Однофазный однополупериодный выпрямитель принцип действия

Однофазная однополупериодная схема выпрямителя. Схема и принцип действия

Однополупериодная схема выпрямления содержит трансформатор, диод и активную нагрузку.

Принцип действия схемы: в положительный полупериод, когда на аноде диода положительный потенциал, он открывается, все напряжение вторичной обмотки прикладывается к нагрузке. В отрицательный полупериод диод закрыт, ток через него равен нулю, а все напряжение вторичной обмотки прикладывается к диоду. Временные диаграммы, поясняющие принцип работы, имеют следующий вид:

Схема является однополупериодной, так как ток через нагрузку протекает только в течение половины периода питающего напряжения. Схема является однотактной, так как ток через вторичную обмотку трансформатора протекает только в течение половины периода питающего напряжения.

Ток вторичной обмотки трансформатора является несинусоидальным по форме, поэтому в разложении тока в ряд Фурье присутствует постоянная составляющая. Постоянная составляющая тока вызывает в магнитопроводе постоянный магнитный поток, что приводит к вынужденному намагничиванию сердечника трансформатора.

2. Расчетные соотношения для однофазной однополупериодной схемы выпрямителя

Постоянная составляющая выпрямленного тока в нагрузке:

I

Постоянная составляющая выпрямленного напряжения:

U

Амплитуда тока через вторичную обмотку:

I

Действующее значение напряжения и тока вторичной обмотки:

U

I

Обратное напряжение на диоде:

U

Типовая мощность трансформатора:

Р

Частота основной гармоники выпрямленного напряжения (тока):

f

Коэффициент пульсаций

Основное преимущество – простота схемы.

Недостатки: большие размеры и вес трансформатора, значительная величина обратного напряжения на диоде, большие пульсации, наличие вынужденного намагничивания.

Применение ограничено: в маломощных устройствах.

Таким образом, в лекции изучены схема, принцип работы, временные диаграммы, поясняющие работу и расчетные соотношения однофазного однополупериодного выпрямителя.

1. [321-322], 2. [152-158].

Вопросы для самоконтроля

Изобразите схему однофазного однополупериодного выпрямителя.

Изобразите временные диаграммы, поясняющие работу однофазного однополупериодного выпрямителя.

Почему схема называется однополупериодной?

Почему схема называется однотактной?

Назовите достоинства и недостатки однополупериодного выпрямителя.

Что вызывает вынужденное намагничивание сердечника трансформатора?

Чему равен коэффициент пульсаций для этого выпрямителя?

Чему равна частота пульсаций для этой схемы выпрямителя?

| следующая лекция ==>
Демократизм Суверенитет Правовой хар.гос Идеолог. полит. плюрализм | Двухполупериодная схема выпрямителя с выводом средней точки трансформатора. Схема и принцип действия

Дата добавления: 2015-12-01 ; просмотров: 6355 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Однофазный однополупериодный выпрямитель

Классификация и основные параметры выпрямителей

Применение полупроводниковых диодов. Однофазные выпрямители

Выпрямитель — это устройство, предназначенное для преобразования переменного напряжения в постоянное.

Основными элементами выпрямителя являются трансформатор и диоды, с помощью которых обеспечивается одностороннее протекание тока в цепи нагрузки, в результате чего переменное напряжение преобразуется в пульсирующее. С помощью трансформатора в выпрямителях производится преобразование величины напряжения, электрическое разделение отдельных цепей, преобразование числа фаз.

В зависимости от числа фаз питающего напряжения различают схемы однофазного и трехфазного выпрямления.

Основными величинами, характеризующими эксплуатационные свойства выпрямителей, являются:

— коэффициент полезного действия h;

— коэффициент мощности c;

— внешняя характеристика — зависимость напряжения в нагрузке от тока нагрузки Ud = f(Id);

— коэффициент пульсаций Кп — отношение амплитуды пульсаций выходного напряжения к среднему значению выпрямленного напряжения (постоянной составляющей).

В зависимости от характера нагрузки изменяется режим работы трансформатора и диодов. Различают режимы работы выпрямителя на чисто активную, активно-индуктивную и активно-ёмкостную нагрузки.

Рассмотрим работу различных схем однофазных выпрямителей на активную нагрузку.

Схема однофазного однополупериодного выпрямителя представлена на рис. 3.1.

