Ошибка очередности фаз в генераторе
Явление перекоса фаз в трехфазной сети
Трехфазная сеть в классическом варианте состоит из четырех проводников — трех фазных и одного нулевого или нейтрального провода. В процессе эксплуатации возникает перекос фаз в трехфазной сети или асимметрия напряжений между ними.
Причины
Трехфазная сеть состоит из двух частей — высоковольтной и низковольтной. Между ними устанавливается обычно подстанция с понижающим трансформатором. В высоковольтной части фазы загружены равномерно, перекос возникает в низковольтной части и связан с особенностями распределения нагрузки между фазными шинами.
Существует два различных вида перекоса фаз:
- модули векторов напряжения различны по величине, угол между ними одинаковый (120°);
- значительно реже возникает на практике, когда кроме различных модулей напряжений, углы между ними также различны.
На диаграмме напряжений представлены параметры идеально работающей трехфазной цепи и их изменение при возникновении перекоса.
Падение/увеличение фазного напряжения согласно закона Ома возникает при увеличении/уменьшении сопротивления (нагрузки). Поэтому одной из причин возникновения перекоса будет разное по количеству и мощности число электрических приборов «сидящих» на каждой отдельной фазе.
В идеально работающих трехфазных цепях ток через нейтральный провод равен нулю. В случае возникновения перекоса на нем появляются токи, которые компенсируют асимметрию напряжений. Вот почему обрыв («отгорание») нулевого провода служит еще одной из причин появления перекоса.
Изображение с результатом «отгорания» нейтрального провода.
Короткое замыкание одной из фаз на землю, которая приводит к работе сети в режиме перекоса, редко встречается среди причин возникновения неравенства напряжений по фазам. В некоторых случаях допускается такая аварийная эксплуатация при необходимости обеспечения электроэнергией пользователей.
Признаки нестабильной работы электрических приборов, вызванные перекосом фаз
Независимо от причин перекоса необходимо знать и выявлять его признаки. В квартире или частном доме с электрическими приборами могут происходить следующие действия от несимметричности напряжения и не только:
- осветительные приборы типа ламп дневного света или других типов работающих по энергосберегающей технологии начнут мерцать;
- лампочки накаливания будут ярко гореть или наоборот тускнеть;
- бытовые приборы (утюг, телевизор и другие) перестанут включаться;
- выключатель стал на ощупь теплым;
- в розетке появились искры, послышались треск и щелчки;
- в щитке появились щелчки, срабатывают защитные автоматы.
При обнаружении вышеперечисленных признаков следует отключить все приборы из сети, лишь затем приступать к поиску причин. При отсутствии познаний в области электротехники лучше обратитесь к специалисту.
Негативные последствия перекоса
Работа трехфазной сети с перекосом фаз приводит к следующим отрицательным действиям.
- Перекос вызывает рост уравнивающих токов, тем самым увеличивается расход электроэнергии на потребление оборудованием.
- Отклонение фазного напряжения, превышающее номинальное значение при отсутствии автоматических выключателей может вывести бытовое или промышленное электрооборудование из строя.
- Отклонение напряжения в меньшую сторону от нормального создаст для оборудования следующие проблемы: увеличится нагрузка на электромоторы, их мощность падает, для запуска необходимы еще более высокие пусковые токи, электроника будет работать со сбоями, некоторые устройства просто не будут включаться.
- Эксплуатационный срок работы оборудования в режиме перекоса фаз будет меньшим. Ресурсные показатели не будут соответствовать паспортным данным.
- Перекос фаз, вызванный обрывом нейтрального провода может резко повысить опасность получения электрического удара. Шина заземляющего устройства на трансформаторной подстанции теряет связь с местным контуром заземления, тем самым оставляя пользователя без защиты.
