От чего зависит цвет свечения светодиода?

Светодиоды – как работает, полярность, расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

Светодиод состоит из нескольких частей:

  • анод, по которому подается положительная полуволна на кристалл;
  • катод, по которому подается отрицательная полуволна на кристалл;
  • отражатель;
  • кристалл полупроводника;
  • рассеиватель.

Эти элементы есть в любом светодиоде, вне зависимости от его модели.

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны.

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия:

  • ширина запрещенной зоны должна быть близка к энергии кванта света;
  • полупроводниковый кристалл должен иметь минимум дефектов.

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды. Осветительные приборы используются для создания яркого освещения в помещении.

По типу исполнения выделяют:

    Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света. Dip светодиоды

  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.
    • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам. Smd

    • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров. Cob
    • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды. Волоконные
    • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий. Filament

    • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии. Oled
    • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.

    Светодиоды могут быть:

    • мигающими – используются для привлечения внимания;
    • многоцветными мигающими;
    • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
    • RGB;
    • монохромными.

    Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.

    Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К).

    По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.

    Полярность светодиодов

    При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света. Полярность – это способность пропускать электрический ток в одном направлении.

    Полярность моно определить несколькими способами:

    • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.
    • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.
    • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.
    • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.

    Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.

    Расчет сопротивления для светодиода

    Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.

    Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.

    Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.

    Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.

    Когда нужно использовать токоограничивающий резистор:

    • когда вопрос эффективности схемы не является основным – например, индикация;
    • лабораторные исследования.

    В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах.

    Онлайн – сервисы и калькуляторы для расчета резистора:

    Напряжение, ток и типы светодиодов, от чего зависит их цвет

    Про светодиоды, которые ворвались в нашу жизнь написано много. Но какое правильное и безопасное напряжение для светодиодов и ток, какие бывают их типы, и собственно, от чего зависит их цвет? Давайте попробуем в этом разобраться, чтобы правильно и грамотно их использовать.

    Из существующих типов светодиодов, это традиционные неорганические в традиционной форме диода, которая была доступна с 1960 года. Он изготовлен из наиболее широко используемых полупроводниковых соединений, таких как алюминиевый арсенид галлия, арсенида фосфида галлия, и многих других. Используются как панели индикаторов, одноцветные 5 мм, светодиоды для поверхностного монтажа, и даже двухцветные и многоцветные светодиоды, мигающие, буквенно-цифровые светодиодные дисплеи.

    Органические светодиоды -типа светодиодных дисплеев на основе органических материалов, которые изготовлены в виде листов и обеспечивают диффузный свет. Обычно изготовляются с использованием очень тонкой пленки органического материала, которая размещена на подложке из стекла. Электрические заряды от электронных схем, заставляют их светиться.

    Светодиоды высокой яркости (HBLEDs), являются своего рода неорганическими светодиодами, которые начинают использоваться для освещения с большой светоотдачей. Ввиду их нагрева от значительных мощностей они должны быть установлены на радиаторах для удаления нежелательного тепла.

    Из них уже изготовляют компактные люминесцентные лампочки и лампы. HBLEDs имеют больший уровень эффективности и более длительный срок службы, особенно когда они включаются, и выключаются много раз. Вообще, в мире выпускается более 30 миллиардов различных светодиодов, и их потребление растет семимильными шагами, поэтому всегда можно приобрести вот здесь светодиодные лампы оптом здесь — led-st.ru, и в розницу.

    Полупроводниковые соединения в светодиодах классифицируют по валентности. Для арсенида галлия- галлий имеет валентность три, мышьяк валентность пять, их относят к называемой группе III-V полупроводниковых материалов. Диод излучает свет, когда его переход смещен в прямом направлении. При подаче напряжения на переход протекает ток, в результате рекомбинации возникают световые фотоны.

    Было обнаружено, что большинство света возникает на площади перехода ближе к P-зоне, что отражено в конструкции светодиодов, направленной на минимум внутреннего поглощения. Цвет свечения во многом связан с конструкцией и типом используемых полупроводниковых материалов и приложенным напряжением. Чистый арсенид галлия высвобождает энергию в инфракрасной части спектра. Для светового излучения в видимом красном конце спектра алюминий арсенида галлия (AlGaAs). Добавление в полупроводник фосфора также может дать красный свет. Для других цветов используются другие материалы. Так фиолетовый цвет (длина волны 400-400-450 нм) получают с использованием в светодиоде индия нитрида галлия (InGaN) при напряжении 2,8-4,0 В, синий (450-500 нм) – с использованием такого же материала и добавлением карбида кремния (SiC) с напряжением 2,5-3,7 В, синий (500-570 нм) -фосфида галлия (GaP), алюминиевого фосфида индия галлия (AlGaInP), алюминиевого фосфида галлия (AlGaP) при напряжении 1,9-4,0 В (на графиках по горизонтали напряжение на переходе, по вертикали- рабочий ток, каждому графику соответствует цвет).

