пружин возвращаются в исходное положение. Схема готова к реверсу, нажимаем кнопку «Пуск [2]», подаем напряжение на катушку — КМ2, пускатель — КМ2 срабатывает и включает двигатель в противоположном вращение. Кнопка «Пуск [2]» шунтируется блок контактом — КМ2, а нормально замкнутый блок контакт КМ2 размыкается и блокирует готовность катушки магнитного пускателя — КМ1.

Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Аппараты электрической защиты могут осуществлять один или сразу несколько видов защит. Так, некоторые автоматические выключатели обеспечивают защиту от коротких замыканий и от перегрузки. Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены или перезарядки после каждого срабатывания, другие, такие как электромагнитные и тепловые реле, — аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным возвратом.

Выбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном слу­чае с учетом степени ответственности привода, его мощности, условий работы и порядка обслуживания (наличия или отсутствия постоянного обслуживающего персонала).

Большую пользу может принести анализ данных по аварийности электрооборудования в цехе, на строительной площадке, в мастерской и т. п., выявление наиболее часто повторяющихся нарушений нормальной работы двигателей и технологического обору­дования. Всегда следует стремиться к тому, чтобы защита была по возможности простой и надежной в эксплуатации.

Для каждого двигателя независимо от его мощности и напряжения должна быть предусмотрена защита от коротких замыканий. Здесь нужно иметь в виду следующие обстоятельства. С одной стороны, защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5—10 раз превышать его номинальный ток. С другой стороны, в ряде случаев коротких замыканий, например при витковых замыканиях, замыканиях между фазами вблизи от нулевой точки статорной обмотки, замыканиях на корпус внутри двигателя и т. п., защита должна срабатывать при токах, меньших пускового тока.

Одновременное выполнение этих противоречивых требований с помощью простых и дешевых средств защиты представляет большие трудности. Поэтому система защиты низковольтных асинхронных двигателей строится при сознательном допущении, что при некоторых отмеченных выше повреждениях в двигателе последний отключается защитой не сразу, а лишь в процессе развития этих повреждений, после того как значительно возрастет ток, потребляемый двигателем из сети.

Одно из важнейших требований к устройствам защиты двигателей — четкое действие ее при аварийных и ненормальных режимах работы двигателей и вместе с тем недопустимость ложных срабатываний. Поэтому аппараты защиты должны быть правильно выбраны и тщательно отрегулированы.

Защита двигателя при использовании частотного преобразователя

Преобразователь частоты – это электронное устройство, способное реализовать программно или аппаратно различные виды защиты.

Частотный преобразователь позволяет изменять скорость вращения вала. При этом изменяется не только частота питающего напряжения, но и величина напряжения. Важно правильно устанавливать рабочие точки на вольт-частотной характеристике двигателя.

В частном случае отношение напряжения к частоте является константой. Однако, исходя из принципов и задач регулирования, можно менять это отношение, изменяя форму кривой регулирования. Например, из-за понижения момента на низких частотах прибегают к увеличению минимального выходного напряжения, что, при злоупотреблении, может привести к перегреву.

При работе двигателя от частотного преобразователя, когда скорость вращения может быть гораздо меньше номинала, необходимо устанавливать принудительное независимое воздушное охлаждение.

Виды электрической защиты асинхронных электродвигателей

Защита асинхронных электродвигателей

Асинхронные двигатели трехфазного переменного тока напряжением до 500 в при мощностях от 0,05 до 350 — 400 кВт являются наиболее распространенным видом электродвигателей.

Надежная и бесперебойная работа электродвигателей обеспечивается в первую очередь надлежащим выбором их по номинальной мощности, режиму работы и форме исполнения. Не меньшее значение имеет также соблюдение необходимых требований и правил при составлении электрической схемы, выборе пускорегулирующей аппаратуры, проводов и кабелей, монтаже и эксплуатации электропривода.

Аварийные режимы работы электродвигателей

Даже для правильно спроектированных и эксплуатируемых электроприводов при их работе всегда остается вероятность появления режимов, аварийных или ненормальных для двигателя и другого электрооборудования.