Нормы на перекос фаз
На практике не существует работающих трехфазных сетей, в которых отсутствует перекос фаз. Это связано с особенностями электрического оборудования, принцип работы которых с точки зрения экономической целесообразности исключает симметричное исполнение (сварочные аппараты, индукционные печи, потребители бытовой сферы). Кроме этого, например, в многоквартирных домах появляется вероятностный фактор, связанный с отсутствием какой — либо системы в подключении электрической бытовой техники. Наличие нескольких импульсных источников питания, например для компьютеров, делает их поведение непредсказуемым в трехфазной сети.
Помимо равномерного распределения нагрузки по фазам проектировщикам следует учитывать вышеперечисленные факторы для поставки пользователям определенного качества электроэнергии. В некоторых случаях трудноразрешимую задачу позволяют решить регламенты на допустимый перекос фаз, обозначенные в следующих нормативных документах: ПУЭ (Правила Устройства Энергоустановок), ГОСТ 31098 – 97 определяющим нормы качества электроэнергии и сводом правил СП31-110.
Параметры, превышение которых недопустимо:
- максимальное отклонение фазных токов:
- для измеренных во вводном распределительном устройстве (ВРУ) — 15 %,
- для измеренных в распределительном щите (РЩ) — 30 %.
- допустимые значения коэффициентов несимметричности напряжений:
- по обратной последовательности — 2 %,
- по нулевой последовательности — 4 %.
Вышеуказанные нормативы должны соблюдаться на всех возможных режимах работы трехфазных электрических сетей. Исключения составляют режимы, вызванные Форс — Мажорными обстоятельствами.
Как определить перекос фаз
Самым простым и поэтому наиболее применяемым является контроль по максимальному отклонению фазных токов. С помощью токовых клещей измеряется сила тока при максимально полной нагрузке на каждом проводнике отдельной фазы в ВРУ или РЩ. Размеры клещей достаточно компактны, чтобы подлезть к любому проводнику, находящемуся в стесненных условиях среди других проводников.
После того как определите и зафиксируете показания следует выполнить легкий сравнительный расчет на отклонения фазных токов. Показания должны соответствовать нормам.
Устранение перекоса фаз
Если результаты замеров выявят наличие несимметричности напряжений фаз, следует принять меры чтобы устранить перекос. Защита от перекоса фаз в трехфазной сети выполняется следующими способами.
- На этапе проектирования следует равномерно распределить нагрузку по фазам. Приборы, имеющие однофазное питание не должны сосредотачиваться на одном проводнике, оставляя незагруженными другие. Кроме количественного распределения по фазам следует учитывать мощностные характеристики электрических устройств.
- В ранее введенных в эксплуатацию трехфазных сетях, где каждая фаза не рассчитывалась на перегрузку при возможности следует поменять схему потребления энергии. В условиях кризисной ситуации необходимо поменять мощность потребителя.
- Недостаточно эффективный способ обеспечить необходимое напряжение на каждой фазе трехфазной цепи это применение стабилизаторов напряжения.Трехфазные стабилизаторы напряжения конструктивно включают в себя однофазные, которые реагируют на изменение параметров конкретно на своей фазе. Поднятие, опускание напряжения вызывает ответную реакцию на других. Это может в некоторых случаях вызвать вторичный перекос с уже другими параметрами. Невозможность 100 % гарантии защиты от последствий перекоса фаз основной недостаток стабилизаторов напряжения.
- Использование в трехфазной системе питания симметрирующего трансформатора позволяет выравнивать напряжение не только на отдельной конкретной фазе, а обеспечивать симметричность напряжений на всех трех согласно требуемых норм.Кроме этого прибор сглаживает напряжение переходного процесса при подключении в сеть мощных асинхронных двигателей, дросселей, трансформаторов и другого подобного оборудования.Устройство способно устранить фазный перекос в большом диапазоне значений напряжения.
- Стабилизатор напряжения, симметрирующий трансформатор это дорогие устройства, не всегда есть возможность их применить. Существует достаточно простой и эффективный способ не допустить критического перекоса фаз — применение специального реле.
Если параметры трехфазной сети выходят за пределы установленного диапазона реле отключит источник питания. Когда параметры восстановятся до приемлемых значений, реле самостоятельно возобновит подачу питания.