Рис. 3.1. Однофазный однополупериодный выпрямитель

На схеме приняты следующие обозначения напряжений и токов:

— U1, U2 – действующие значения напряжений первичной и вторичной обмоток трансформатора;

— I1, I2 – действующие значения токов первичной и вторичной обмоток трансформатора;

— Ud – среднее значение выпрямленного напряжения;

— Id – среднее значение выпрямленного тока.

Анализ работы схемы проведём по упрощённой методике, без учёта потерь напряжения на активном сопротивлении обмоток трансформатора и динамическом сопротивлении открытого диода.

Рассмотрим временную диаграмму работы схемы (рис. 3.2).

Рис. 3.2. Временная диаграмма работы однофазного однополупериодного выпрямителя

Под действием переменного напряжения u2 = U2m sinwt вторичной обмотки ток в цепи нагрузки может проходить только в течение нечётных полупериодов, когда анод диода имеет положительный потенциал относительно катода. В чётные полупериоды, когда потенциал анода становится отрицательным, ток в цепи равен нулю.

Мгновенное значение выпрямленного тока:

, при 0

Среднее значение выпрямленного напряжения:

. (3.1)

Среднее значение выпрямленного тока (а также тока диода):

. (3.2)

Действующее (эффективное) значение тока диода:

. (3.3)

Максимальное обратное напряжение на диоде достигает амплитудного значения напряжения вторичной обмотки:

. (3.4)

По найденным величинам Ia, Ia.эф и Ub.max выбирается диод для работы в схеме. Согласно полученным результатам диод должен допускать максимальное обратное напряжение в 3,14 раза превышающее напряжение в нагрузке, или в Ö2 раз больше напряжения вторичной обмотки трансформатора. Переменная составляющая выпрямленного напряжения и тока для данной схемы, как следует из временных диаграмм для u и i, велика, причем основная гармоника пульсаций имеет частоту, равную частоте питающей сети.

Рассмотрим режим работы трансформатора. Действующее значение тока вторичной обмотки:

.

Отношение действующего значения фазного тока I2 к его среднему значению I2cp называется коэффициентом формы тока D (или Кф):

. (3.5)

Постоянная составляющая фазного тока:

, (3.6)

где m2 – число фаз вторичной обмотки трансформатора. В рассматриваемой схеме m2 = 1.

Следовательно, для рассматриваемой схемы коэффициент формы тока:

. (3.7)

Действующее значение напряжения вторичной обмотки трансформатора:

.

Расчетная мощность вторичной обмотки трансформатора:

, (3.8)

Действующее значение тока в первичной обмотке трансформатора можно определить из уравнения магнитного равновесия трансформатора, если пренебречь током намагничивания и учесть, что постоянная составляющая тока в первичную обмотку не трансформируется. Уравнение магнитного равновесия трансформатора по переменному току

.

Мгновенное значение тока первичной обмотки

,

где n – коэффициент трансформации.

Действующее значение тока первичной обмотки трансформатора:

. (3.9)

Расчетная мощность первичной обмотки:

. (3.10)

Расчетная (типовая) мощность трансформатора:

. (3.11)

Коэффициент использования трансформатора по мощности:

.

Коэффициент мощности выпрямителя в общем виде определяется как:

,

где — активная мощность первичной обмотки, представляющая собой среднее значение мощности переменного тока за период и определяющаяся как сумма активных мощностей отдельных гармонических составляющих тока;

— полная мощность первичной обмотки.

Если полагать, что напряжение питающей сети синусоидально, то . Следовательно, коэффициент мощности

, (3.12)

где — коэффициент искажений;

j1 – угол сдвига фаз между напряжением питающей сети и первой гармоникой тока первичной обмотки.

В рассматриваемом случае j1 = 0, но коэффициент мощности меньше единицы, так как n = 0,9

Однофазные выпрямители — схемы и принцип действия

Выпрямитель — это устройство, предназначенное для преобразования входною переменного напряжения в постоянное. Основным блоком выпрямителя является вен пильный комплект, который непосредственно выполняет преобразования переменного напряжения в постоянное.

При необходимости согласования параметров сети с параметрами нагрузки, выпрямительный комплект подключается к сети через согласующий трансформатор. По числу фаз питающей сети выпрямители бывают однофазные и трехфазные. Подробнее смотрите здесь — Классификация полупроводниковых выпрямителей. В этой статье рассмотрим работу однофазных выпрямителей.

