Ограничительный диод шоттки принцип работы
Принцип работы диода Шоттки
Что такое диод Шоттки? Это полупроводниковый элемент, название которого соответствует фамилии знаменитого физика и изобретателя, работавшего в Германии. Специфика диода Шоттки заключается в минимальном снижении напряжения. Эта низкая динамика наблюдается при прямом введении компонента в цепь. На практике используется при обратном напряжении с небольшими значениями (в среднем 3-10В), при возможности применять в промышленности с гораздо большими величинами значение может достигать до 1200В.
Внешний вид
Разновидности диодов Шоттки
Все полупроводниковые элементы, работающие по принципу барьера Шоттки, делятся по мощности на:
- высокой;
- средней;
- малой мощности.
Сдвоенный диод
На рисунке показан сдвоенный элемент, являющий собой по сути два элемента. Они расположены в едином корпусе, в одно целое соединены катодом или анодом. В этом случае чаще всего имеется три вывода диода. При идентичных параметрах собранных таким образом элементов обеспечивается надежность работы всего устройства, в первую очередь, за счет единой температуры.
Особенности и принцип работы диода Шоттки
Как работает диод Шоттки? В чем принципиальные отличия его работы от аналогов с другим барьерным переходом?
Устройство диода Шоттки имеет отличие от других элементов того же назначения использованием барьером в виде перехода между металлом и полупроводником. У аналогов обычно работает с этой же целью p-n переход. Так в первом случае имеется односторонняя электропроводность. В зависимости от того, какой конкретно металл выбран для перехода в элементе, различаются и характеристики элемента. Чаще всего выбирается кремний, возможно применение арсенида галлия. Реже могут применяться сплавы вольфрама, платины и других материалов.
Кремний — самый распространенный и надежный элемент в диодах Шоттки, с ним конструкция надежно работает в условиях высокой мощности. Изделие стабильнее в работе, чем другие полупроводниковые аналоги, а простота изготовления и устройства диода Шоттки делают его очень доступным вариантом.
Металл-полупроводник: принцип работы перехода
Структура элемента
Принцип работы диода Шоттки основан на особенностях барьера. Эффект Шоттки при контакте компонентов, из которых выполнен непосредственно полупроводник и металл заключается в образовании бедного электронами участка. Последний имеет вентильные характеристики, аналогичные p-n взаимодействию. Контактный слой останавливает носителей заряда. По сравнению с другими типами полупроводниковых вентилей такое решение обладает:
- минимальным обратным током;
- стремящейся к нулю собственной емкостью;
- обратным напряжением самой низкой допустимой величины;
- при прямом включении — меньшим снижением напряжения (до 0.5 В в сравнении с 2-3 В в случае аналога).
В переходной зоне нет лишних носителей заряда. Благодаря этому там не возникают диффузии и рекомбинации, что наблюдается в контактных слоях p-n перехода. Так обеспечивается минимальная собственная емкость диода Шоттки, что делает возможным с большей эффективностью использовать его в устройствах с высокими и сверхчастотами.
Преимущества и недостатки диода Шоттки
Несомненными преимуществами подобных полупроводниковых изделий являются:
- надежное удерживание электротока;
- минимальная емкость барьера обеспечивает длительную эксплуатацию;
- быстродействие.
Высокие показатели обратного тока — основной недостаток устройств с диодом Шоттки. Из-за этого при скачке обратного тока диод может выйти из строя.
Важно! При внедрении подобных диодов в цепи с высокой мощностью электротока создается риск теплового пробоя.
Маркировка и схема диода Шоттки
На схеме преподносится почти как стандартный полупроводниковый диод, но имеются и отличия.
Обозначения диодов
В маркировке используется набор символов, они всегда обозначаются сбоку изделия. Используются международные стандарты, но в зависимости от производителя маркировка может отличаться.
Сочетание цифр и букв на корпусе не всегда понятно, но в радиотехнических справочниках всегда можно найти точную расшифровку.