Ответственное отношение к равномерному распределению нагрузки по фазам не гарантирует избежать перекос. От обрыва нулевого провода никто не застрахован, соединительный контакт может от перегрева «отгореть» в любой момент. Поэтому к рекомендациям по оборудованию трехфазной сети приборами защиты от перекоса следует прислушаться. Единовременные затраты сохранят работоспособность более дорогому электрическому оборудованию, работающему от трехфазной сети.
Где купить
Максимально быстро приобрести устройства стабилизации можно в ближайшем специализированном магазине. Оптимальным же, по соотношению цена-качество, остаётся вариант покупки в Интернет-магазине АлиЭкспресс. Обязательное длительное ожидание посылок из Китая осталось в прошлом, ведь сейчас множество товаров находятся на промежуточных складах в странах назначения: например, при заказе вы можете выбрать опцию «Доставка из Российской Федерации»:
Видно по теме
Фазировка оборудования — Фазировка генератора
Содержание материала
- Фазировка оборудования
- Основные понятия и определения
- Приборы и приспособления, употребляемые при фазировке
- Мегаомметр
- Указателя напряжения для фазировки
- Прибор ФК-80 для фазировки кабелей
- Методы фазировки
- Предварительная фазировка
- Прямые методы фазировки
- Фазировка на подстанциях с упрощенной схемой
- Косвенные методы фазировки
- Фазировка генератора
- Несовпадение чередований и обозначений фаз
Фазировку генератора нельзя производить методом фазировки трансформаторов и линий. Вектор напряжения генератора вращается относительно вектора напряжения сети с разностью частот генератора и сети, и выравнять эти частоты на время, необходимое для производства всех операций по фазировке упомянутым методом, практически невозможно. Поэтому при фазировке проверяют и сравнивают лишь порядки следования фаз генератора и сети, а совпадение напряжений по фазе устанавливают каждый раз при включении генератора в сеть в процессе его синхронизации, когда в течение непродолжительного времени удается получить разность частот вращения, близкую к нулю.
Рис. 50. Принципиальная схема фазировки генератора при включении на сборные шины (в) ; то же при блочной схеме (б) :
1 — генераторы энергосистемы; 2 — фазируемый генератор; 3 — фазоуказатель; 4 — компенсаторы; 5 — трансформатор с. н.
Включаемый в сеть генератор должен иметь тот же порядок следования фаз, что и генераторы системы. Это требование вызвано тем, что включение на параллельную работу генератора, имеющего обратный порядок следования фаз, недопустимо, так как его момент вращения направлен в противоположную сторону относительно момента вращения генераторов системы.
Порядок следования фаз проверяют фазоуказателем И-517 или ФУ-2, который подключают к выводам вторичных цепей шинных трансформаторов напряжения или трансформаторов напряжения, установленных на выводах генератора (при снятых компенсаторах, отключенных разъединителях или разобранной схеме «нуля» генератора). К какой фазе трансформатора напряжения будет подключен тот или другой вывод фазоуказателя, значения не имеет, важно, чтобы фазоуказатель не переключали до конца проверки.
Если генератор по нормальной схеме должен работать на шины станции (рис. 50,с), то для его фазировки освобождают одну из систем шин (или секций). К шинному трансформатору напряжения выделенной системы шин присоединяют фазоуказатель. На шины поочередно подают напряжение сначала от системы включением шиносоединительного выключателя при отключенном выключателе генератора, а потом от возбужденного и вращающегося на холостом ходу генератора при отключенном шиносоединительном выключателе. При подаче напряжения на шины каждый раз замечают направление вращения диска фазоуказателя. Диск должен вращаться в одну и ту же сторону если порядок следования фаз проверяемого генератора и системы совпадает.