    Светодиоды должны включаться с использованием ограничивающего ток через него резистора. Резистор должен быть рассчитан на требуемый уровень тока по закону Ома. Для многих светодиодов рабочий ток составляет около 20 мА, при меньшем токе свет будет тусклее. При большем токе светодиод сразу или быстрее выйдет из строя. При расчете тока учитывают напряжение на светодиоде – в прямосмещенном состоянии оно составляет чуть более вольта, хотя точное напряжение зависит от диода и, в частности его цвета.

    Обычно красный светодиод имеет прямое напряжение чуть менее 2 вольт, и около 2,5 вольт для зеленого или желтого цвета. Светодиоды чаще всего бывают на рабочее напряжение 3 В и 12 В, но есть и на другие напряжения. О напряжении светодиода всегда говорит продавец.

    При прикладывании напряжения обратной полярности, светодиод часто пробивается и выходит из строя. Поэтому защитить его от этого можно обычным дополнительным диодом, или специальной простейшей схемой. Либо надо просто быть внимательным при подключении светодиода, сохраняя его полярность, узнав о ней у продавца или в характеристиках. На схеме, к верхнему выводу прикладывается «+» питания.

    Первый зарегистрированный эффект свечения светодиода был зафиксирован еще в начале ХХ века. В 1907 г. британский инженер по имени HJ Round, работавший у Маркони, провел некоторые эксперименты с использованием кристаллических детекторов, и в итоге получил их свечение. Результаты исследований он опубликовал в 1907 году в журнале Electrical World. Дальнейшие успехи были связаны с теоретическими и практическими исследованиями русского инженера, работавшего в медуниверситете, выходца из дворян Олега Владимировича Лосева. Он обнаружил, и исследовал излучение света от выпрямителя из оксида цинка и кристаллов карбида кремния. В результате своих наблюдений и исследований, Лосев опубликован ряд работ в технической прессе в период между 1924 и 1930 годами в СССР, а затем в других британских и немецких изданиях. С развитием материаловедения идея светового излучения диодов всплыла в 1951 году. В середине 1960-х. с использованием галлия, мышьяка и фосфора получили светодиоды, включая и красное свечение, но с эффективностью произвело на красный свет, и хотя эффективность устройства была низкой (обычно около 1 — 10 mcd при токе 20 мА), и они начали широко использоваться в качестве индикаторов на оборудовании. И пошло, и поехало, например, светодиодные ленты на каждом шагу на улицах, в магазинах, офисах и жилых домах.

    Светодиоды дают полет мысли для самого разнообразного их применения. Так например, если дома есть старые неиспользуемые мобильные телефоны с устаревшими блоками питания для них, то всегда можно самому сделать, например, светодиодную подсветку — ночник из зарядного устройства.

    Так мы кратко узнали, какое напряжение, ток и типы светодиодов, от чего зависит их цвет.

    Виды светодиодов – принцип работы, от чего зависит яркость свечения

    Первые светодиоды (СД, СИД, LED) разработали в начале шестидесятых годов на смену миниатюрным лампам накаливания. Это были красные лампы с очень слабым свечением и применялись как индикаторы включения в различных приборах.

    В начале девяностых, был создан синий светодиод, следом появились зеленые, желтые и белые. Сейчас светодиод один из наиболее широко востребованных осветительных элементов. Это световое устройство в пластиковом литом корпусе (разного цвета) с двумя выводами со впаянным кристаллом.

    Корпус выполняет две функции – является линзой и защитным покрытием. Питание светодиода обеспечивается током, для чего в цоколь встроен преобразователь напряжения. Яркость свечения пропорциональна напряжению.

    Устройство элемента

    Светодиод состоит из следующих частей:

    • основание;
    • линза;
    • катод (-);
    • анод (+);
    • кристалл (полупроводниковый чип);
    • отражатель (рассеиватель).

    В основании закреплены катод и анод, сверху все устройство герметично закрыто линзой (колбой). На катоде закреплен кристалл. На контактах установлены проводники, подсоединенные к кристаллу p-n-переходом (соединительная проволока, объединяющая два проводника с разными типами проводимости).

