От чего зависит яркость свечения светодиода?
GTRacing › Блог › Основные характеристики светодиодов
Приветствую Вас, друзья мои!
Немного теории собранной с разных сайтов, пригодится для начинающих led-тюнеров =)
Итак, основные характеристики светодиодов:
сила света (эффективность)
угол излучения,
мощность
рабочий ток
цвет (температура свечения)
деградация светодиода
Индикаторные светодиоды (ILT) (3; 4,8; 5, 8, 10 мм светодиоды с линзой)
СМД (SLT) светодиоды (3528, 5050)
Мощные (PLT) светодиоды
RGB светодиоды
Эффективность (светоотдача).
Отношение светового потока к потребляемой мощности (Лм/Вт). Это та величина, которая в первую очередь попадает во внимание специалистов, потому что именно по эффективности определяется применимость светодиодов для систем освещения. Для сравнения:
лампочка накаливания: 8-12 лм/Вт; люминесцентные (энергосберегающие) лампы : 30-40 Лм/Вт
современные светодиоды: 120-140 Лм/Вт
газоразрядные лампы (ДРЛ): 50-60 Лм/Вт
Показатели очень хорошие, что позволяет успешно конкурировать с люминесцентными, натриевыми, галогеновыми лампами. Более того, светодиоды уже выигрывают по этому показателю у газоразрядных ламп, т.к. весь световой поток у них идет в одну полуплоскость, поэтому не требуются разного рода отражатели.
Цветовая температура
Цветовая температура используемых светодиодов: 2500 Кельвинов- 9500 Кельвинов.
-2500-3000 Кельвинов: теплый белый свет. (warm white или сокращенно WW) Он ближе к лампам накаливания.
-4000-5000 Кельвинов: нейтральный белый свет.( white neutral или сокращенно NW)
-6500-9500 Кельвинов: холодный белый свет. (cold white или сокращенно CW)
По источникам независимых исследований, именно нейтральный белый свет является наиболее комфортным для офисной работы, и в нем предметы становятся наиболее четкими. Нашей компанией используются светодиоды с нейтральным светом .Кроме того, в осветительных приборах мы используем цветные светодиоды (основные цвета : красный, синий, зеленый, желтый) и светодиоды RGB(полноцветный светодиод).
Мощность светодиодов.
— малой мощности: до 0,5 Вт (20-60 мА)
— средней мощности:0,5-3Вт (100-700 мА)
— большой мощности: более 3-х ватт (1000м А и более)
Угол свечения
как правило 120-140 градусов, в индикаторных 15-45 градусов.
Деградация (ресурс) светодиодов.
Очень важный показатель. Многие производители декларируют около 100 тысяч часов и даже более. Какие факторы оказывают влияние на ресурс светодиодов? В первую очередь это токовая деградация. Если через диод пропустить силу тока большую, чем та, на которую он рассчитан, то наступает быстрая деградация. Как правило: в пределах первых 1000 часов. Этим пользуются недобросовестные производители.
Следующий фактор – температурная деградация. Светодиод в процессе работы нагревается. И, если не отводить тепло, то диод быстро потускнеет. Для отвода тепла применяется много конструкторских решений. В наших светильниках применяется плата с алюминиевой подложкой. Подложка в свою очередь имеет механический контакт с корпусом светильника, что дополнительно отводит тепло. Главное: в точке пайки светодиода соблюдать температурный режим не более 65 градусов Цельсия. В наших светильниках это достигается. Соответственно, находясь в рабочем режиме, ресурс диодов в предлагаемых светильниках составляет декларируемые 40-50 тысяч часов.
Индикаторные светодиоды (ILT)
Сегодня являются лидерами в повсеместном использовании. Появившись в 60-х годах, они быстро завоевали популярность, вытеснив лампы накаливания, используемых в качестве подсветки и индикации. А использование в данных светодиодах кристаллы с повышенной яркостью позволяют использовать их в мощных светоизлучающих устройствах (фонари, стоп-сигналы, индикаторные огни, светофоры, DIP-ленты и т.д.). На сегодняшний день практически ни одна бытовая техника не обходится без индикаторного светодиода. Существуют следующие стандартные типоразмеры индикаторных светодиодов : 3; 5; 4,8; 8 и 10мм. Рабочий ток таких светодиодов как правило 20-40мА, световая отдача может доходить для белого света 3-5Лм со светодиода. Угол излучения у данных светодиодов либо узкий (15-45 градусов), либо широкий (110-140 градусов).
SMD-поверхностный монтаж
Технология изготовления электронных изделий на печатных платах, а также связанные с данной технологией методы конструирования печатных узлов.