Если генератор предназначен для работы в блоке с трансформатором, его фазировку производят аналогично описанному выше методу, но на шинах ВН, к которым подключают блок. Если же освободить одну из систем шин невозможно или если генератор должен работать в блоке с трансформатором и линией (схема ГТЛ), фазировку выполняют на трансформаторах напряжения, установленных на выводах генератора (рис. 30, б). Для этого необходимо снять компенсаторы 4 (отключить генераторные разъединители, если они имеются в схеме, или разобрать схему «нуля» неподвижного генератора), включить трансформатор блока под напряжение со стороны системы и проверить направление вращения диска фазоуказателя. Затем трансформатор отключить от сети, присоединить снятые шинные компенсаторы (включить генераторные разъединители или собрать схему «нуля»), генератор развернуть до номинальной частоты вращения, возбудить и проверить порядок следования фаз у генератора.
После получения положительных результатов фазировки генератора с сетью проверяют правильность включения синхронизационных устройств, чтобы избежать несинхронного включения из-за неисправности цепей синхронизации. Сначала проверяют, работает ли синхроноскоп вообще. Для этого его подключают на заведомо несинхронное напряжение к зажимам трансформаторов напряжения сборных шин станции и вращающегося на холостом ходу генератора. Изменяя частоту вращения генератора, убеждаются в том, что приросты частоты вращения соответствуют направлению вращения стрелки синхроноскопа. При этом стрелка должна сделать один или несколько полных оборотов. Повороты стрелки на угол менее 360° не могут служить гарантией исправности синхронизационного устройства. Отклонения стрелки могут быть вызваны как неудовлетворительной работой регулирования турбины, так и обрывом цепи напряжения или неисправностью самого синхроноскопа.
Затем работу синхроноскопа проверяют на синхронном напряжении. Для этого генератор включают на резервную систему шин, а синхроноскоп подключают таким образом, чтобы его цепи были присоединены к трансформаторам напряжения резервной системы шин и генератора. Поскольку теперь к синхроноскопу будет подведено синхронное напряжение, его стрелка должна установиться на красной черте, что укажет на совпадение фаз (синфазность) напряжений. Если она установится в любом другом положении, то это значит, что синхронизационное устройство неисправно и пользоваться им при включении генератора недопустимо.
Такую же проверку работы синхронизационного устройства производят и для другой системы шин станции. Ограничиваться фазировкой между собой трансформаторов напряжения резервной и рабочей систем шин в данном случае нельзя, так как ошибка в подключении синхроноскопа может быть допущена непосредственно на его выводах.
При блочном соединении генератора с трансформатором проверяется правильность работы схемы синхронизации на стороне ВН или при отсоединенных компенсаторах и подаче напряжения на генераторные трансформаторы напряжения от сети.
Включение синхронного генератора на параллельную работу способом точной синхронизации производят по показанию синхроноскопа, в правильной работе которого нет сомнений. При совпадении фаз вращающихся векторов напряжений сети и генератора стрелка синхроноскопа должна находиться на красной черте шкалы. Практически абсолютного совпадения частот генератора и сети достичь трудно, однако стремятся так подогнать частоту вращения генератора, чтобы стрелка синхроноскопа вращалась с частотой не более 2—3 об/мин. Чтобы включение генератора произошло точно в момент совпадения фаз, импульс на включение генераторного выключателя подают (автоматически или вручную) в то время, когда стрелка не дошла до красной черты на угол 10—12°. Это опережение учитывает собственное время включения выключателя.
Перед включением в работу блока генератор — трансформатор кроме фазировки генератора с сетью должна производиться фазировка отпаечного трансформатора собственных нужд (с. н.), подключенного к шинному мосту генератора, с источником резервного питания с. н. (резервным трансформатором, шинами с. н. станции). На действующей станции такая фазировка производится при отсоединенном генераторе и питании трансформатора с. н. от системы через трансформатор блока.
Следует иметь в виду, что в процессе такого рода фазировки в ряде схем могут фазироваться непосредственно между собой трансформаторы с разными группами соединений. На рис. 51,а представлена типичная схема блока генератор — трансформатор, где на напряжении 6 кВ должен фазироваться отпаечный трансформатор 72, имеющий соединение обмоток Д/Д/Д-0-0 с резервным трансформатором с. н. ТЗ, обмотки которого соединены по схеме У/Д/Д-11-ll.