Работа в ИБП
Подобные элементы очень широко используются в импульсных схемах, в приборах для стабилизации напряжения, а также в блоках питания. Преимущественно выбираются сдвоенные элементы, имеющие в одном корпусе общий катод.
Использование в ИБП сдвоенного диода Шоттки с общим катодом является признаком высокого качества и надежности блока питания.
При этом сгоревший элемент относится к частым и типовым неисправностям импульсного устройства. Нерабочее состояние возникает при:
- утечке на корпус;
- электроприборе.
Встроенная защита приводит к блокировке ИБП в обоих случаях. При утечке возможно присутствие незначительных нестабильных пульсаций напряжения на выходе, а также слабые «подергивания» вентилятора. В случае пробоя напряжения в блоке питания полностью исключены. Так можно определить вероятную причину нерабочего состояния диода Шоттки, но для окончательного решения понадобится диагностика.
Для диагностики следует выполнить шаги:
- Выпаять элемент и схемы.
- Осмотреть на предмет механических повреждений, присутствия следов разрушительных химических реакций.
- Выполнить проверку мультиметром.
Проверка мультиметром
Отличие процедуры от диагностики обычных диодов заключается в необходимости демонтажа сборки или элемента, иначе проверить его состояние будет очень сложно. Утечку диагностировать сложнее. При использовании типичного мультиметра может отображаться полная работоспособность элемента при работе прибора в режиме «диод». Потому лучше устанавливать режим «омметр» и заменить элемент при демонстрации сопротивления. Показатель 5 кОм не устанавливает точно неисправность диода, но лучше считать его подозрительным и выполнить замену. Доступная стоимость диодов Шоттки позволяет сделать это практически в любой момент без особых трат.
Важно! Если для проверки работоспособности диода Шоттки используется типовой мультиметр, нужно учитывать указанный сбоку показатель электротока.
Применение
Отличительные особенности и принцип работы диода Шоттки обусловливают его широкое применение в быту и в промышленности. Кроме блоков питания компьютера, его часто можно встретить в схемах:
- бытовых электроприборов;
- стабилизаторов напряжения;
- во всем спектре радио- и телеаппаратуры;
- в другой электронике.
Подобные элементы используются в современных батареях и транзисторах, работа которых обеспечивается сенечной энергией.
Такое универсальное использование элемента связано с способностью полупроводникового диода с эффектом Шоттки во много раз усиливать работоспособность любого прибора и увеличивать его эффективность. Обратное сопротивление электротока восстанавливается, за счет чего он сохраняется в электрической сети. Потери динамики напряжения минимизируются. Также диод Шоттки вбирает несколько видов излучений.
Диод с барьером Шоттки — неприхотливый и простой элемент, обеспечивающий бесперебойную работу множества современных приборов. Доступный, надежный, отличается широкой сферой применения благодаря особенностям в своей конструкции.
Диод Шоттки
Обозначение, применение и параметры диодов Шоттки
К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.
Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.
Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.
В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний (Si) и арсенид галлия (GaAs), а также такие металлы как золото, серебро, платина, палладий и вольфрам.
На принципиальных схемах диод Шоттки изображается вот так.
Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.
Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки (сборки).
Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов у них объединены. Поэтому такая сборка, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сборки с общим катодом.
Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку они размещены в едином корпусе, то и температурный режим их одинаков. Это увеличивает надёжность и срок службы элемента.
У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) на переходе и очень высокое быстродействие.
К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем его повышении диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для Шоттки обычно не превышает 250 вольт, хотя в продаже можно встретить образцы, рассчитанные и на 1,2 киловольта (VS-10ETS12-M3).
Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!
Также можно встретить образцы, выпрямленный за полупериод ток которых может достигать 400А максимум! Примером может служит модель VS-400CNQ045.
Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого элемента указывают в спецификации.
К недостаткам диодов с барьером Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо. В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать. Кроме того обратный ток диодов очень сильно зависит от температуры перехода. На большом обратном токе возникает тепловой пробой.
К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту. Это позволяет использовать их в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике. Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.