К аварийным режимам относятся :

1) многофазные (трех- и двухфазные) и однофазные короткие замыкания в обмотках электродвигателя; многофазные короткие замыкания в выводной коробке электродвигателя и во внешней силовой цепи (в проводах и кабелях, на контактах коммутационных аппаратов, в ящиках сопротивлений); короткие замыкания фазы на корпус или нулевой провод внутри двигателя или во внешней цепи — в сетях с заземленной нейтралью; короткие замыкания в цепи управления; короткие замыкания между витками обмотки двигателя (витковые замыкания).

Короткие замыкания являются наиболее опасными аварийными режимами в электроустановках. В большинстве случаев они возникают из-за пробоя или перекрытия изоляции. Токи короткого замыкания иногда достигают величин, в десятки и сотни раз превосходящих значения токов нормального режима, а их тепловое воздействие и динамические усилия, которым подвергаются токоведущие части, могут привести к повреждению всей электроустановки;

2) тепловые перегрузки электродвигателя из-за прохождения по его обмоткам повышенных токов: при перегрузках рабочего механизма по технологическим причинам, особо тяжелых условиях пуска двигателя под нагрузкой или его застопоривании, длительном понижении напряжения сети, выпадении одной из фаз внешней силовой цепи или обрыве провода в обмотке двигателя, механических повреждениях в двигателе или рабочем механизме, а также тепловые перегрузки при ухудшении условий охлаждения двигателя.

Тепловые перегрузки вызывают в первую очередь ускоренное старение и разрушение изоляции двигателя, что приводит к коротким замыканиям, т. е. к серьезной аварии и преждевременному выходу двигателя из строя.

Виды защиты асинхронных электродвигателей

Для того чтобы защитить электродвигатель от повреждений при нарушении нормальных условий работы, а также своевременно отключить неисправный двигатель от сети, предотвратив или ограничив тем самым развитие аварии, предусматриваются средства защиты.

Главным и наиболее действенным средством является электрическая защита двигателей, выполняемая в соответствии с «Правилами устройства электроустановок» (ПУЭ).

В зависимости от характера возможных повреждений и ненормальных режимов работы различают несколько основных наиболее распространенных видов электрической защиты асинхронных двигателей .

Защита асинхронных электродвигателей от коротких замыканий

Защита от коротких замыканий отключает двигатель при появлении в его силовой (главной) цепи или в цепи управления токов короткого замыкания.

Аппараты, осуществляющие защиту от коротких замыканий (плавкие предохранители, электромагнитные реле, автоматические выключатели с электромагнитным расцепителем), действуют практически мгновенно, т. е. без выдержки времени.

Защита асинхронных электродвигателей от перегрузки

Защита от перегрузки предохраняет двигатель от недопустимого перегрева, в частности и при сравнительно небольших по величине, но продолжительных тепловых перегрузках. Защита от перегрузки должна применяться только для электродвигателей тех рабочих механизмов, у которых возможны ненормальные увеличения нагрузки при нарушениях рабочего процесса.

Аппараты защиты от перегрузки (температурные и тепловые реле, электромагнитные реле, автоматические выключатели с тепловым расцепителем или с часовым механизмом) при возникновении перегрузки отключают двигатель с определенной выдержкой времени, тем большей, чем меньше перегрузка, а в ряде случаев, при значительных перегрузках, — и мгновенно.

Защита асинхронных электродвигателей от понижения или исчезновения напряжения

Защита от понижения или исчезновения напряжения (нулевая защита) выполняется с помощью одного или нескольких электромагнитных аппаратов, действует на отключение двигателя при перерыве питания или снижении напряжения сети ниже установленного значения и предохраняет двигатель от самопроизвольного включения после ликвидации перерыва питания или восстановления нормального напряжения сети.

Специальная защита асинхронных электродвигателей от работы на двух фазах предохраняет двигатель от перегрева, а также от «опрокидывания», т. е. остановки под током вследствие снижения момента, развиваемого двигателем, при обрыве в одной из фаз главной цепи. Защита действует на отключение двигателя.

В качестве аппаратов защиты применяются как тепловые, так и электромагнитные реле. В последнем случае защита может не иметь выдержки времени.

Другие виды электрической защиты асинхронных электродвигателей

Существуют и некоторые другие, реже встречающиеся виды защиты (от повышения напряжения, однофазных замыканий на землю в сетях с изолированной нейтралью, увеличения скорости вращения привода и т. п.).