Рис. 51. Проверка углового сдвига напряжений параллельно включаемых трансформаторов с. н.:
а — схема включения трансформаторов с. н. блока генератор — трансформатор; б, в, г — векторные диаграммы сдвига векторов напряжений трансформаторов 77, Т2 и ТЗ соответственно; б — совмещенная векторная диаграмма напряжений трансформаторов 77 и Т2
Условия параллельной работы для такой схемы должны рассматриваться особо. Дело в том, что трансформатор ТЗ включается параллельно не с одним, а с двумя последовательно включенными трансформаторами 77 и Т2 на напряжении 110 и 6 кВ. Ступень генераторного напряжения 13,8 кВ в расчет не принимается. Поэтому углы сдвига фаз векторов напряжений 6 кВ для обеих параллельных цепей следует брать относительно вектора напряжения 110 кВ. И если для трансформатора ТЗ угол сдвига векторов напряжений НН относительно ВН равен 330° (рис. 51, г), то такой же суммарный угол сдвига должны иметь трансформаторы Т1 и Т2.
Рис. 52. Схема питания и резервирования собственных нужд тепловой станции блочного типа
Проверить суммарный угловой сдвиг можно совмещением векторных диаграмм 77 (рис. 51, б) и Т2 (рис. 51, в). Из совмещенной диаграммы (рис. 51, д) видно, что угол сдвига между векторами 6 и 110 кВ также равен 330°, следовательно, параллельное включение трансформаторов 77 и Т2 с трансформатором ТЗ возможно.
Фазировку рабочего и резервного источников питания на шинах РУ собственных нужд обычно разбивают на два этапа: фазировку рабочих и резервных секций шин и фазировку собственно рабочего и резервного источников питания. Порядок операций рассмотрим на примере ввода в работу первого блока генератор — трансформатор строящейся тепловой станции (рис. 52). На такой станции разворот и включение в сеть вновь смонтированного генератора могут производиться только при питании электродвигателей механизмов с. н. (механизмов пылеприготовления, дымососов, вентиляторов, маслонасосов турбин и других насосов) от резервного трансформатора, подключенного непосредственно к сети энергосистемы (к сборным шинам ВН или к вводу одной из линий). Включение электродвигателей под напряжение для опробования и обкатки механизмов производится лишь после проверки маркировки выводов вторичных обмоток шинных трансформаторов напряжения и фазировки между собой резервных и рабочих шин РУ собственных нужд.
Напряжение для фазировки подают на резервную секцию шин от трансформатора РТ включением его выключателей ВЗ и В4. Затем включают выключатели В5 и Вб и фазируют рабочие секции с резервной косвенным методом на выводах вторичных обмоток трансформаторов напряжения ТН2-ТНЗ и ТН2-ТН4. В случае совпадения фаз фазировку секций шин РУ с. н. считают законченной.
Для фазировки рабочего трансформатора 7СН и резервного РТ генератор должен быть выведен из схемы (отключены генераторные разъединители или сняты компенсаторы). К началу фазировки с рабочих секций снимают напряжение отключением выключателей В5 и Вб и с приводов этих выключателей снимают оперативный ток, чтобы исключить случайное включение (в КРУ тележки выключателей перемещают в контрольное положение). Включением выключателей В2 и В1 на трансформатор Тс к подают напряжение от энергосистемы. Затем включают выключатели В7 и В8 и производят фазировку трансформаторов Тс м и РТ на выводах вторичных обмоток трансформаторов напряжения ТН2 и ТНЗ, ТН2 и ТН4, совпадение фаз которых уже было проверено. Если фазы напряжений совпадут, на приводы выключателей В5 и В6 подают оперативный ток и включают их, тем самым включая трансформаторы Тс „ и FT на параллельную работу.