В радиолюбительской практике прижились диоды Шоттки серии 1N581x (1N5817, 1N5818, 1N5819). Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт. Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов с барьером Шоттки очень мало.
Также достаточно известным элементом является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.
Также на печатных платах можно встретить диоды серии SK12 – SK16 для поверхностного монтажа. Они имеют довольно небольшие размеры. Несмотря на это SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16). Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.
Применение диодов Шоттки в источниках питания.
Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторах напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения +3,3 вольта и +5,0 вольт. Именно в этих вторичных источниках питания и используются диоды с барьером Шоттки. Чаще всего используются трёхвыводные сборки с общим катодом. Именно применение сборок может считаться признаком высококачественного и технологичного блока питания.
Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У него может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.
В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.
То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха. И последний вариант диагностики связанный с утечкой: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.
Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.
Проверка диодов Шоттки мультиметром.
Проверить диод Шоттки можно с помощью рядового мультиметра. Методика такая же, как и при проверке обычного полупроводникового диода с p-n переходом. Но и тут есть подводные камни. Особенно трудно проверить диод с утечкой. Прежде всего, элемент необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод. На всех пределах измерения сопротивления неисправный элемент будет иметь бесконечно малое сопротивление, как в прямом, так и в обратном включении. Это равносильно короткому замыканию.
Сложнее проверить диод с подозрением на «утечку». Если проводить проверку мультиметром DT-830 в режиме «диод», то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра его обратное сопротивление. На пределе «20кОм» обратное сопротивление определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный. Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам питания +3,3V и +5,0V.
Где ещё в электронике используются диоды Шоттки? Их можно обнаружить в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что они питают электроэнергией и космические аппараты.
Диоды Шоттки: что это такое, чем отличается, как работает
Устройство получило свое название в честь Вальтера Шоттки, немецкого изобретателя и физика, открывшего квантовую зависимость, согласно которой внешнее электрическое поле принуждает покидать зону проводимости все свободные электроны. Впоследствии ученый был награжден медалью Хьюза за свою деятельность. Примечательно, что имея отношение к теоретической физике, данное открытие находит активное практическое применение.
Содержание статьи
- Отличия от обычного диода
- Как устроен диод Шоттки
- Применение диодов Шоттки
- Как маркируется диод Шоттки и обозначается на схемах
Диод Шоттки является представителем полупроводниковых элементов, обладающих барьером и отличающихся малым падением напряжения при прямом введении компонента в электрическую цепь (от 0,2 до 0,4 вольт). Благодаря простоте конструкции, оперативной возобновляемости заряда, неприхотливости и большому значению тока утечки, барьерный диод активно используется в современной радиоэлектронике.
Отличия от обычного диода
Данный компонент пропускает электрический ток в одном направлении и не пропускает его в другом, как и другие классические диоды, но обеспечивает высокое быстродействие и малое падение напряжения при переходе.
Важнейшая особенность диода Шоттки – вместо привычного электронно-дырочного перехода применяется принцип контакта между металлическими и различными полупроводниковыми материалами, что положительно влияет на повышение рабочей частоты. Диффузная емкость и процесс рекомбинации не проявляются в области контакта, поскольку в так называемой переходной зоне отсутствуют неосновные носители заряда. Собственная емкость данного слоя при этом стремится к 0.
Таким образом, данные изделия являются СВЧ-диодами различного назначения:
- импульсными;
- лавинно-пролетными;
- смесительными;
- детекторными;
- умножительными;
- параметрическими.
Другая особенность заключается в том, что большая часть диодов Шоттки состоит из низковольтных и чувствительных к статическому напряжению моделей. Однако воспринимать это как категорический недостаток неверно, поскольку это дает возможность использовать данные средства для обработки радиосигналов малой мощности.
Наконец, такие изделия отличаются большей стабильностью при подаче электрического тока, чем прочие аналоги, поскольку в их корпус внедрены кристаллические образования (кремниевая подложка).
Как устроен диод Шоттки
Структура элемента включает в себя несколько частей:
- эпитаксиальный слой;
- подложка;
- охранное кольцо;
- металлическая пленка;
- барьер;
- внешний контакт.