    Теплоотвод необходим для поддержания стабильной работы светодиода. В индикаторных светодиодах тепло не накапливается за счет невысокой мощности. Для осветительных – основание напрямую припаивается к поверхности для обеспечения теплоотвода.

    Принцип работы диодов для чайников

    Чтобы понять, как работает светодиод, нужно знать, что такое p-n-переход. Это область, в которой соприкасаются полупроводники p и n типа, в результате чего один тип проводимости переходит к другому. N тип содержит электроны проводимости как носители заряда. Полупроводник p типа носитель положительного заряда (дырки).

    Анод (p типа) является положительным электродом, катод (n типа) это отрицательный электрод. Внешняя поверхность катода и анода содержит контактные металлические площадки с припаянными выводами. Когда к аноду подается положительный заряд электричества, а к катоду отрицательный, то на р-n переходе между кристаллом катодом начинает течь ток.

    Если включение прямое, то электроны из n и области и дырки из p-области устремятся навстречу друг другу. В процессе легирования (обмена электронами) на границе дырочно – электронного перехода произойдет их обмен. Если отрицательное напряжение подается со стороны материала n-типа, то происходит прямое смещение. При рекомбинации (обмене) выделяется энергия в виде фотонов.

    Чтобы поток фотонов преобразовать в видимый свет, материал подбирают так, что длина волны фотонов находится в пределах видимой области цветового спектра длиной волны от 700 до 400 нм.

    Чтобы упрастить работу с диодными осветительными приборами или, например, гирляндами, узнайте как проверить светодиод мультиметром.

    Существующие на сегодняшний день светодиоды бывают следующих видов:

    • индикаторные – с маленькой мощностью, для подсветки в приборах;
    • осветительные – с большой мощностью, уровень освещенности соответствует обычным (люминесцентным и вольфрамовым) источникам света.

    По типу соединения индикаторные делятся на:

    • тройные AIGaAs (алюминий – галлий – мышьяк) – оранжевый и желтый свет в областях видимого цветового спектра;
    • тройные GaAsP (галлий – мышьяк – фосфор) – желто-зеленый и красный свет в областях видимого спектра;
    • двойные GaP (галлий – фосфор) – оранжевый и зеленый свет в областях видимого спектра.

    Светодиодные элементы различаются по типу корпуса:

    • DIP – оснащены встроенной оптической системой из линзы, кристалла и парой контактов. Устаревшая модель самой низкой мощности, используются для подсветки игрушек, световых табло;
    • Superflux или «пиранья» – аналогичные DIP, оснащены четырьмя контактами, лучше крепятся и меньше нагреваются за счет радиатора для светодиода. Используются для подсветки в автомобилях;
    • SMD – наиболее распространенный тип для множества источников света. Представляют собой чип (кристалл), смонтированный непосредственно на поверхности платы;
    • COB – усовершенствованные светодиоды SMD. Оснащены несколькими кристаллами (чипами), установленными на одну плату. Монтируются на керамические и алюминиевые основания.

    Более совершенные модели СОВ все же не всегда могут заменить SMD светодиоды.

    Основные технические характеристики

    Диодные лампы характеризуются следующими основными параметрами:

    • яркость (интенсивность светового потока);
    • напряжение (тип используемого напряжения);
    • сила тока;
    • длина волны и цветовая характеристика.

    Яркость

    Яркость воспринимается зрительными ощущениями, поскольку освещённость предмета на сетчатке глаза пропорциональна его яркости. Складывается она из нескольких параметров. называется Световой поток это количество световой энергии. Единица измерения люмен.

    Единицей силы света является один люмен на стерадиан, также измеряемый в канделах: 1 cd. Измеряется яркость в милликанделах. Различают яркие (20 – 50 мкд.) и сверх яркие (20000 мкд. и выше) светодиоды белого свечения. Светодиодная яркость пропорциональна величине протекающего через него тока, т. е. чем выше напряжение, тем больше яркость.

    Рекомендуем Вам также более подробно прочитать про возможности и область применения диммеров.

    Напряжение

    Напряжение, необходимое для работы светодиода, это не напряжение питания, а величина падения напряжения на светодиоде. Колебания напряжения питания вызывает перегорание светодиода. Напряжение напрямую зависит от цвета.