Для подготовки генератора к включению в сеть отключают выключатели В7, В8 и В1. В процессе пуска генератора питание двигателей механизмов с. н. производят от резервного трансформатора РТ и только после включения генератора с. н. станции переводят на питание от рабочего трансформатора 7, оставляя резервный трансформатор под АВР.
В заключение напомним, что при создании тех или иных схем фазировки необходимо соблюдать правила оперативных переключений, в частности должны приниматься меры против ошибочного включения генератора в сеть без его синхронизации, даже если последовательности фаз совпадают. Достаточной гарантией в этом отношении является снятие оперативного тока с привода выключателя, отделяющего генератор от сети или от других работающих генераторов.
Что такое чередование фаз и как его проверить?
Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.
Что такое чередование фаз?
Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.
Рис. 1. Напряжение в трехфазной сети
Как видите, на рисунке 1, там где а) — показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и линейным напряжением.
Если взять за основу, что из нулевой точки на рисунке а) выходит UA, то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от UA к UB, а за ним к UC. Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.
Прямое и обратное чередование фаз
В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.
Рисунок 2: Прямая и обратная последовательность
Обратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:
- Желтый – первый;
- Зеленый – второй;
- Красный – третий.
На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.
Зачем нужно учитывать порядок фаз?
Последовательность чередования играет значительную роль в таких ситуациях:
- При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет короткое замыкание.
- При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
- При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.
С целью предотвращения негативных последствий от перекоса фаз и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.
Как выполнить проверку?
Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.
С помощью фазоуказателя
По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя — ФУ-2 .
Рисунок 3: Принципиальная схема работы ФУ-2
Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.
На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.
На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.
С помощью мегаомметра
Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.
Рис. 4: Прозвонка кабеля мегаомметром
Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.
На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.
По расцветке изоляции жил
Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.
Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.
При помощи мультиметра
Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.
Рис. 5: фазировка мультиметром
Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.
Если при подключении щупов к выводам A — A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.
Защита от нарушения порядка чередования
Для защиты электрического оборудования от неправильного чередования на практике применяется реле контроля фаз. Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.
Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.
Тематическое видео
Как проверить порядок чередования фаз с помощью ФУ-2
Здравствуйте, уважаемые гости и постоянные читатели сайта «Заметки электрика».
Несколько дней назад мне позвонил знакомый с просьбой разобраться в ситуации.
У него на объекте работала бригада электромонтажников.
Они занимались установкой двух силовых масляных трансформаторов 10/0,4 (кВ) мощностью 400 (кВА). С каждого трансформатора питались сборные шины 1 и 2 секций 0,4 (кВ). Между сборными шинами 1 и 2 секций был предусмотрен межсекционный автоматический выключатель.
Вот фото двух секций напряжением 400 (В).
При пусконаладочных работах решили попробовать включить оба трансформатора на параллельную работу. При включении произошло короткое замыкание, при котором сработала защита сразу на двух вводных автоматических выключателях.
Стали разбираться. Условия включения трансформаторов на параллельную работу были соблюдены, но не все. Пришли к выводу, что не была соблюдена фазировка шин двух секций 400 (В). Бригада монтажников уверяет, что предварительную фазировку провела правильно. Чуть позже выяснилось, что фазировку они проводили с помощью фазоуказателя ФУ-2 на каждой секции и в обоих случаях прибор показал прямую последовательность фаз.
Фазоуказатель ФУ-2
Порядок чередования фаз (следования фаз) в трехфазной системе напряжений можно проверить с помощью переносного индукционного фазоуказателя типа ФУ-2. Вот так он выглядит.
Он состоит из трех обмоток, расположенных на сердечниках, и алюминиевого диска.
Если все три обмотки включить в сеть трехфазного напряжения, то они образуют в пространстве вращающееся магнитное поле, которое приводит во вращение алюминиевый диск. Алюминиевый диск имеет фон черно-белого цвета. Направление магнитного поля и алюминиевого диска зависит исключительно от порядка чередования (следования) фаз питающего трехфазного напряжения.