Основа, как правило, изготавливается из кремния или арсенида галлия, но если требуется обеспечить схеме высокую устойчивость к изменению температурного режима, используется германий. В качестве материала для напыления применяется палладий, серебро, платина, вольфрам, алюминий или золото. Примечательно, что тыльная сторона полупроводника легируется сильнее. Уровень легирования и разновидность металла оказывают влияние на характеристики выпрямления.
Принцип работы основан на особенностях барьера. В полупроводнике, в контактной области, образуется слой, значительно обедненный электронами, но обладающий вентильными свойствами. Таким образом, появляется барьер для носителей заряда.
В зависимости от мощности существует несколько типов диодов Шоттки:
- малый;
- средний;
- высокий.
Исходя из конструктивных особенностей, различают виды для поверхностного или объемного монтажа, а также модули и выпрямительные аналоги. Выбирая выпрямительные компоненты, следует обращать внимание на показатели тока и напряжения, а также материал конструкции и способ монтирования. Также различают 3 вариации диодных сборок: модели с общим анодом, элементы с удвоением и тремя выводами, а также разновидности, которые имеют вывод с общего катода. Для всех типов действует ограничение допустимого обратного напряжения, величиной 1200 вольт.
Применение диодов Шоттки
Компоненты активно эксплуатируются в составе разных приборов и оборудования:
- компьютерная техника и бытовая электроника;
- силовые высокочастотные выпрямители;
- солнечные батареи и приемники излучения;
- радиоаппаратура и телевизионное оборудование;
- усилители звука и МОП-транзисторы;
- стабилизаторы и БП.
Изделия эксплуатируются везде, где требуется минимальное прямое падение напряжения. Популярность обусловлена преимуществами диодов Шоттки, которые позволяют восстанавливать обратное сопротивление электрического тока, стабилизировать напряжение, принимать на себя излучения, а также увеличить эффективность конечных приборов.
Несмотря на преимущества, такие приборы обладают недостатками. Но их всего два:
- в случае повышения температуры фиксируется значительное возрастание обратного тока;
- пробой необратим в случаях кратковременного превышения критического напряжения.
Существует три основные неисправности, которые могут произойти с диодами данного типа: обрыв, пробой и утечка (выявить сложнее всего). Диагностика осуществляется при помощи универсального тестера (мультиметр). Для получения точных результатов проверка потребует пайки и измерения обратного сопротивления. В случае использования типового тестера следует учитывать указанный показатель электрического тока.
Как маркируется диод Шоттки и обозначается на схемах
Зачастую диод Шоттки на схеме обозначается как обычный диод, а дополнительная информация о типе компонента указывается в спецификации.
Как правило, маркировка диодов Шоттки представляет собой набор символов, нанесенных на корпус изделия согласно международным стандартам. В зависимости от страны производителя маркировки могут различаться. В любом случае расшифровать код можно при помощи радиотехнических справочников.
В случае необходимости можно заменить стандартный диод можно аналогичным устройством с барьером – главное, чтобы совпадали параметры тока и напряжения. Но монтировать классическое изделие вместо барьерного аналога категорически не рекомендуется, поскольку из-за перегрева оно быстро выйдет из строя. Опытные радиотехники могут подобрать элемент с запасом по мощности, проанализировав всю схему.
Диод Шоттки. Устройство, принцип работы и основные характеристики.
Приветствую всех на сайте MicroTechnics снова! Сегодня мы продолжим курс “Основы электроники“, и героем статьи станет еще один электронный компонент, а именно диод Шоттки. В недавних статьях мы рассматривали принцип работы и применение обычных диодов и стабилитронов:
И вот настало время диода Шоттки!
Основной отличительной особенностью этого элемента является малое падение напряжения при прямом включении (относительно обычного выпрямительного диода). Давайте разберемся, с чем же в данном случае связано это пониженное падение.