    Сравнительная характеристика светодиодов разного цвета

    Цвет Длина волны, нм Напряжение, В
    Инфракрасный от 760 до 1,9
    Красный 610-760 от 1,6 до 2,03
    Оранжевый 590-610 от 2,03 до 2,1
    Желтый 570-590 от 2,1 до 2,2
    Зеленый 500-570 от 2,2 до 3,5
    Синий 450-500 от 2,5 до 3,7
    Фиолетовый 400-450 от 2,8 до 4,0
    Ультрафиолетовый до 400 от 3,1 до 4,4
    Белый широкий спектр от 3,0 до 3,7

    Для нормальной работы при подключении светодиода необходимо правильно отследить ток, а не напряжение.

    Сила тока

    Работает светодиод на постоянном или пульсирующем токе. Поднимая или снижая интенсивность можно варьировать яркость свечения. Рабочий ток индикаторных светодиодов 20 – 40 мА. Сила тока осветительных элементов составляет от 20 мА. СОВ (на 4 чипа), например, рассчитаны на 80 мА. Одноваттные светодиоды потребляют приблизительно 300-400 мА.

    Длина волны и цветовая характеристика

    Излучаемый диодом цвет зависит от длины волны светового излучения. Измеряется она нанометрами (0.000000001 метра). Монохроматическое (одночастотное) излучение связано с длиной волны, перемещающейся внутри. Границы длины волны соотносятся с основными цветами определенным образом.

    Цвет излучения светодиода меняется при внесении в полупроводниковый материал активных веществ. Для получения светодиодов красного цвета в качестве полупроводников используется алюминий индий – галлий (AllnGaP), для цветов сине – голубого и зеленого спектра – индий – нитрид галлия (InGaN).Чтобы получить, например, белый свет, кристалл синего светодиода покрывают тонким слоем люминофора, который излучает жёлтый и красный свет под действием синего спектра.

    В результате смешивания цветов получается белый свет. Белые светодиоды определяются цветовой температурой, измеряемой в К.

    Рекомендуем Вам также ознакомиться с тем, как работает датчик движения.

    Светодиодная плата

    Плата предназначена для крепления светодиодов в любом необходимом количестве и положении. Форма платы бывает:

    • прямоугольная;
    • линейка;
    • круглая;
    • квадратная;
    • звездчатая
    • произвольная.

    Светодиодная плата изготавливается из диэлектрического материала. Основной функцией ее является теплоотвод.

    • металлические (односторонние, двухсторонние и многослойные);
    • изолированные металлические подложки (односторонние, двухсторонние и многослойные, жестко – гибкие).

    Платы, изготовленные из алюминия, не нуждаются в вентиляторах для принудительного охлаждения. Все элементы конструкции обретают более продолжительный срок службы за счет отсутствия перегрева.

    Дополнительную информацию об история возникновения и принципах функционирования светодиодных элементов смотрите на видео:

    Светодиоды это один из новейших источников освещения, имеет широкий спектр применения и большие перспективы. Благодаря соотношению всех параметров светодиодный тип освещения может стать ведущим среди множества осветительных приборов и разнообразных источников света.

    Устройство и принцип работы светодиода

    Светодиоды присутствуют везде: в домах, автомобилях, телефонах. С их помощью обеспечивается яркая подсветка экранов гаджетов, выпускаются экономичные источники освещения. Сейчас это незаменимые источники света. Рассмотрим устройство светодиода и принцип работы.

    Что такое светодиод

    Светодиод – это тип диодов, преобразующий электрическую энергию в световое излучение. Английское название светодиода – light emitting diode, или LED.

    Виды диодов

    Диоды подразделяются по материалу, конструкции, функциональности. Основными читаются три вида: DIP, COB, SMD.

    DIP – этот тип популярен с 20 в. Он выглядит как колбочка из стекла или прозрачного пластика. Такие светодиодные колбочки служат линзами, через которые фокусируются световые потоки в том или ином направлении. Внутрь помещен полупроводниковый кристалл, который может быть синим, зеленым или красным.

    Кристалл помещается на катод, с анодом его соединяет тонкий провод. Контакты выходят за границы линзы, образуя металлические ножки, которые удобно припаивать к печатной плате. Расстояние между платой и светодиодами заполняется термоклеем либо другим веществом, которое предохраняет конструкцию от попадания влаги и короткого замыкания.

    Внутри колбочек есть микрочипы, регулирующие яркость, частоту мерцания и порядок подачи тока на кристаллы. Средний диаметр подобного светодиода – 3 мм. Яркость – до 14 000 кд/м².

    Часто такие диоды применяют в качестве индикаторов для компьютеров, видеокамер, аккумуляторов, пылесосов и других устройств.