Фазоуказатель ФУ-2 предназначен для включения в сеть трехфазного напряжения от 50 до 500 (В). Время его включения ограничивается временем 5 секунд. При нажатии на кнопку (она находится сбоку) диск начнет вращаться ту или иную сторону.
Рассмотрим работу фазоуказателя ФУ-2 более подробно.
Проверка чередования (следования) фаз на стенде
На моем испытательном стенде имеется источник трехфазного напряжения. Порядок чередования фаз мне неизвестен.
Проведем проверку чередования (следования) фаз с помощью фазоуказателя ФУ-2.
Подключаем зажимы А, В и С фазоуказателя ФУ-2 к выводам трехфазного напряжения на стенде.
Подаю напряжение на источник трехфазного напряжения порядка 80 (В).
Нажимаем на кнопку и смотрим куда начал вращаться диск прибора. Диск начал вращаться в обратную сторону — против стрелки. Это значит, что трехфазное напряжение на испытательном стенде имеет обратную последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: СВА, АСВ или ВАС.
Чтобы изменить обратную последовательность фаз на прямую, достаточно поменять местами две любые фазы. Меняю местами две крайние фазы (справа) на стенде и снова провожу измерение.
Теперь диск фазоуказателя начал вращаться в одну сторону со стрелкой. Это значит, что теперь трехфазное напряжение на испытательном стенде имеет прямую последовательность фаз, т.е. фазы следуют друг за другом в следующих трех вариантах: АВС, ВСА или САВ.
Все вышеописанные действия Вы сможете посмотреть на видео:
Зачем необходимо проверять чередование фаз?
Чередование фаз необходимо проверять для правильного подключения трехфазных двигателей. При прямом подключении фаз они будут вращаться в одном направлении, а при обратном — в другом.
Также чередование фаз необходимо учитывать при подключении счетчиков электрической энергии. Особенно, это относится к счетчикам индукционного типа.
Например, у счетчика СА4-И678 при обратной последовательности фаз начинается «самоход» диска. В современных электронных счетчиках типа СЭТ-4ТМ и ПСЧ-4ТМ при обратном чередовании фаз выдается на экран уведомление.
Забыл упомянуть про реле контроля фаз типа ЕЛ-11, которое контролирует и срабатывает при нарушении чередования фаз.
Так в чем же была ошибка электромонтажников?
Внимание. С помощью фазоуказателя нельзя определить, где именно находится фаза А, В или С. Им определяется ТОЛЬКО последовательность фаз, т.е. направление вращающегося поля. Вот в этом и была ошибка электромонтажников, у которых на 1 и 2 секциях 400 (В) совпала последовательность фаз, а сами фазы по одноименности не совпали, поэтому при включении на параллельную работу трансформаторов случилось короткое замыкание, т.к. межсекционный автоматический выключатель замкнул разноименные фазы.
Во избежание подобных ошибок фазировку 1 и 2 секций 0,4 (кВ) необходимо было проводить с помощью поверенных указателей напряжения (УНН) или мультиметра, а не с помощью фазоуказателя, который показывает только последовательность фаз питающего напряжения:
- прямое следование фаз — АВС, ВСА или САВ
- обратное следование фаз — СВА, АСВ или ВАС
Дополнение: в прошлом году немного обновили «парк» приборов нашей ЭТЛ и теперь вместо ФУ-2 пользуемся указателем TKF-12.
Как проверяется чередование фаз в трехфазной сети: особенности проведения тестирования
При согласовании параллельного функционирования трансформаторов на объектах электрического обеспечения зачастую возникает необходимость проверять фазное чередование.
Хотелось бы вам рассказать один случай, где затрагиваются вопросы фазного чередования в сети с тремя фазами и пример некорректного фазирования, оборудование и способы для решения этой задачи.
Вступление
Случай этот произошёл при проведении монтажных работ по подключению 2-х масляных трансформаторов. Монтаж был закончен успешно, в результате электрическая схема выглядела следующим образом:
- Масляные трансформаторы.