“Сердцем” диода Шоттки является не p-n переход, который образуется при соприкосновении двух полупроводников с разными типами проводимости, а так называемый барьер Шоттки. И элемент, и барьер названы так в честь немецкого физика Вальтера Шоттки, который занимался исследованием этих процессов и явлений в 1930-х годах.
Так вот барьер Шоттки – это переход между металлом и полупроводником. В обычном диоде у нас используется переход между полупроводниками p-типа и n-типа, а здесь уже совсем другая история – металл + полупроводник.
Для работы барьера Шоттки необходимо, чтобы работы выхода использующихся металла и полупроводника были различными. А работа выхода, в свою очередь, это энергия, которую необходимо сообщить электрону для его удаления из твердого тела. Рассмотрим случай, когда барьер образуется при контакте металла и полупроводника n-типа. Причем работа выхода электронов из полупроводника меньше, чем работа выхода из металла:
Здесь нам важно заметить, что поскольку phi_ <М>> phi_ <П>, то, напротив, j_ <М>. В результате этого при контакте металла и полупроводника в пограничной области буду скапливаться заряды:
Иными словами, из-за того, что работа выхода из полупроводника меньше, то электронам проще перейти из него в металл, чем наоборот, в обратном направлении. Но как и для p-n перехода этот процесс не будет протекать бесконечно. Эти заряды создадут дополнительное электрическое поле в граничной области, и, в результате, под действием этого поля токи термоэлектронной эмиссии выравняются.
Как видите, в целом, процессы, протекающие в барьере Шоттки, по своей сути очень похожи на то, что происходит в p-n переходе при контакте двух полупроводников. При подключении внешнего напряжения возникает дополнительное поле, которое смещает баланс токов в пограничной области.
Несмотря на некую схожесть процессов ключевым отличием является то, что в диоде Шоттки протекание тока как при прямом смещении, так и при обратном, связано исключительно с перемещением основных носителей заряда. То есть по сравнению с p-n переходом отсутствует диффузионная составляющая тока, которая связана с инжекцией неосновных носителей. А это, в свою очередь, приводит ко второй важнейшей отличительной особенности диодов Шоттки – повышенному быстродействию (поскольку отсутствуют рекомбинационные и диффузионные процессы).
Как вы помните, при прямом смещении в обычном диоде в полупроводниковых областях накапливаются неосновные носители заряда – дырки в n-области и электроны в p-области:
Так вот в момент перехода диода в закрытое состояние (при подаче обратного смещения) неосновные носители начинают перемещаться навстречу друг другу, что приводит к возникновению кратковременного импульса обратного тока. Для диодов Шоттки же этот негативный и нежелательный эффект фактически сводится на нет!
Итак, суммируем все, что мы рассмотрели, и построим вольт-амперную характеристику диода Шоттки и обычного выпрямительного диода:
А теперь резюмируем плюсы и минусы этих элементов:
- Первое преимущество – меньшее падение напряжения при прямом включении. Для диодов Шоттки оно может составлять 0.2-0.4 В, тогда как для обычных кремниевых диодов величина равна 0.6-0.7 В. А меньшее напряжение при одинаковом токе – это меньшая рассеиваемая мощность, то есть диод Шоттки будет нагреваться гораздо меньше.
- Быстродействие – бесспорный плюс, который позволяет использовать диоды Шоттки на более высоких частотах.
- Из сравнения вольт-амперных характеристик мы можем заметить, что обратный ток обычного диода имеет меньшую величину. Это уже относится к недостаткам диодов Шоттки. Причем с повышением температуры обратный ток будет увеличиваться еще больше.
- И еще один недостаток – при превышении максимально допустимого значения обратного напряжения диод Шоттки выходит из строй с вероятностью равной 100%. В то же время обычный диод может перейти в режим обратимого пробоя (лавинного или туннельного) в том случае, если для него не произошел тепловой пробой (также необратимый). И при этом максимально допустимые значения обратного напряжения для диодов Шоттки почти всегда значительно меньше, чем для обычных диодов!