    COB – это конструкция в виде матрицы, которая содержит от нескольких десятков до сотен светоизлучающих кристаллов. Такие диоды называют еще «кристаллами на плате».

    В СОВ-матрицах цена одного люмена может составлять от 0,07 до 0,2 руб. Плотность кристаллов доходит до 70 на 1 см². Люминофор может быть изготовлен в виде линзы, формирующей нужную диаграмму светового потока.

    COB-матрица меньше размером, чем SMD-матрица.

    Мощность – до 100 Вт, светоотдача – 120-160 Лм/Вт. Прослужить СОВ может около 50 000-60 000 часов. Ремонт такой матрицы светильника обойдется дешевле, чем покупка нового.

    Кристалл у светодиодов SMD-типа крепится на подложке, которая отводит тепло. Анодный провод соединяет кристалл с анодом, внутри находится чип управления.

    В верхней части закреплена сферическая линза из стекла или прозрачного пластика. «Ножки» у SMD отсутствуют, светодиоды припаиваются термоклеем к печатной плате. Наименьший размер SMD-светодиодов 0,6 х 0,3 мм.

    Яркость – до 8000 кд/м². Общая масса кристаллов излучает 6000-7000 кд на 1 м². Миниатюрный размер позволяет приобретать их для дизайна, экранов больших размеров с высоким качеством разрешения.

    Как устроен светодиод

    Устройство светодиода достаточно простое. Кристалл с защитным корпусом располагается на подложке, излучающей тот или иной цвет. Для определенного свечения используют химический состав и люминофор.

    Кристалл имеет два и более полупроводника разной проводимости.

    У светодиода два контактных вывода – анод и катод, катод короче анода. Если длина одинаковая, то определить их можно пальчиковой батарейкой. Если появился свет, значит, перед вами анод.

    Корпус заканчивается линзой. Рефлектор и линза образуют оптическую систему, формирующую угол потока. В нижней части корпуса можно увидеть алюминиевый или латунный поясок, выступающий в роли радиатора для отвода тепла, которое выделяется во время работы.

    Из чего делают

    Пластина подложки помещается в камеру, заполненную газообразными химическими веществами. Для пластины используют различные материалы, например, искусственный сапфир с подходящей кристаллической решеткой. Камеру нагревают, химические вещества оседают на пластине. Так образуется несколько слоев.

    При помощи трафарета наносят золотые контакты. Затем пластину разрезают и получаются отдельные кристаллы с контактами. После этого кристаллы вставляются в корпус и покрываются люминофором.

    Нет идентичных светодиодов. Они, как отпечатки пальцев — у каждого свои характеристики. Светодиоды распределяют по цветам.

    Производство светодиодов

    В светодиодах свет излучает p-n переход, образованный двумя полупроводниковыми материалами огромной степени чистоты. В миллионах и десятках миллионов атомов полупроводникового кремния или германия, может присутствовать один или несколько атомов другого вещества-примеси. Если в полупроводник n- или p-типа ввести строго определенное количество легирующего металла, то получается сплав с требуемыми характеристиками.

    Для изготовления кристалла светодиода с p-n переходом необходимо провести десятки технологических операций. Это:

    • нагрев до строго определенной температуры;
    • испарение металла в вакууме;
    • осаждение металлических паров на поверхность полупроводника строго определенное время;
    • поверхность должна иметь заданную температуру;
    • давление в камере – точно соответствовать требуемому и мн. др.

    С высокой точностью выдержать требуемые параметры всех операций невозможно. Поэтому операций выполняют с технологическими допусками – отклонениями. Даже в одной партии полупроводниковых приборов, изготовленных в один день возможен разброс параметров от десятков процентов до нескольких раз.

    Готовые светодиоды в технологические партии сортируют по величине важнейших параметров, например по световому потоку, 10 Лм с точностью ± 5, 10 или 20%.

    Американцы и англичане дискрет малой величины назвали bin или rank, а операцию сортировки каких-то предметов – биновка, распиновка или ранжирование.

    Производство светодиодов ведут по важнейшим параметрам:

    • величина светового потока;
    • прямое рабочее напряжение на p-n переходе;
    • оттенок свечения или цветовая температура и др. параметры.

    Величина дискретизации в бинах конкретного светодиода дает инженерам информацию, как быстро он деградирует, т. е. меняет оттенок свечения, уменьшает яркость, качество света и цветовоспроизведения – Ra или CRI.

    Светодиоды по bin-группам, например по цветопередаче сортируют люди-эксперты, а если параметр можно измерить – по приборам.