Технологию поверхностного монтажа печатных плат также называют ТМП (технология монтажа на поверхность), SMT (surface mount technology) и SMD-технология (от surface mounted device — прибор, монтируемый на поверхность), а компоненты для поверхностного монтажа также называют чип-компонентами. Данная технология является наиболее распространенным на сегодняшний день методом конструирования и сборки электронных узлов на печатных платах. Основным ее отличием от «традиционной» технологии сквозного монтажа в отверстия является то, что компоненты монтируются на поверхность печатной платы, однако преимущества технологии поверхностного монтажа печатных плат проявляются благодаря комплексу особенностей элементной базы, методов конструирования и технологических приемов изготовления печатных узлов.
Наиболее популярные SMD(SLT) светодиоды это светодиод 3528 и 5050.
Светодиод 3528
Основные характеристики:
-Рабочий ток 20-25мА
-Мощность 0,07Вт
-Световой поток 3-7Лм
-напряжение питания 3-3,2В (для белого светодиода)
-цвета: все оттенки белого, красный, зеленый, синий, желтый
-норма упаковки – бабина 2000 штук.
Использование : Светодиодные ленты, лампы, автолампы, панели, светильники.
Светодиоды 5050
В светодиоды 5050 используются однотипные кристаллы как и в светодиоде 3528, только в количестве 3-х штук. А использование 3-х кристаллов разных цветов (красного, зеленого и синего) позволяют получить маломощный RGB светодиод.
Основные характеристики:
-Рабочий ток 60-75мА
-Мощность 0,21Вт
-Световой поток 10-21Лм
-напряжение питания 3-3,2В (для белого светодиода)
-цвета: все оттенки белого, красный, зеленый, синий, желтый, RGB
-норма упаковки – бабина 1000 штук.
Использование : Светодиодные ленты, лампы, автолампы, модули, панели, светильники.
Светодиоды PLT
Для производства светодиодного оборудования используются светодиоды средней и большой мощности . Все они маркируются как светодиоды PLT. Сравнительная характеристики используемых светодиодов представлена в таблице:
RGB-светодиод
Это просто три близко расположенных светодиода под одной линзой: красный — Red, зелёный — Green и синий — Blue, отсюда и название. Как известно, сочетанием этих трёх цветов можно получить любой другой цвет. Обычно у этих трёх светодиодов объединены плюсовые (с общим анодом) или минусовые (с общим катодом) выводы, соответственно, всего у RGB четыре вывода, хотя иногда бывает, что все шесть выводов делают раздельно. То есть, фактически, управление RGB — это управление тремя светодиодами. Яркость свечения светодиода зависит от протекающего через светодиод тока.
Всех Вам благ, и ровных дорог!Всем пис peace =)
Светодиодное освещение: проблема деградации светодиодов
О регулировке силы света традиционной лампочки накаливания знают многие. Но яркостью светодиода тоже можно управлять. Для этого в схему электроприбора устанавливаются широко-импульсные модуляторы или аналоговые регуляторы. Принято говорить, что такие светильники имеют опцию диммирования.
Многим потребителям до недавнего времени не приходилось задумываться над вопросом, от чего зависит яркость свечения, так как единственным параметром обычной лампочки накаливания считалась лишь потребляемая мощность, указываемая в ваттах. Новые технологии дали миру совершенно иные представления о светотехнике, существенно расширили характеристики ламп, прописываемые в их маркировке, на упаковке или потребительском ярлыке, размещенном непосредственно на изделии. Интенсивность освещения, в сегодняшнем представлении, зависит не только от напряжения в электросети, но и от других, не всем понятных обозначений. К тому же, регулятор яркости светодиодов позволяет управлять опцией, выставляя уровень освещенности по своему усмотрению, что важно в вопросе экономии электроэнергии.
Параметры яркости свечения светодиодов
Потребителей нередко интересует, в чем измеряется яркость светодиодной лампы и по каким цифрам и обозначениям на ее упаковочной коробке определяется данный параметр. На ней указываются:
- канделы (cd);
- люмены (лм или lm);
- две цифры потребляемой мощности (W и Watt);
- угол освещения;
- цветовая температура.
Именно по этим характеристикам можно узнать яркость светодиодов в лампе. В канделах обозначают силу света, или поверхностную плотность потока. За единицу здесь принято считать его интенсивность в процессе горения одной свечи.
Параметр мощности света в люменах принимает во внимание и силу, и длину воспринимаемой человеческим глазом волны, и угол освещения. От последнего, не менее важного показателя зависит площадь зоны освещения, схема расположения и количество требуемых ламп. Если сравнивать изделия с углами освещения в 60 и 30 градусов, то при одинаковых характеристиках можно наверняка сказать, что первое окажется раза в 3-4 эффективнее второго.