Однофазный однополупериодный выпрямитель

Простейшей схемой выпрямителя является однофазный однополупериодный выпрямитель (рис. 1).

Рис. 1. Схема однофазного управляемого однополупериодного выпрямителя

Диаграммы работы выпрямителя на R- нагрузку показаны на рисунке 2.

Рис. 2. Диаграммы работы выпрямителя на R-нагрузку

Для того, чтобы открыть тиристор, необходимо выполнение двух условий:

1) потенциал анода должен быть выше потенциала катода;

2) на управляющий электрод должен быть подан открывающий импульс.

Для данной схемы одновременное выполнение этих условий возможно лишь в положительные полупериоды питающего напряжения. Система импульсно-фазового управления ( СИФУ ) должна формировать открывающие импульсы лишь в положительные п олунериоды питающего напряжения.

При подаче на тиристор VS1 открывающего импульса в момент времени θ = α тиристор VS1 открывается и к нагрузке прикладывается напряжение питания U 1 в течение оставшейся части положительного полупериода (прямое падение напряжения на вентиле Δ U в пренебрежимо мало по сравнению с напряжением U 1 ( Δ U в = 1 — 2 В )). Поскольку нагрузка R — активная, то ток в нагрузке повторяет форму напряжения.

В конце положительного полупериода ток нагрузки i и вентиля VS1 уменьшатся до нуля ( θ = n π) , а напряжение U 1 изменит свой знак. Таким образом, к тиристору VS1 прикладывается обратное напряжение, под действием которого он закрывается и восстанавливает свои управляющие свойства.

Такая коммутация вентиля под действием напряжения источника питания, периодически изменяющего свою полярность, называется естественной .

Из диаграмм видно, что изменение а приводит к изменению части положительного полупериода, в течение которого напряжение питания приложено к нагрузке, и, следовательно, это приводит к регулированию потребляемой мощности. Угол α характеризует задержку момента открывания тиристора по отношению к моменту его естественного открывания и называется углом открывания (управления) вентиля .

ЭДС выпрямителя и ток представляют собой следующие друг за другом отрезки положительных полусинусоид, постоянных по направлению, но непостоянных по величине, т.е. выпрямленные ЭДС и ток имеют периодический пульсирующий характер. А каждую периодическую функцию можно разложить в ряд Фурье:

где Е — постоянная составляющая выпрямленной ЭДС, en( t ) — переменная составляющая, равная сумме всех гармонических составляющих.

Таким образом, можно считать, что к нагрузке приложено постоянная ЭДС искаженная переменной составляющей en(t). Постоянная составляющая ЭДС Е является основной характеристикой выпрямленной ЭДС.

Процесс регулирования напряжения на нагрузке путем изменения называется фазовым регулированием . Данная схема имеет ряд недостатков:

1) высокое содержание высших гармонических в выпрямленной ЭДС;

2) большие пульсации ЭДС и тока;

3) прерывистый режим работы схемы;

4) низкий коэффициент использования схемы по напряжению ( k схе =0,45).

Режимом прерывистого тока работы выпрямителя называется такой режим, при котором ток в цепи нагрузки выпрямителя прерывается, т.е. становится равным нулю.

Однофазный однонополупериодный выпрямитель при работе на активно-индуктивную нагрузку

Временные диаграммы работы однополупериодного выпрямителя на RL-нагрузку представлены на рис. 3.

Рис. 3. Диаграммы работы однополупериодного выпрямителя на RL-нагрузку

Для анализа процессов, протекающих в схеме, выделим три интервала времени.

1. α . Схема замещения, соответствующая этому интервалу, приведена на рис. 4.

Согласно схеме замещения:

На этом интервале времени eL (ЭДС самоиндукции) направлена встречно напряжению сети U1 и препятствует резкому нарастанию тока. Энергия из сети преобразуется в тепловую на R и накапливается в электромагнитном поле индуктивности L.

2. α π. Схема замещения, соответствующая этому интервалу, приведена на рис. 5.

На этом интервале ЭДС самоиндукции eL поменяла свой знак (в момент времени θ = δ ).

При θ δ eL меняет свой знак и стремится поддержать ток в цепи. Она направлена согласно с U1. На этом интервале энергия из сети и накопленная в поле индуктивности L преобразуются в тепловую в R.

3. π θ α + λ . Схема замещения, соответствующая этому интервалу, приведена на рис. 6.