    Что светится в светодиоде

    В светодиоде светится полупроводниковый кристалл с p-n переходом, или электронно-дырочный переход. Ширина запрещенной зоны должна быть близка к энергии квантов излучения, а наличие дефектов, которые влияют на рекомбинацию, должно быть сведено к минимуму. Но для работы светодиода выполнения этих условий недостаточно, нужны структуры из двух и более p-n переходов.

    Цвета светодиодов

    Получают желаемый цвет диода тремя технологиями: покрывают люминофором, используют RGB или полупроводниковые материалы.

    Люминофор преобразует поглощаемую энергию в свет.

    У этой технологии есть свои преимущества: простая конструкция и экономичность. Но есть и недостатки: из-за потерь световой энергии снижается светоотдача, срок службы небольшой. Обычно вещество используют для белых светодиодов с различной цветовой температурой.

    В RGB-технологии при проектировании оптической системы 3 монокристалла со своим спектром цвета смешиваются и появляется нужный оттенок. Преимуществом этой технологии является возможность ручного или автоматического переключения цветов. Недостатки: неравномерный нагрев и отвод тепла.

    Для производства светодиодов берут различные полупроводниковые материалы. От величины энергетического барьера и ширины запрещенной зоны зависит излучение различных участков спектра. Для определенных цветов используют соответствующие материалы: для ультрафиолетового и синего цвета берут за основу GaN и InGaN, для зеленого используют систему InGaN-GaN.

    Наиболее часто в изготовлении используют красные, зеленые и синие светодиоды.

    Какая полярность светодиодов

    Если диод не светится, значит ток не движется по прямой. Это значит, что при производстве диода не были учтены катод и анод. Полярность светодиодов практически не подлежит визуальному определению. Выявить ее можно при помощи мультимера, технической документации и простого монтажа по схеме.

    В диоде плюсом выступает анод, минусом – катод. Ток в светодиоде направлен от анода к катоду, поэтому потенциал анода выше катода. Только это условие обеспечивает правильную работу элемента. При ошибке подключения светодиод работать не будет.

    P-n переход подключают к источнику постоянного напряжения в зависимости от полярности выводов. Под действием напряжения начинают двигаться свободные отрицательно заряженные электроны и дырки с положительным зарядом в направлении к полюсам.

    В p-n переходе заряды создают рекомбинацию, электроны перемещаются из зоны проводимости в зону валентности, преодолевая уровень Ферми. Часть энергии выходит с выделением волн света разного спектра и яркости.

    Почему светодиод может не светиться

    В некоторых случаях светодиод может не светить, причин несколько. Светодиоды белого свечения могут иметь свой разброс порога «открывания», средние пределы – от 2,9 до 3,2 В, иногда они не горят при подключении к 3-вольтной батарейке. Причины:

    • деталь некондиционная;
    • плохой монтаж или пайка;
    • проблема в стабилизации напряжения;
    • завышение параметров производителем;
    • ошибка в проектировании схемы или радиатора.

    Приобретать такие источники света лучше у проверенных производителей, которые не завышают параметры, не допускают брака. Осведомленность о типичных неисправностях диода помогает сделать правильный выбор.

    Чтобы предупредить перегрев детали, время пайки нужно сократить до 1 секунды. Для этого температуру жала паяльника нужно довести до 250°С, а само жало должно быть хорошо заточенным. Рекомендуется пользоваться припоем ПОС-61, а ПОС-41 исключить.

    Что такое светодиод, его принцип работы, виды и основные характеристики

    Светодиоды стремительно вытесняют лампы накаливания практически из всех областей, где их позиции казались непоколебимыми. Конкурентные преимущества полупроводниковых элементов оказались убедительными: низкая стоимость, долгий срок службы, а главное – более высокий КПД. Если у ламп он не превышал 5%, то некоторые производители светодиодов декларируют превращение в свет не менее 60% потребленной электроэнергии. Правдивость этих заявлений остается на совести маркетологов, но быстрое развитие потребительских свойств полупроводниковых элементов ни у кого сомнений не вызывает.

    Что такое светодиод и его принцип работы

    Светодиод (СД, LED) представляет собой обычный полупроводниковый диод, изготовленный на основе кристаллов:

    • арсенида галлия, фосфида индия или селенида цинка – для излучателей оптического диапазона;
    • нитрида галлия – для приборов ультрафиолетового участка;
    • сульфида свинца – для элементов, излучающих в инфракрасном диапазоне.