Яркость светодиода зависит от вида установленной в лампу линзы. Матовая даст более мягкий и рассеянный свет. При этом, угол освещения наверняка будет шире, а световые потоки слабее.
И, наконец, классификация по мощности. На самом деле, для уровня яркости светодиодных лампочек этот показатель определяющим не является. Его указывают для облегчения расчетов потребления электроэнергии и для понимания данного параметра большинством среднестатистических потребителей. Две цифры, к примеру измерение в ваттах 5,5W и 35 Watt, означают, что потребляемая мощность лампы составляет 5,5Вт, а светит она как обычная 35Вт-ная лампочка накаливания. Все достаточно просто, но следует понимать, что данное соотношение является довольно-таки приблизительным, и светодиоды повышенной яркости исключением не являются.
Светодиодные электроприборы относятся к энергосберегающим изделиям, а управление яркостью излучения помогает потребителю еще больше экономить на электричестве в бытовых и промышленных условиях.
Цветовая температура влияет на цветовой диапазон светодиода. Он может смещаться:
- по мере возрастного старения элементов;
- при изменении показателей подводимого тока.
Холодное сине-зеленое свечение присуще источникам света, имеющим высокую цветотемпературу. А теплый свет красно-желтых оттенков – низкую. Часто на этикетках указывают длину световой волны в доминирующих значениях. Ее смещение происходит в зависимости от цветовой температуры.
Нарушение основных этапов сборки
В гонке за клиентами, среди большой конкуренции, китайские компании-производители не особо следят и контролируют процесс сборки устройства. Это послужило возникновению еще одной причины деградации светодиодов — из-за некачественной сборки осветительных приборов. В этом случае компании-производители работают по простому принципу – главное не качество, а количество. И как результат, светодиодная лампа служит потребителям намного меньше, чем указано в технических характеристиках LED ламп.
Однако сложно определить, почему светодиод плохо работает и ухудшает свои свойства, какие факторы на это влияют. Деградация может быть различной.
Диод помещается в корпус, у которого характеристики и свойства значительно уступают по качеству. Однако такая светодиодная лампа полностью соответствует всем техническим характеристикам, поэтому изначально считается годной. Ее яркость, цветовая температура, напряжение и прочие параметры соответствуют данным, что прописаны в спецификации производителя. А так как закупочная цена у таких осветительных элементов низкая и доступная, то их закупают многие импортеры. Однако срок службы у таких источников света на порядок меньше того срока, что указан в паспорте и составляет всего лишь несколько сотен часов вместо нескольких тысяч. Этот факт подтвердился в ходе испытаний и эксплуатации компонентов.
Улучшить эффективность диодов и соответственно отдалить процесс их деградации можно несколькими вариантами. Например, повысить качество используемого материала, модифицировать структуру и построение самого чипа, а также технологию его образования. Также при тестировании поверхности можно добиться эффективности в качественной работе LED компонентов.
Способы регулировки яркости
Управлять световыми потоками в светодиодных электроприборах без изменения цвета свечения позволяет присутствие в схеме:
- широтно-импульсной модуляции – обозначение ШИМ;
- аналогового регулирования.
Оба варианта управления яркостью светодиода поддерживают заданный уровень проходящего через элементы тока. Увеличить или снизить яркость светодиодов при наличии в схеме ШИМ диммера, можно с более высоким КПД и незаметным для глаз человека мерцанием светового потока. Дело в том, что для аналогового регулятора яркости свойственно изменение амплитуд подходящего к светодиодам тока, а для ШИМ имеется в виду плавная регулировка ширины, или длительности импульсов.
Работа вышеприведенной схемы допускается в диапазоне 4,5-18 вольт. При этом повысить яркость свечения можно с 5 до 95%. Подобный вариант применяется как для отдельных мощных светодиодов, так и для ленточных электросветовых приборов.
ШИМ регуляторы управляют процессом мгновенного включения-отключения тока. Причем делается это с высокой частотой – более 200Гц. Максимальная же цифра измеряется несколькими килогерцами. Такое мерцание человеческие глаза не воспринимают.
Аналоговое увеличение или снижение светового потока предполагает поддержание тока, подходящего к светодиоду на постоянном уровне, или изменение подаваемого на импульсный драйвер напряжения. Оба варианта приемлемы, но нередко результатом диммирования становится изменение цвета свечения диодов в лампе. Если это в определенных эксплуатационных условиях является недопустимым, то от аналогового регулирования яркости света лучше отказаться.
На рынке встречаются многорежимные диммеры, способные осуществлять регулировку яркости светодиодов в ШИМ и аналоговом варианте управления мощностью свечения.