А теперь давайте проведем несколько практических экспериментов. Протестируем две аналогичные схемы на работу с сигналами высокой частоты. Только в одной схеме задействуем диод Шоттки, а в другой обычный выпрямительный диод и сравним осциллограммы сигналов на выходе.
На принципиальных схемах диод Шоттки обозначается так:
Тесты будем проводить на простой схеме однополупериодного выпрямителя:
Для эксперимента я взял диод Шоттки 10BQ015 и выпрямительный диод 1N4001. Попробуем подать на вход синусоиду с частотой 1 КГц:
Первый канал (желтый) – сигнал на входе
Второй канал (красный) – сигнал на выходе цепи с диодом Шоттки
Третий канал (синий) – сигнал на выходе цепи с обычным диодом
Результат вполне ожидаем. Диоды пропускают ток только в одном направлении, поэтому нижний полупериод входного сигнала срезается. Пока разницы, честно говоря, никакой не наблюдается. Увеличиваем частоту входного сигнала до 100 КГц:
Первый канал (желтый) – сигнал на входе
Второй канал (красный) – сигнал на выходе цепи с диодом Шоттки
Третий канал (синий) – сигнал на выходе цепи с обычным диодом
И здесь уже видим, что обычный диод с таким сигналом попросту перестает справляться. При переключении диода (из открытого состояния в закрытое) возникает нежелательный импульс обратного тока (в точности так, как мы и обсудили чуть ранее).
Итак, мы рассмотрели устройство, основные характеристики и принцип работы диода Шоттки. Давайте на этом и завершим сегодняшнюю статью, всем большое спасибо за уделенное время и до встречи в новых статьях!
Принцип работы диода Шоттки и сферы его применения
Диод Шоттки, принцип работы которого мы опишем сегодня, является очень удачным изобретением немецкого ученого Вальтера Шоттки. В его честь устройство и было названо, а встретить его можно при изучении самых разных электрических схем. Для тех, кто еще только начинает знакомиться с электроникой, будет полезным узнать о том, зачем его используют и где он чаще всего применяется.
Что это такое
Это полупроводниковый диод с минимальным падением уровня напряжения во время прямого включения. Он имеет две главные составляющие: собственно, полупроводник и металл.
Как известно, допустимый уровень обратного напряжения в любых промышленных электронный устройствах составляет 250 В. Такое U находит практическое применение в любой низковольтной цепи, препятствуя обратному течению тока.
Структура самого устройства несложна и выглядит следующим образом:
- полупроводник;
- стеклянная пассивация;
- металл;
- защитное кольцо.
При прохождении электрического тока по цепи положительные и отрицательные заряды скапливаются по всему периметру устройства, включая защитное кольцо. Скопление частиц происходит в различных элементах диода. Это обеспечивает возникновение электрического поля с последующим выделением определенного количества тепла.
Отличие от других полупроводников
Главное его отличие от других полупроводников состоит в том, что преградой служит металлический элемент с односторонней проводимостью.
Такие элементы изготавливают из целого ряда ценных металлов:
- арсенида галлия;
- кремния;
- золота;
- вольфрама;
- карбида кремния;
- палладия;
- платины.
От того, какой металл выбирается в качестве материала, зависят характеристики нужного показателя напряжения и качество работы электронного устройства в целом. Чаще всего применяют кремний — по причине его надежности, прочности и способности работать в условиях большой мощности. Также используется и арсенид галлия, соединенный с мышьяком, либо германий.
Плюсы и минусы
При работе с устройствами, включающими в себя диод Шоттки, следует учитывать их положительные и отрицательные стороны. Если подключить его в качестве элемента электрической цепи, он будет прекрасно удерживать ток, не допуская его больших потерь.
К тому же, металлический барьер обладает минимальной емкостью. Это значительно увеличивает износостойкость и срок службы самого диода. Падение напряжения при его использовании минимально, а действие происходит очень быстро — стоит только провести подключение.