Рис. 6 Схема замещения

В момент времени θ = π напряжение сети U1 меняет свою полярность, но тиристор VS1 остается в проводящем состоянии, так как eL превышает U 1 и на тиристоре сохраняется прямое напряжение. Ток под действием eL будет протекать по нагрузке в том же направлении до тех пор, пока энергия, накопленная в поле индуктивности L , полностью не израсходуется.

На этом интервале часть энергии, накопленной в поле индуктивности, преобразуется в тепловую в сопротивлении R, а часть отдается в сеть. Процесс передачи энергии из цепи постоянного тока в цепь переменного тока называется инвертированием . Об этом свидетельствуют разные знаки е и i.

Длительность протекания тока на участке отрицательной полярности U 1 зависит от соотношения между величинами L и R (XL = ω L). Чем больше отношение — ω L /R , тем больше продолжительность протекания тока λ .

Если в цепи нагрузки есть индуктивность L , то форма тока становится более гладкой и ток протекает даже на участках отрицательной полярности U 1 . Тиристор VS1 при этом закрывается не в момент перехода напряжения U1 через 0, а в момент спадания тока до нуля. Если ω L /R → оо, то при α = 0 λ→2π.

Принцип действия однофазного мостового выпрямителя в непрерывном режиме при работе на активную и активно-индуктивную нагрузки

Силовая схема однофазного мостового выпрямителя представлена на рис. 7, а временные диаграммы его работы на активную нагрузку — на рис. 8.

Вентильный мост (рис. 7) содержит две группы вентилей — катодную (нечетные вентили) и анодную (четные вентили). В мостовой схеме ток проводят одновременно два вентиля — один из катодной группы и один из анодной.

Как видно из рис. 7 вентили включаются так, что в положительные полупериоды напряжения U2 ток протекает через вентили VS1 и VS4, а в отрицательные полупериоды — через вентили VS2 и VS3. Принимаем допущения, что вентили и трансформатор идеальные, т.е. Lтp = Rтp = 0, Δ U B = 0.

Рис. 7. Схема однофазного мостового выпрямителя

Рис. 8. Диаграммы работы однофазного мостового управляемого выпрямителя на активную нагрузку

В данной схеме в каждый момент времени проводит ток одна пара тиристоров VS1 и VS4 в положительные полупериоды U2 и VS2 и VS3 в отрицательные. Когда все тиристоры закрыты, то к каждому из них прикладывается половина напряжения питания.

При θ = α открываются VS1 и VS4 и по нагрузке начинает протекать ток через открывшееся VS1 и VS4. К работавшим ранее VS2 и VS3 прикладывается полное напряжение сети в обратном направлении. При в = л-, U2 меняет свой знак и поскольку нагрузка активная, то ток становится равным нулю, а к VS1 и VS4 прикладывается обратное напряжение и они закрываются.

При θ = π + α открываются тиристоры VS2 и VS3 и ток по нагрузке продолжает протекать в том же направлении. Ток в данной схеме при L=0 имеет прерывистый характер и лишь при α =0 ток будет гранично-непрерывным.

Гранично-непрерывным режимом называется режим, при котором ток в некоторые моменты времени снижается до нуля, но не прерывается.

U пр.мах = U обр.мах = √2 U2 (с трансформатором),

U пр.мах = U обр.мах = √2 U 1 (без трансформатора).

Работа схемы на активно-индуктивную нагрузку

R-L нагрузка типична для обмоток электрических аппаратов и обмоток возбуждения электрических машин, или когда на выходе выпрямителя установлен индуктивный фильтр. Влияние индуктивности сказывается на форме кривой тока нагрузки, а также на среднем и действующем значениях тока через вентили и трансформатор. Чем больше индуктивность цепи нагрузки, тем меньше переменная составляющая тока.

Для упрощения расчетов полагают, что ток нагрузки идеально сглажен ( L → оо). Это правомерно, когда ωп L > 5R, где ωп — круговая частота пульсаций на выходе выпрямителя. При выполнении данного условия ошибка в расчётах незначительна и может не приниматься во внимание.

Временные диаграммы работы однофазного мостового выпрямителя на активно-индуктивную нагрузку представлены на рис. 9.

Рис. 9. Диаграммы работы однофазного мостового выпрямителя при работе на RL-нагрузку

Для рассмотрения процессов, протекающих в схеме, выделим три участка работы.

1. α . Схема замещения, соответствующая этому интервалу, приведена на рис. 10.