    Выбор данных материалов обусловлен тем, что p-n переход диодов, изготовленных из них, при приложении прямого напряжения излучает свет. У обычных диодов из кремния или германия такое свойство выражено очень слабо – свечение практически отсутствует.

    Излучение светодиода не связано со степенью нагрева полупроводникового элемента, его вызывает переход электронов с одного энергетического уровня на другой при рекомбинации носителей зарядов (электронов и дырок). Свет, испускаемый в результате, является монохроматическим.

    Особенностью такого излучения является очень узкий спектр, и выделить нужный цвет светофильтрами затруднительно. А некоторые цвета свечения (белый, синий) при таком принципе изготовления недостижимы. Поэтому в настоящее время распространена технология, при которой внешняя поверхность светодиода покрывается люминофором, а его свечение инициируется излучением p-n перехода (которое может быть видимым или лежать в УФ-диапазоне).

    Устройство светодиода

    Светодиод изначально был устроен так же, как и обычный диод – p-n переход и два вывода. Только корпус из прозрачного компаунда или из металла с прозрачным окном для наблюдения свечения. Но в оболочку прибора научились встраивать дополнительные элементы. Например, резисторы – чтобы включать светодиод в цепь нужного напряжения (12 В, 220 В) без внешней обвязки. Или генератор с делителем для создания мигающих светоизлучающих элементов. Также корпус стали покрывать люминофором, который светится при зажигании p-n перехода – так удалось расширить возможности LED.

    Тенденция к переходу на безвыводные радиоэлементы не обошла и светодиоды. SMD-приборы стремительно захватывают рынок осветительной техники, имея преимущества в технологии производства. Такие элементы не имеют выводов. P-n переход монтируется на керамическом основании, заливается компаундом и покрывается люминофором. Напряжение подводится через контактные площадки.

    В настоящее время светотехнические устройства стали оснащаться светодиодами, изготовленными по COB-технологии. Суть её в том, что на одной пластине монтируется несколько (от 2-3 до сотен) p-n переходов, соединяемых в матрицу. Сверху все помещается в единый корпус (или формируется модуль SMD) и покрывается люминофором. У такой технологии большие перспективы, но вряд ли она полностью вытеснит другие исполнения СД.

    Какие виды светодиодов существуют и где они применяются

    Светодиоды оптического диапазона применяются в качестве элементов индикации и в качестве осветительных приборов. Для каждой специализации существуют свои требования.

    Индикаторные светодиоды

    Задача индикаторного светодиода – показать состояние прибора (наличие питания, аварийный сигнал, срабатывание датчика и т.п.). В этой сфере широко применяются LED со свечением p-n перехода. Приборы с люминофором применять не запрещено, но особого смысла нет. Здесь яркость свечения не на первом месте. В приоритете контрастность и широкий угол обзора. На панелях приборов применяют выводные светодиоды (true hole), на платах – выводные и SMD.

    Осветительные светодиоды

    Для освещения, наоборот, в основном применяют элементы с люминофором. Это позволяет получить достаточный световой поток и цвета, близкие к естественным. Выводные СД из этой области практически выдавлены SMD-элементами. Широкое применение находят COB-светодиоды.

    В отдельную категорию можно выделить приборы, предназначенные для передачи сигналов в оптическом или ИК-диапазоне. Например, для пультов дистанционного управления бытовой аппаратурой или для охранных устройств. А элементы УФ-диапазона могут использоваться для компактных источников ультрафиолета (детекторы валют, биологических материалов и т.д.).

    Основные характеристики светодиодов

    Как и любой диод, LED имеет общие, «диодные» характеристики. Предельные параметры, превышение которых ведет к выходу прибора из строя:

    • максимально допустимый прямой ток;
    • максимально допустимое прямое напряжение;
    • максимально допустимое обратное напряжение.

    Остальные характеристики носят специфический «светодиодный» характер.

    Цвет свечения

    Цвет свечения – этот параметр характеризует СД оптического диапазона. У осветительных приборов в большинстве случаев белый с различной световой температурой. У индикаторных может быть любым из видимой цветовой гаммы.

    Длина волны

    Этот параметр в определенной степени дублирует предыдущий, но с двумя оговорками:

    • у приборов ИК и УФ диапазонов видимого цвета нет, поэтому для них эта характеристика единственная, характеризующая спектр излучения;
    • этот параметр больше применим для светодиодов с непосредственным излучением – элементы с люминофором излучают в широкой полосе, поэтому однозначно их свечение длиной волны не охарактеризовать (какая длина волны может быть у белого цвета?).