Электрические аппараты, применяемые для защиты электродвигателей

Аппараты электрической защиты могут осуществлять один или сразу несколько видов защит. Так, некоторые автоматические выключатели обеспечивают защиту от коротких замыканий и от перегрузки. Одни из аппаратов защиты, например плавкие предохранители, являются аппаратами однократного действия и требуют замены или перезарядки после каждого срабатывания, другие, такие как электромагнитные и тепловые реле, — аппараты многократного действия. Последние различаются по способу возврата в состояние готовности на аппараты с самовозвратом и с ручным возвратом.

Выбор вида электрической защиты асинхронных электродвигателей

Выбор того или иного вида защиты или нескольких одновременно производится в каждом конкретном слу­чае с учетом степени ответственности привода, его мощности, условий работы и порядка обслуживания (наличия или отсутствия постоянного обслуживающего персонала).

Большую пользу может принести анализ данных по аварийности электрооборудования в цехе, на строительной площадке, в мастерской и т. п., выявление наиболее часто повторяющихся нарушений нормальной работы двигателей и технологического обору­дования. Всегда следует стремиться к тому, чтобы защита была по возможности простой и надежной в эксплуатации.

Для каждого двигателя независимо от его мощности и напряжения должна быть предусмотрена защита от коротких замыканий. Здесь нужно иметь в виду следующие обстоятельства. С одной стороны, защиту нужно отстроить от пусковых и тормозных токов двигателя, которые могут в 5—10 раз превышать его номинальный ток. С другой стороны, в ряде случаев коротких замыканий, например при витковых замыканиях, замыканиях между фазами вблизи от нулевой точки статорной обмотки, замыканиях на корпус внутри двигателя и т. п., защита должна срабатывать при токах, меньших пускового тока.

Одновременное выполнение этих противоречивых требований с помощью простых и дешевых средств защиты представляет большие трудности. Поэтому система защиты низковольтных асинхронных двигателей строится при сознательном допущении, что при некоторых отмеченных выше повреждениях в двигателе последний отключается защитой не сразу, а лишь в процессе развития этих повреждений, после того как значительно возрастет ток, потребляемый двигателем из сети.

Одно из важнейших требований к устройствам защиты двигателей — четкое действие ее при аварийных и ненормальных режимах работы двигателей и вместе с тем недопустимость ложных срабатываний. Поэтому аппараты защиты должны быть правильно выбраны и тщательно отрегулированы.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

31.03.2012

Защита электропривода

Аппараты защиты предназначены для предотвращения аварий, которые могут возникнуть при сильном возрастании тока (перегрузках) электродвигателя, коротких замыканиях в его цепях и чрезмерном уменьшении или исчезновении напряжения в питающей сети. В некоторых случаях применяются и другие виды защиты: при обрыве цепи возбуждения, работе асинхронных двигателей на двух фазах, чрезмерном возрастании частоты вращения, для ограничения хода приводимого механизма и т. д. Опасность той или иной перегрузки для электродвигателя зависит не только от размера перегрузки, но и от ее продолжительности, типа и конструкции двигателя, его температуры и температуры окружающей среды. Иногда большая кратковременная перегрузка представляет нормальное явление, например при пуске асинхронных двигателей с короткозамкнутым ротором. В других случаях, например при пуске двигателя постоянного тока, большая перегрузка недопустима, так как приводит к нарушению коммутации машины и появлению на коллекторе кругового огня.

В случае возникновения в цепях двигателей токов коротких замыканий аппараты защиты должны отключать эти цепи как можно скорее. При чрезмерном понижении напряжения частота вращения двигателей при полной нагрузке уменьшается. Восстановление напряжения вызывает резкие броски тока и механические толчки, которые могут привести к повреждению двигателя и приводного механизма.

У асинхронных двигателей понижение напряжения приводит к возрастанию тока ротора и, следовательно, к перегреву машины.