На рассматриваемом интервале энергия из сети преобразуется в тепловую в сопротивлении R, а часть накапливается в электромагнитном поле индуктивности.

2. α π . Схема замещения, соответствующая этому интервалу, приведена на рис. 11.

В момент времени θ = δ ЭДС самоиндукции eL = 0, т.к. ток достигает максимального значения.

На этом интервале энергия, накопленная в индуктивности и потребляемая из сети преобразуется в тепловую в сопротивлении R.

3. π θ α + λ . Схема замещения, соответствующая этому интервалу, приведена на рис. 12.

На этом интервале часть энергии, накопленная в поле индуктивности, преобразуется в тепловую в сопротивлении R, а часть возвращается в сеть.

Действие ЭДС самоиндукции на 3-м участке приводит к появлению участков отрицательной полярности в кривой выпрямленной ЭДС, а разные знаки е и i свидетельствуют о том, что на этом интервале происходит возврат электрической энергии в сеть.

Если к моменту времени θ = π + α энергия, накопленная в индуктивности L, полностью не израсходована, то ток i будет иметь непрерывный характер. При подаче в момент времени θ = π + α открывающих импульсов на тиристоры VS2 и VS3, к которым со стороны сети приложено прямое напряжение, они открываются и через них к работавшим VS1 и VS4 прикладывается обратное напряжение со стороны сети, вследствие чего они закрываются, такой вид коммутации называется естественной.

ОДНОФАЗНЫЙ ОДНОПОЛУПЕРИОДНЫЙ ВЫПРЯМИТЕЛЬ

Схема однополупериодного выпрямителя (рис. 12.2) включает однофазный трансформатор TV, во вторичную обмотку которого включены последовательно диод VD и нагрузочное сопротивление RH. Первичная обмотка трансформатора присоединена к сети переменного тока. При подаче переменного напряжения на первичную обмотку трансформатора напряжение на зажимах его вторичной обмотки также будет переменным. Если напряжение на первичной обмотке является синусоидальным и< = /lwsinco/, то мгновенное напряжение на вторичной обмотке трансформатора при этом будет меняться во времени по синусоидальному закону и2 = и$тШ. Диод проводит электрический ток только в том случае, когда его анод относительно катода будет иметь положительный потенциал. Поэтому ток в цепи (вторичная обмотка трансформатора TV, диод VD, нагрузка RH) будет протекать только в одном направлении, т.е. в течение положительного полупериода переменного напряжения и< на первичной обмотке трансформатора. В результате этого ток, протекающий в цепи нагрузки, оказывается пульсирующим, неизменным по направлению, но изменяющимся по значению во времени. Временные диаграммы изменения напряжений и токов, соответствующих однофазному однополупериодному выпрямителю, представлены на рис. 12.3.

Рис. 12.2. Принципиальная схема однополупериодного выпрямителя переменного тока:

uv и2, ip /2 — мгновенные значения напряжения и тока первичной и вторичной обмоток трансформатора

Из рис. 12.3 видно, что рассматриваемое выпрямительное устройство характеризуется значительными пульсациями выпрямленного тока /2 и напряжения на нагрузке ин. Максимальное значение тока, проходящего через диод:

Рис. 12.3. Временные диаграммы токов и напряжений однофазного однополупериодного выпрямителя

где U2m, U2 — максимальное и действующее значения напряжений.

Мгновенное значение тока /2 после разложения в гармонический ряд Фурье имеет вид

Первое слагаемое этого ряда равно

Выражение (12.4) представляет собой среднее значение тока нагрузки за период Ти называется постоянной составляющей выпрямленного тока. Амплитуду первой гармоники гармонического ряда Фурье

называют переменной составляющей выпрямленного тока (основной гармоникой), она имеет частоту со напряжения на входе трансформатора (сети). Остальные слагаемые ряда называют составляющими высших гармоник. Амплитуды высших гармоник относительно невелики, поэтому при анализе их можно не учитывать.

Среднее выпрямленное напряжение на нагрузке

Уравнение (12.6) связывает среднее выпрямленное напряжение Ucp со вторичным действующим значением напряжения трансформатора U2‘.