Однако большой процент обратного тока является очевидным недостатком. Поскольку многие электроприборы обладают высокой чувствительностью, нередки случаи, когда небольшое превышение показателя, всего лишь на пару А, способно надолго вывести прибор из строя. Также, при небрежной проверке напряжения полупроводника, может произойти утечка самого диода.
Сфера применения
Диод Шоттки может включать в себя любой аккумулятор.
Он входит в устройство солнечной батареи. Солнечные панели, которые уже давно успешно работают в условиях космического пространства, собираются именно на основании барьерных переходов Шоттки. Такие гелиосистемы устанавливаются на космических аппаратах (спутниках и телескопах, проводящих работу в жестких условиях безвоздушного пространства).
Устройство незаменимо при работе компьютеров, бытовой техники, радиоприемников, блоков электропитания. При правильном использовании диод Шоттки увеличивает производительность любого устройства, предотвращает потери тока. Он способен принимать на себя альфа-, бета- и гамма-излучение. Именно поэтому он незаменим в условиях космоса.
С помощью такого устройства можно осуществить параллельное соединение диодов, используя их в качестве сдвоенных выпрямителей. Таким образом можно объединить межлу собой два параллельных источника питания. Один корпус включает в себя два полупроводника, а концы положительного и отрицательного зарядов связываются друг с другом. Есть и более простые схемы, где диоды Шоттки очень малы. Это характерно для очень мелких деталей в электронике.
Диод Шоттки является незаменимым элементом во многих электронных устройствах. Главное — понимать специфику его работы и использовать его корректно.
Диод Шоттки
Диод полупроводниковый, применяющий в принципе своей работы барьерный эффект, носит имя немецкого учёного, его описавшего, – Вальтера Шоттки.
Важно! Барьерный эффект – серьёзное влияние общего объемного заряда на развитие разряда в промежутке с резко неравномерным полем.
Дополнительная информация. Что такое диод – электронный элемент, обладающий неодинаковой возможностью проводить электрический ток, в зависимости от его направления.
Диод Шоттки: принцип работы
От классического вида вентиль Шоттки отличается тем, что основу его работы составляет пара полупроводник-металл. Зачастую эта пара упоминается как барьер Шоттки. Этот барьер, кроме схожей с p-n переходом способности проводить электричество в одну сторону, обладает несколькими полезными особенностями.
Арсенид галлия и кремний – основные поставщики материала для производства электронного элемента в промышленных условиях. В более редких случаях используют драгоценные химические элементы: платина, палладий и им подобные.
Его графическое условное выражение на электрических схемах не совпадает с классическими диодами. Маркировка электронных элементов похожа. Также встречаются двойные диоды в виде сборки.
Важно! Двойной диод – это пара диодов, совмещенных в общем объеме.
Сдвоенный диод с барьером Шоттки
У сдвоенных вентилей выходы катодов или анодов совмещены. Отсюда следует, что такое изделие обладает тремя концами. Сборки с общим катодом, например, работают там, где требуются импульсные блоки питания. Диоды Шоттки с общим анодом используются существенно реже.
Диоды находятся в едином корпусе и используют для их изготовления одну технологию производства, поэтому по набору своих параметров они как близнецы-братья. Температура работы у них тоже одинаковая, т.к. находятся в общем пространстве. Данное свойство значительно уменьшает необходимость их замены из-за потери работоспособности.
Самые важные отличительные свойства рассматриваемых вентилей – это незначительное прямое падение напряжения (до 0,4 В) в момент перехода и высокое время срабатывания.
Однако упомянутая величина падения напряжения обладает узким диапазоном прикладываемого напряжения – не более 60 В. И сама эта величина мала, что задаёт достаточно узкий спектр применения данных диодов. Если напряжение превысит указанную величину, барьерный эффект исчезает, и диод начинает работать в режиме обычного выпрямительного диода. Обратное напряжение для большинства из них не выходит за рамки 250 В, однако существуют образцы с величиной обратного напряжения 1,2 кВ.
При проектировании электрических схем проектировщики частенько на принципиальных схемах диод Шоттки не выделяют графически, однако в спецификации к заказу указывают на его использование, прописывая в типе. Поэтому при заказе оборудования на это нужно обращать пристальное внимание.