    Поэтому длина излучаемой волны – достаточно информативная цифра.

    Потребляемый ток

    Потребляемый ток – это рабочий ток, при котором яркость излучения оптимальна. При его небольшом превышении не происходит скорого выхода прибора из строя – и в этом его отличие от максимально допустимого. Снижение его также нежелательно – интенсивность излучения упадет.

    Мощность

    Потребляемая мощность – здесь все просто. На постоянном токе – это просто произведение потребляемого тока на приложенное напряжение. Путаницу в это понятие вносят производители светотехники, указывая на упаковке крупными цифрами эквивалентную мощность – мощность лампы накаливания, световой поток которой равен потоку данного светильника.

    Видимый телесный угол

    Видимый телесный угол проще всего представить в виде конуса, исходящего из центра источника света. Данный параметр равен углу раскрыва этого конуса. Для индикаторных светодиодов он определяет, как срабатывание сигнализации будет видно со стороны. Для осветительных элементов от него зависит световой поток.

    Максимальная сила света

    Максимальная сила света в технических характеристиках прибора указывается в канделах. Но на практике удобнее оказалось оперировать понятием светового потока. Световой поток (в люменах) равен произведению силы света (в канделах) на видимый телесный угол. Два светодиода с равной силой света дают разное освещение при разном угле. Чем больше угол, тем больше световой поток. Так удобнее для расчета систем освещения.

    Падение напряжения

    Падение напряжения при прямом токе – это напряжение, которое падает на светодиоде в открытом состоянии. Зная его, можно рассчитать напряжение, потребное, например, для открывания последовательной цепочки светоизлучающих элементов.

    Как узнать, на какое напряжение рассчитан светодиод

    Самый простой способ узнать номинальное напряжение светодиода – обратиться к справочной литературе. Но если попался прибор неизвестного происхождения без маркировки, то его можно подключить к регулируемому источнику питания и плавно поднимать напряжение с нуля. При определенном напряжении светодиод ярко вспыхнет. Это и есть рабочее напряжение элемента. При такой проверке надо иметь в виду несколько нюансов:

    • испытуемый прибор может быть со встроенным резистором и рассчитан на достаточно высокое напряжение (до 220 В) – не каждый источник питания имеет такой диапазон регулировки;
    • излучение светодиода может лежать вне видимого участка спектра (УФ или ИК) – тогда момент зажигания визуально не определить (хотя свечение ИК-прибора в некоторых случаях можно увидеть через камеру смартфона);
    • подключать элемент к источнику постоянного напряжения надо со строгим соблюдением полярности, в противном случае легко вывести LED из строя обратным напряжением, превышающим возможности прибора.

    Если нет уверенности в знании цоколевки элемента, лучше поднять напряжение до 3…3,5 В, если светодиод не зажегся — убрать напряжение, поменять подключение полюсов источника и повторить процедуру.

    Как определить полярность светодиода

    Для определения полярности выводов существует несколько методов.

    1. У безвыводных элементов (включая COB) полюсность напряжения питания обозначается прямо на корпусе – символами или приливами на оболочке.
    2. Так как светодиод имеет обычный p-n переход, его можно прозвонить мультиметром в режиме проверки диодов. Некоторые тестеры имеют измерительное напряжение, достаточное для зажигания светодиода. Тогда правильность подключения можно контролировать визуально по свечению элемента.
    3. Некоторые приборы производства CCCP в металлическом корпусе имели ключ (выступ) в районе катода.
    4. У выводных элементов вывод катода более длинный. По этому признаку определить цоколевку можно только у непаянных элементов. У бывших в употреблении LED выводы укорачиваются и изгибаются для монтажа произвольным образом.
    5. Наконец, узнать расположение анода и катода возможно тем же методом, что и для определения напряжения светодиода. Свечение будет возможно только при правильном включении элемента – катод к минусу источника, анод – к плюсу.

    Развитие технологий не стоит на месте. Ещё несколько десятилетий назад светодиод был дорогой игрушкой для лабораторных опытов. Сейчас без него трудно представить жизнь. Что будет дальше – покажет время.

    Что такое полупроводниковый диод, виды диодов и график вольт-амперной характеристики

    Что измеряется в люменах и какие нормы освещенности на 1 квадратный метр?

    Как правильно рассчитать резистор для светодиода?

    Как выбрать светодиодную ленту для подсветки, типы светодиодных лент, расшифровка маркировки

    Принцип работы и основные характеристики стабилитрона

    Что такое цветовая температура светодиодных ламп?