Действующее значение тока /2 во вторичной обмотке трансформатора ТУ находят как среднеквадратическое значение тока за период Т:

С учетом (12.4) уравнение (12.8) можно представить в виде

Максимальное обратное напряжение (7обр тах диода равно амплитудному значению вторичного напряжения трансформатора, так как в отрицательный полупериод ток равен нулю и падения напряжения на RH нет. Следовательно, с учетом (12.7)

Качество выпрямления оценивает коэффициент пульсации. Для рассматриваемого однополупериодного однофазного выпрямителя

Это означает, что амплитуда Ах переменной составляющей выпрямленного тока в 1,57 раза больше постоянной составляющей /ср.

Диод в схеме должен выдерживать максимальное обратное напряжение выпрямителя, т.е. при выборе вентиля для выпрямителя следует выбирать Um > ?/обр.тах = 3,14Ucp.

Из уравнений (12.6) и (12.9) следует, что однополупериодный выпрямитель имеет низкую эффективность из-за высокой пульсации выпрямленного напряжения и ограниченное применение.

Однополупериодный выпрямитель тока. Схема и принцип работы.

Выпрямитель тока – это устройство, позволяющее выполнить преобразование тока переменного направления в ток постоянного направления. И сегодня мы рассмотрим базовую схему выпрямителя – однополупериодный выпрямитель. Разберем схему, принцип работы, а также достоинства и недостатки.

Однополупериодный выпрямитель.

Схема однополупериодного выпрямителя выглядит следующим образом:

Пусть на входе у нас переменное напряжение, меняющееся по синусоидальному закону:

Резистор же R_н играет роль нагрузки. То есть мы должны обеспечить протекание через него постоянного тока. Давайте разберемся как эта простейшая схема сможет решить нашу задачу!

Итак, диод D_1 пропускает ток только в одном направлении, в те моменты, когда к нему приложено прямое смещение, что соответствует положительным полупериодам ( U_<вх>gt0 ) входного сигнала. Когда к диоду будет приложено обратное смещение (отрицательные полупериоды), он будет закрыт и по цепи будет протекать только незначительный обратный ток. И в результате сигнал на нагрузке будет выглядеть так:

Обратным током обычно можно пренебречь, поэтому в итоге мы получаем, что ток через нагрузку протекает только в одном направлении. Но назвать его постоянным не представляется возможным 🙂 Ток через нагрузку хоть и является выпрямленным (протекает только в одном направлении), но носит пульсирующий характер.

Для сглаживания этих пульсаций в схему выпрямителя тока обычно добавляется конденсатор:

Идея заключается в том, что во время положительного полупериода, конденсатор заряжается (запасает энергию). А во время отрицательного полупериода конденсатор, напротив, разряжается (отдает энергию в нагрузку).

Таким образом, за счет накопленной энергии конденсатор обеспечивает протекание тока через нагрузку и в отрицательные полупериоды входного сигнала. При этом емкость конденсатора должна быть достаточной для того, чтобы он не успевал разряжаться за время, равное половине периода.

Проверяем напряжение на нагрузке для этой схемы:

В точке 1 конденсатор заряжен до напряжения U_1 . Далее входное напряжение понижается, а конденсатор, в свою очередь, начинает разряжаться на нагрузку. Поэтому выходное напряжение не падает до нуля вслед за входным.

В точке 2 конденсатор успел разрядиться до напряжения U_2 . В то же время значение входного сигнала также становится равным этой же величине, поэтому конденсатор снова начинает заряжаться. И эти процессы в дальнейшем циклически повторяются.

А теперь поэкспериментируем и используем в схеме однополупериодного выпрямителя конденсатор меньшей емкости:

И здесь мы видим, что конденсатор из-за меньшей емкости успевает разрядиться гораздо сильнее, и это приводит к увеличению пульсаций, а следовательно к ухудшению работы всей схемы.

На промышленных частотах 50 – 60 Гц однополупериодный выпрямитель практически не применяется из-за того, что для таких частот потребуются конденсаторы с очень большой емкостью (а значит и внушительными габаритами).

Смотрите сами, чем ниже частота, тем больше период сигнала (а вместе с тем, и длительности положительного и отрицательного полупериодов). А чем больше длительность отрицательного полупериода, тем дольше конденсатор должен быть способен разряжаться на нагрузку. А это уже требует большей емкости.

Таким образом, на более низких частотах в силу своих ограничений эта схема не нашла широкого применения. Однако, на частотах в несколько десятков КГц однополупериодный выпрямитель используется вполне успешно.