Из неудобств в работе с вентилями с барьером Шоттки необходимо отметить их чрезвычайную «нежность» и нетерпимость к малейшему, даже очень короткому по времени превышению номинала обратного напряжения. В этом случае они просто выходят из строя и больше не восстанавливаются, что, в сравнении с кремниевыми диодами, не идёт им на пользу, т.к. последние обладают свойством самовосстановления, после чего могут продолжать работать в обычном режиме, не требуя замены. Также нельзя забывать, что обратный ток в них критически зависит от градуса перехода. При появлении значительного значения обратного тока, пробоя не избежать.
Повышенная рабочая частота вследствие незначительной емкости переходных процессов и короткого периода восстановления по причине серьёзного быстродействия – те положительные свойства, позволяющие использовать данные диоды, например, радиолюбителям. Также применяют их на частотах, достигающих нескольких сотен кГц, например, в импульсных выпрямителях. Большое количество произведённых диодов уходит для использования в микроэлектронике. Современный уровень развития науки и промышленности дозволяет использовать в процессе изготовления вентилей с барьером Шоттки нано технологии. Созданные таким образом вентили применяют для шунтирования транзисторов. Данное решение серьёзно увеличивает срабатывание последних.
Диоды Шоттки в источниках питания
В компьютерных блоках питания очень часто расположены вентили Шоттки. Пятивольтовое напряжение обеспечивает серьёзный ток в десятки ампер, что для низковольтных систем питания является рекордом. Для этих блоков питания и применяют вентили Шоттки. В основном, используются сдвоенные диоды с единым катодом. Ни один качественный современный питающий блок компьютеров не обходится без такой сборки.
Диагноз. «Перегоревший» питающий блок электронного устройства чаще всего означает необходимость замены сгоревшей сборки Шоттки. Причины неисправности всего две: увеличенный ток утечки и электрический пробой. При наступлении описанных состояний электрическое питание на компьютер перестаёт подаваться. Защитные механизмы сработали. Рассмотрим, как это происходит.
Напряжение на входе компьютера отсутствует на постоянной основе. Блок питания полностью заблокирован вшитой в компьютер защитой.
Бывает «непонятная» ситуация: вентилятор охлаждения то начинает работать, то опять характерный шум пропадает. Это означает, что напряжение на входе компьютера (выходе питающего блока) то появляется, то исчезает. Т.е. защита отрабатывает периодические ошибки, но блокировать полностью источник не спешит. Появился неприятный запах, идущий от горячего блока? Диодный блок точно требует замены. Ещё один способ домашней диагностики: при большой нагрузке центрального процессора питающий блок отключился сам по себе. Это признак утечки.
После ремонта блока питания, связанного с заменой сдвоенных диодов Шоттки, необходимо «прозвонить» и транзисторы. При обратной процедуре диоды также требуют проверки. Особенно это правило актуально, если причиной ремонта стала утечка.
Проверка диодов Шоттки
Бытовой мультиметр хорошо справляется с задачей проверки любого вида диодов с барьером Шоттки. Способ проверки очень схож с проверкой рядового диода. Однако есть свои секреты. Электронный элемент с утечкой особенно тяжело поддаётся корректной проверке. Во-первых, диодную сборку необходимо извлечь из схемы. Для этого потребуется паяльник. Если диод пробит, то сопротивление, близкое к нулю, во всех возможных режимах работы подскажет о его неработоспособности. По физическим процессам это напоминает замыкание.
«Утечка» диагностируется сложнее. Самый распространённый мультиметр для населения – dt-830, в большинстве случаев измерений в положении «диод» не увидит проблему. При переведении регулятора в положение «омметр» омическое сопротивление уйдёт в бесконечность. Также прибор не должен показывать наличие Омического сопротивления. В противном случае требуется замена.
Диоды Шоттки распространены в электрике и радиоэлектронике. Область их использования широкая, вплоть до приёмников альфа излучения и различных космических аппаратов.