Расчетный срок службы электродвигателя определяется в основном ресурсом его обмоток. Например, для асинхронных двигателей серии 4А срок службы составляет 20 лет при наработке 40 тыс. ч. Решающим фактором, обусловливающим снижение качества изоляции обмоток электромашин, является повышенная температура. Поэтому все виды защиты электроприводов имеют общую задачу — исключить возможный перегрев электродвигателей. Для всех приводов обязательными являются защита от перегрузки по току и нулевая блокировка. Для защиты при коротких замыканиях после коммутационного аппарата устанавливают плавкие предохранители.

Защита от перегрузок двигателей может быть: токовая, осуществляемая при помощи реле максимального тока; тепловая — при помощи электротепловых реле; температурная — при помощи термореле.

При больших перегрузках или коротких замыканиях в цепи якоря двигателя постоянного тока максимальное реле, срабатывая, лишает катушку линейного контактора, а последний отключает двигатель от сети. Для того чтобы максимальные реле не отключали двигатели при пусках, уставки реле должны быть большими, чем пусковые токи двигателей.

Тепловая защита выполняется посредством электротепловых реле, которые включаются в две или три фазы асинхронного трехфазного двигателя.

Минимальная защита обеспечивает отключение электродвигателей при чрезмерном понижении или исчезновении напряжения в питающей сети. Эта защита предотвращает также повторное самопроизвольное включение двигателей при восстановлении исчезнувшего напряжения. Аппаратами минимальной защиты служат контакторы и реле напряжения.
В схемах включения магнитных пускателей при значительном уменьшении или исчезновении напряжения контактор отпускает свой якорь и отключает двигатель от сети. При восстановлении напряжения самопроизвольного включения двигателя не произойдет, так как замыкающий вспомогательный контакт контактора, шунтирующий кнопку, разомкнётся, и для повторного пуска двигателя необходимо вновь нажать эту кнопку.

В схемах управления с командоконтроллерами минимальная защита осуществляется с помощью реле напряжения. В нулевом положении командоконтроллера через его контакт, замкнутый только в нулевом положении (нулевой контакт), получает питание катушка реле, которое через свой замыкающий контакт подает питание всей цепи управления. В других положениях командоконтроллера его нулевой контакт разомкнут, и катушка реле получает питание через собственный контакт. При уменьшении или исчезновении напряжения реле отключает всю цепь управления и, следовательно, двигатель.

Повторное включение двигателя возможно только после установки командоконтроллера в нулевое положение.

Температурная защита осуществляется на основе непосредственного контроля температуры обмоток двигателя. Защита позволяет наиболее полно реализовать тепловые возможности электродвигателя во всех режимах, при любых нагрузках. Исполнение защиты унифицировано для асинхронных машин любой мощности. Наиболее простыми элементами температурной защиты являются биметаллические термореле, непосредственно встраиваемые в лобовые части статорных обмоток. В качестве чувствительных элементов температурной защиты электродвигателей применяются терморезисторы, которые монтируют в лобовых частях обмоток.

Схема температурной защиты на позисторах (рис. 1) выполнена в виде несимметричного триггера на транзисторах VI и V2 с выходом на реле К. В исходном состоянии транзистор VI открыт, V2— закрыт. Позистор R является одним из плеч делителя напряжения Rl — R. При повышении температуры обмотки машины, а следовательно, и позистора до порога срабатывания происходит опрокидывание триггера. Транзистор VI закрывается, V2 — открывается, реле К срабатывает, осуществляя свои защитные функции. Преимуществом схемы является ее простота, универсальность, отсутствие необходимости в дополнительных регулировках, системах компенсации и настройки. Уставка срабатывания защиты зависит от типа позистора, который подбирают в соответствии с классом изоляции машины. Более чем десятикратное изменение сопротивления позистора в интервале температуры уставки позволяет последовательно соединять до трех термодатчиков, контролируя нагрев машины одновременно в нескольких точках.