Рассмотрим преимущества и недостатки однополупериодного выпрямителя:

  • К основным достоинствам схемы, в первую очередь, конечно же, можно отнести простоту и, соответственно, небольшую себестоимость – используется всего один диод.
  • Кроме того, снижено падение напряжения. Как вы помните, при протекании тока через диод на нем самом падает определенное напряжение. По сравнению с мостовой схемой (которую мы разберем в следующей статье), ток протекает только через один диод (а не через два), а значит и падение напряжения меньше.

Основных недостатков также можно выделить несколько:

  • Схема использует энергию только положительного полупериода входного сигнала. То есть половина полезной энергии, которую также можно было бы использовать, уходит просто в никуда. В связи с этим КПД выпрямителя крайне низок.
  • И даже с использованием сглаживающих конденсаторов величина пульсаций довольно-таки значительна, что также является очень серьезным недостатком.

Итак, давайте резюмируем! Мы разобрали схему и принцип работы однофазного однополупериодного выпрямителя тока, а в следующей статье перейдем к более сложным схемам выпрямителей, не пропустите!

Как устроен однополупериодный выпрямитель и где применяется

Однополупериодный выпрямитель – это самый простой вид выпрямителя напряжения. Он берет на себя ровно половину от синусоидального переменного напряжения. По своим техническим характеристикам и принципам работы такой тип выпрямителя не подходит для очень многих сфер электрики и электроники.

В сигнале на выходе слишком много гармоник, которые трудно технически и практически отфильтровать. В настоящей статье будет рассмотрено строение, структура этого типы выпрямителя, а также где они могут быть использованы. Дополнением служат два ролика по данной теме, а также она подробная техническая лекция по данным типам выпрямления напряжения.

Схема однополупериодного выпрямителя

При подаче переменного sin-идального напряжения на первичную обмотку трансформатора напряжение на зажимах вторичной его обмотки также будет переменным синусоидальным и будет равноU2=U2msinwt. Диод проводит электрический ток только в том случае, когда его анод относительно катода будет иметь положительный потенциал. Поэтому ток в цепи – вторичная обмотка, диод и нагрузка – будет протекать только в одном направлении, то есть в течение одной половины периода переменного напряженияU2. В результате этого ток, протекающий в цепи нагрузки, оказывается пульсирующим. Максимальное значение тока:

Im=U2m/RH, гдеRH– сопротивление потребителя постоянного тока.

Кривая получаемого в процессе однополупериодного выпрямления пульсирующего тока может быть разложена в гармонический ряд Фурье:

Пульсирующий ток, как видно из выражения, кроме переменных составляющих содержит также и постоянную I =Im/π. Отсюда постоянная составляющая напряжения

Через действующее значение напряжения: U =√2 ∙U2/π.

Переменные составляющие характеризуют величину пульсаций тока и напряжения.

Для оценки пульсаций при какой-либо схеме выпрямления вводится понятие коэффициента пульсаций q, под которым понимается отношение амплитуды Am наиболее резко выраженной гармонической составляющей, входящей в кривые выпрямленного тока или напряжения, к постоянной составляющей Aв токанапряжения в выходной цепи выпрямителя:q=Am/AB.

Для схемы однополупериодного выпрямителя: q=0.5Im/(1/π ∙Im)=π/2. В течение половины периода, когда анод диода имеет отрицательный относительно катода потенциал, диод тока не проводит. Напряжение, воспринимаемое диодом в непроводящий полупериод, называется обратным напряжением Uобр. Обратное напряжение на диоде будет определяться напряжением на вторичной обмотке. Максимальное значение напряженияUобрm=U2m. Значит, вентиль надо выбирать так, чтобы [Umax обр]>=U2m.

Недостатки такой схемы выпрямления: большие пульсации выпрямленного тока и напряжения, а также плохое использование трансформатора, поскольку по его вторичной обмотке протекает ток только в течение половины периода. Такую установку используют в маломощных системах, когда выпрямленный ток мал.

Как устроен выпрямитель

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети – 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 – 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц).

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора. К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Двухполупериодные выпрямители

Они бывают двух схемных решений: выпрямитель со средней точкой и мостовая схема, известная, как схема Гретца. Выпрямитель со средней точкой требует более сложного в исполнении силового трансформатора, хотя диодов там используется в два раза меньше чем в мостовой схеме. К недостаткам двухполупериодного выпрямителя со средней точкой можно отнести то, что для получения одинакового напряжения, число витков во вторичной обмотке трансформатора должно быть в два раза больше, чем при использовании мостовой схемы. А это уже не совсем экономично с точки зрения расходования медного провода.