- Выключатели ввода.
- Секционные прерыватели.
- Две шинные секции.
По мнению электромонтёров, пусконаладочные мероприятия прошли успешно. Но при запуске трансформаторов в параллельном режиме работы произошло короткое замыкание.
Конечно, электромонтёры сказали, что проверили фазное чередование источников, все параметры совпадали. Вот только ничего не говорилось о фазировании. И это была ошибка. Давайте вместе разберёмся, в чём же эта ошибка.
Что такое фазное чередование
Известно, что сеть с тремя фазами состоит из разноимённых фаз. Именуются они как АВС. Согласно теории, мы знаем, что фазные синусоиды смещены по отношению друг к другу на сто двадцать градусов.
Существует шесть различных чередующихся порядков, бывает обратным либо прямым. Обратный — CBA, ACB, BAC, прямой – CAB, BCA, ABC.
Для проверки порядка фазного чередования используют указатель фаз. Разберём методику проверки фазным указателем.
Как проводится проверка
Указатель фаз конструктивно включает в себя диск с чёрными и белыми отметками для считывания показаний, и 3 обмотки. В работающем режиме диск должен вращаться.
Подсоединяем к выводным клеммам три жилы от подающего напряжение устройства с тремя фазами. Включаем прибор кнопкой, находящейся на боковой панели.
Диск должен начать крутиться. Когда вращение происходит по ходу отображённой на устройстве стрелки – фазное чередование прямое, относится к соответствующему виду CAB, АВС либо ВСА.
Если вращение происходит против направления стрелок – чередование фаз обратное.Соответствует АВС, СВА либо ВАС.
Давайте вспомним ситуацию с монтажом трансформаторов, рассказанную в начале статьи. Электромонтажники только определили фазное чередование, порядок совпал.
Но они не проверили фазировку. И провести эту проверку, используя указатель фаз, невозможно.
При подключении были сомкнуты разноимённые фазы. Для понимания, какая это фаза и где находится, необходим комбинированный электроизмерительный прибор либо осциллограф.
Комбинированным измерительным прибором меряют величину межфазного напряжения различных питающих источников. Когда значение равняется нулю – одноимённые.
В случае, когда значение соответствует линейному показателю – разноимённые. Это достаточно простой и эффективный способ.
При использовании осциллографа отставание и определение фаз определяется показаниями осциллограммы, но этот способ не практичен из-за сложной методики и дороговизны прибора.
В каких случаях надо учитывать порядок
Порядок необходимо учитывать в эксплуатации электрических двигателей с тремя фазами и переменным током.
От чередования зависит, в какую сторону будет крутиться двигатель, что немаловажно при одновременном использовании множества механизмов, имеющих двигательный привод.
Немаловажно знать порядок чередования при подсоединении индукционного прибора учёта электрической энергии (СА 4). Когда порядок обратный, возможно самопроизвольное дисковое вращение электросчётчика.
Современные электронные приборы учёта не нуждаются в определении чередования, но на дисплее будет отображаться соответствующий символ.
Если подключение трёхфазной питающей сети осуществляется с использованием силового кабеля и требуется проверка фазирования, сделать это возможно без специального оборудования.
Дело в том, что кабельные жилы, в подавляющем большинстве случаев, имеют цветную маркировку, что позволяет прозвонить кабель гораздо быстрей и проще.
Для определения фаз нужно снять наружную оболочку кабельной изоляции. Два конца будут с одинаковыми по цвету жилами. Мы их и принимаем, как одинаковые.
Но абсолютно верить цветовой маркировке всё же не стоит. Как показывает практика, изготовители кабельной продукции не гарантируют одноцветности жил с двух сторон кабеля. Поэтому, для надёжности, кабель лучше прозвонить.
Это вся информация, которой мы хотели с вами поделиться относительно определения порядка чередования в трёхфазной сети, и какими приборами это можно сделать.
Свои вопросы оставляйте в комментариях под статьёй.