Виды электрических защит и блокировок в магнитных пускателях

В магнитных пускателях может быть две электрических защиты ( при наличии теплового реле )

1) тепловая защита;

2) нулевая защита,

5.1. Тепловая защита предназначена для защиты электрического двигателя от перегрузки, т.е. от тока в обмотках двигателя превышающего номинальное значение. Увеличение тока вызывает нагрев двигателя. который может привести к разрушению изоляции и выходу двигателе из строя. Тепловая защита осуществляется с помощью двух тепловых реле TPI, ТР2, установленных в двух фазах питания двигателя* Принцип действия теплового реле основан на свойстве биметаллической пластинки, рис. 5.3, которая реагирует на протекание тока по проводнику выделением тепла. Биметаллическая пластинка I представляет собой пластинку из двух слоев различных металлов, обладающих различными коэффициентами линейного расширения при нагревании. При нагревании биметаллическая пластинка деформируется, прогибается. Один конец ее зафиксирован, второй конец, при определенной температуре освобождает отключающее устройство — электрические контакты теплового реле TPI, ТР2. Эти контакты размыкают цепь питания катушки KMI или КМ2 и отключают двигатель.

Биметаллическая пластинка в электрическую цепь включается непосредственно ( последовательно ) или косвенно, через подогреватель. Тепловое реле не защищают электрические двигатели от токов короткого замыкания, поскольку они инерционны, у них большая ( относительно ударного тока к.з, ) постоянная нагрева.

Рис. 5.3. Принцип действия теплового реле

Поэтому последовательно с магнитными пускателями, обычно устанавливается защита от токов короткого замыкания на плавких вставках.

При 20 % перегрузке тепловое реле срабатывает за время до 20 мин. При срабатывании биметаллическая пластинка встает на защелку и для возврата ее в исходное состояние необходимо нажать на кнопку возврата по истечении времени, необходимого на остывание биметаллической пластинки.

Промышленностью выпускается тепловые реле типов TFH-I0, 25,40; ТРП-25,60,150, РТ-20. Цифры указывают на номинальный ток теплового реле. Ток срабатывания теплового реле может регулироваться в пределах 25 % от номинального значения.

5.2. Нулевая и минимальная защиты

По правилам устройства электроустановок ( ПУЭ ) колебание, напряжения на зажимах электродвигателей допускается в пределах ± 5 % U н. При эксплуатации электрооборудования напряжение в сети колеблется в более широких пределах. Возможно также внезапное появление напряжения после его исчезновения.

Снижение напряжения на зажимах асинхронных электродвигателей ведет к значительному снижению момента двигателя, так как он пропорционален квадрату напряжения, и увеличению тока в обмотках, перегреву обмоток двигателя.

Внезапное появление напряжения после его исчезновения гложем вызвать самозапуск двигателя и привести к аварии или несчастному случаю.

Для предотвращения этих последствий служит минимальная нулевая защиты.

Защита, отключающая установку при снижении напряжения до 75 % U н называется минимальной.

Нулевая защита отключает установку при полном исчезновении напряжения или при снижении его до 15 % U н.

В магнитных пускателях оба вида защит осуществляется с помощью электромагнитной системы. При снижении напряжения ниже допустимого значения или при его исчезновении якорь пускателя отпускается и происходит отключение двигателя. При появлении напряжения самозапуск двигателя не произойдет из-за разомкнутой цепи питания катушки контактами пусковой кнопки SB 2 и блокировочных контактов 2, рис. 5.1.

5.3. Блокировки в магнитных пускателях

В магнитных пускателях используют электрические и механические

виды блокировок. Электрические блокировки осуществляют с помощью вспомогательных ( блокировочных ) контактов для блокирования пусковой кнопки, блокирования включения в реверсивном пускателе второй катушки, во время работы первой и наоборот; последовательное включение электродвигателей, например, конвейерных лент конвейерной линии.

Механическая блокировка осуществлена в реверсивном магнитном пускателе. Она дублирует электрическую блокировку одновременного включения двух катушек. При подгорании замкнутых электрических контактов КМ1:3 и КМ2:3 возможно их прилипание и включение второй катушки. Механическая блокировка выполнена на рычагах 1,2. При втягивании якоря одной катушкой одновременно поворачивается рычаг Г не позволяющий рычагом второй катушки втянуться второму якорю.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Поддержка

Защита электродвигателя

В электродвигателях, как и в многих других электротехнических, устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае, из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Для повышения ресурса безаварийной работы двигателя и повышения эксплуатационной надежности, концерн Русэлпром предлагает использовать защиту двигателей.

Применение защиты удорожает двигатель, поэтому выбор типа и количества защит определяется не только технической, но и экономической целесообразностью их установки. Правильный выбор защиты двигателя позволяет получить необходимый эффект с обоснованными затратами.