Далее на рисунке показана типовая схема двухполупериодного выпрямителя со средней точкой. Величина пульсаций выпрямленного напряжения меньше чем у однополупериодного выпрямителя и величину конденсатора фильтра так же можно использовать гораздо меньшую. Как видим, на выходе выпрямителя уже в два раза меньше “провалов” напряжения – тех самых пульсаций.

Активно применяется схема выпрямителя со средней точкой в выходных выпрямителях импульсных блоков питания для ПК. Так как во вторичной обмотке высокочастотного трансформатора требуется меньшее число витков медного провода, то гораздо эффективнее применять именно эту схему. Диоды же применяются сдвоенные, т.е. такие, у которых общий корпус и три вывода (два диода внутри). Один из выводов – общий (как правило катод). По виду сдвоенный диод очень похож на транзистор.

Наибольшую популярность приобрела в бытовой и промышленной аппаратуре мостовая схема. Можно без преувеличения сказать, что это самая распространённая схема. На практике вы с ней ещё не раз встретитесь. Она содержит четыре полупроводниковых диода, а на выходе, как правило, ставится RC-фильтр или только электролитический конденсатор для сглаживания пульсаций напряжения. О данной схеме уже рассказывалось на странице про диодный мост. Стоит отметить, что и у мостовой схемы есть недостатки. Как известно, у любого полупроводникового диода есть так называемое прямое падение напряжения (Forward voltage drop – VF).

Для обычных выпрямительных диодов оно может быть 1 – 1,2 V (зависит от типа диода). Так вот, при использовании мостовой схемы на диодах теряется напряжение, равное 2 x VF, т.е. около 2 вольт. Это происходит потому, что в выпрямлении одной полуволны переменного тока участвуют 2 диода (затем другие 2). Получается, что на диодном мосте теряется часть напряжения, которое мы снимаем со вторичной обмотки трансформатора, а это явные потери. Поэтому в некоторых случаях в составе диодного моста применяются диоды Шоттки, у которых прямое падение напряжения невелико (около 0,5 вольта). Правда, стоит учесть, что диод Шоттки не рассчитан на большое обратное напряжение и очень чувствителен к его превышению.

Наиболее распространенные схемы

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры. При небольшой мощности нагрузки (до нескольких сотен ватт) преобразование переменного тока в постоянный осуществляют с помощью однофазных выпрямителей. Такие выпрямители предназначены для питания постоянным током различных электронных устройств, обмоток возбуждения двигателей постоянного тока небольшой и средней мощности и т.д.

Для упрощения понимания работы схем выпрямления будем исходить из расчета, что выпрямитель работает на активную нагрузку. Схема содержит один выпрямительный диод, включенный между вторичной обмоткой трансформатора и нагрузкой. Напряжение u2 изменяется по синусоидальному закону, т.е. содержит положительные и отрицательные полуволны (полупериоды). Ток в цепи нагрузки проходит только в положительные полупериоды, когда к аноду диода VD прикладывается положительный потенциал. При обратной полярности напряжения u2 диод закрыт, ток в нагрузке не протекает, но к диоду прикладывается обратное напряжение Uобр.

Выпрямленные напряжения и ток содержат постоянную (полезную) составляющую и переменную составляющую (пульсации). Качественная сторона работы выпрямителя оценивается соотношениями между полезной составляющей и пульсациями напряжения и тока. Коэффициент пульсаций данной схемы составляет 1,57. Среднее за период значение выпрямленного напряжения Uн = 0,45U2. Максимальное значение обратного напряжения на диоде Uобр.max = 3,14Uн.

Достоинством данной схемы является простота, недостатки: плохое использование трансформатора, большое обратное напряжение на диоде, большой коэффициент пульсации выпрямленного напряжения. Состоит из четырех диодов, включенных по мостовой схеме. В одну диагональ моста включается вторичная обмотка трансформатора, в другую – нагрузка. Общая точка катодов диодов VD2, VD4 является положительным полюсом выпрямителя, общая точка анодов диодов VD1, VD3 – отрицательным полюсом.

Выпрямитель электрического тока

Его электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток. В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону. В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним. Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

Из сземы видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна. Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

Uср = Umax / π = 0,318 Umax

где: π — константа равная 3,14.

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток. Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.