Как правило, для двигателей напряжением до 1000 Вт предусматривается:

  • защита от коротких замыканий;
  • защита от перегрузки.

Короткое замыкание в электродвигателе может привести к росту тока, более чем в 12 раз в течение очень короткого промежутка времени (около 10 мс). Для защиты двигателей от коротких замыканий должны применяться предохранители или автоматические выключатели.

Защита от перегрузки устанавливается в тех случаях, когда возможна перегрузка механизма по технологическим причинам, а также при тяжелых условиях пуска и для ограничения длительности пуска при пониженном напряжении.

Для защиты двигателя от перегрузки используется:

  • Тепловая защита;
  • Температурная защита;
  • Максимально токовая защита;
  • Минимально токовая защита;
  • Фазочувствительная защита.

Температурная защита

Наиболее эффективной защитой двигателей является температурная защита.

Температурная защита реагирует на увеличение температуры наиболее нагретых частей двигателя с мощью встроенных температурных датчиков и через устройства температурной защиты воздействует на цепь управления контактора или пускателя и отключает двигатель.

Любой двигатель производства концерна «Русэлпром» по заказу потребителя может быть укомплектован встроенными температурными датчиками для защиты двигателей в аварийных режимах, следствием которых может быть нагрев обмотки до недопустимой температуры.

В качестве датчиков используются полупроводниковые терморезисторы с положительным температурным коэффициентом — позисторы. Датчики встраиваются в лобовые части обмотки статора со стороны противоположной вентилятору наружного обдува по одному в каждую фазу, соединяются последовательно. Концы цепи датчиков выводятся на специальные клеммы в коробке выводов. К этим клеммам подключают реле или иной аппарат, реагирующий на сигнал датчиков.

Датчики реагируют только на температуру, и их действие не зависит от причин возникновения опасного нагрева. Поэтому такая система обеспечивает защиту двигателя как в режимах с медленным нагреванием (перегрузка, работа на двух фазах), так и в режимах с быстрым нагреванием (заклинивание ротора, выход из строя подшипников и другое).

Согласно требованиям ГОСТ 27895 (МЭК 60034$11) температура срабатывания защиты должна соответствовать значениям, приведенным в таблице.

Пороги термозащиты

Тепловой режим Значение температуры обмотки статора для систем изоляции класса нагревостойкости, град. С
B F H
Установившийся (Предельно допустимое среднее значение) 120 140 165
Медленной нагревание (Срабатывание защиты) 145 170 195
Быстрое нагревание (Срабатывание защиты) 200 225 250

Характеристики датчиков температурной защиты

Двигатели с датчиками температурной защиты имеют встроенные в каждую фазу обмотки и соединённые последовательно терморезисторы типа СТ14-2-145 по ТУ11-85 ОЖО468.165ТУ или другие терморезисторы с аналогичными параметрами.

В вводном устройстве двигателей предусмотрены клеммы для подсоединения цепи терморезисторов к исполнительному устройству температурной защиты.

Температура срабатывания датчиков температурной защиты:

Класс нагревостойкости изоляции двигателя Обозначения типа позистора по ТУ11-85 ОЖО468.165ТУ Пороговая температура срабатывания позистора, град. С.
В CТ-14А-2-130 130
F CТ-14А-2-145 145
H CТ-14А-2-160 160

Срабатывание температурной защиты происходит при возрастании температуры обмотки до значения, указанного в таблице 13, и температуре позистора, указанной в таблице 13.1. Время срабатывания защиты не превышает 15 с. Исполнительное устройство температурной защиты должно отключать силовую цепь двигателя при достижении сопротивления цепи термодатчиков 2100- 450 Ом.

Сопротивление одного позистора составляет 30 — 140 Ом при 25 градусах C, сопротивление цепи из 3 позисторов составляет 250±160 Ом.

Сопротивление изоляции цепи терморезисторов относительно обмоток статора двигателя при температуре окружающей среды (25 +5)°C составляет:

  • В практически холодном состоянии двигателя находится в пределах от 120 до 480 Ом. Измерительное напряжение при контроле не более 2,5 В.
  • В номинальном режиме работы двигателей при установившемся тепловом состоянии (температура обмотки двигателя