Деградация кристалла
Напомним, что светодиод белого свечения, как правило, представляет собой кристалл, излучающий синий цвет, который покрыт люминофором. Благодаря суммированию собственного излучения кристалла с индуцированным им излучением люминофора получается свет, воспринимаемый зрением, как белый. Применительно к светодиодом надо различать температуру, измеренную в разных точках: TB — монтажная плата, TS — подложка, TJ — p-n-переход, TA — окружающая среда (рис. 2).
Рис. 2. Температура светодиода, измеренная в разных точках
Деградация кристалла приводит к снижению мощности излучения. Одна из причин — рост количества дефектов кристаллической решетки. Области кристалла, где появились дефекты, не излучают свет, но при этом генерируют тепло.
Другая причина — электрическая миграция материала, из которого сделаны электроды, приваренные к кристаллу. В кристалл проникают атомы металлов, из которых сделаны электроды, и нарушают кристаллическую структуру.
При деградации кристалла возрастает ток утечки, то есть значительная часть тока начинает проходить не через те участки кристалла, которые излучают свет. В результате уменьшается напряжение на электродах светодиода, а значит, уменьшается мощность. Деградация кристалла проявляет себя также снижением напряжения на светодиоде. Эта особенность используется для автоматического отключения вышедшего из строя светодиода.
Следует различать максимальную рабочую температуру светодиода и максимально допустимую температуру p-n-перехода (если очень упростить ситуацию, то речь идет о температуре внутри кристалла). Срок службы светодиода определяется температурой p-n-перехода. Но поскольку эту температуру можно измерить только в лабораторных условиях с применением сложных и дорогостоящих методов, при проектировании используются математические методы, позволяющие связать ее с температурой в тех или иных точках корпуса светодиода.
Скорость деградации светодиода значительно увеличивается при повышении силы тока свыше номинального значения, а также при повышении температуры. По мнению некоторых специалистов к возникновению дефектов в кристаллической решетке может привести действие статического электричества, поэтому рекомендуется осуществлять монтаж светодиодов с соблюдением стандартных мер по защите от статического электричества.
Зачем нужно регулировать яркость
Любая сравнительная таблица наглядно показывает взаимосвязь потребления электроэнергии от яркости свечения лампы. Диммер дает реальную возможность экономии, так как позволяет снизить интенсивность светового потока, к примеру в комнате, где в данный момент семья смотрит телевизор, или увеличить освещение во время приема гостей за столом.
Многие малыши боятся темноты, а престарелые люди плохо ориентируются при выключенном свете. И в том, и в другом случае пригодится опция диммирования. Но она должна присутствовать не в общем выключателе, а в схеме светодиодного электроприбора.
В период вечернего отдыха свет можно сделать мягче. Тогда как при необходимости выполнения какой-либо работы – увеличить освещение до требуемого максимума. Следует отметить, что некоторые модели светильников комплектуются дистанционным или автоматическим управлением, учитывающим временные промежутки или факт передвижения объекта в поле охвата специально устанавливаемого датчика.
Сила тока
Производители обещают и гарантируют то, что светодиод способен проработать до ста тысяч часов хорошей работы (в среднем 50 000), с тем учетом, что ток его будет составлять 20 мА. Однако производители из Китая предпочитают устанавливать в диод чип, который применяется для подсветки экрана в мобильном телефоне. В таких оптоэлектронных приборах светодиод рассчитан на ток до 5 мА. За счет этого продукция выпускается по заниженной стоимости и как результат — недобросовестная победа среди конкурентов, так как светодиод со временем станет работать хуже, начнет деградировать, .
Качество драйверов
Основная и самая распространенная причина деградации светодиодов, некачественное использование чипов. Большинство производителей в погоне за прибылью, используют при производстве дешевую технологию. Применяя кристаллы, которые изготовлены с помощью однотипной технологии первого поколения, а именно копии Nichia, делая прозрачным p-контакт. При изготовлении пренебрегают правилами технологических процессов, используя некачественное оборудование.
В итоге использование таких ламп не рекомендовано.
Ошибки при сборке устройства, приводящие к деградации:
- Не контролируется процесс сборки устройства.
- Используются дешевые материалы.
- Используются не качественные материалы.
- Принцип не качество, а количество.
- Неправильная эксплуатация.
Остается только понять, почему светодиод не выполняет качественно свою функцию. Деградация и ее проявления различны.
При помещении диода в корпус изначально его характеристики и основные составляющие не надлежащего качества. Внешне такая лампа ничем не отличается от качественных, у нее такие же изначальные характеристики, поэтому она на рынке представлена покупателю. Значительное отличие такой лампы — это срок годности и качество работы.
Поднять работоспособность лампы можно повысив качество материала, пройти все процессы при изготовлении под контролем согласно правилам. Перед продажей провести тестирование на соответствие качества. Помните о том, что сделать светодиодную лампу своими руками можно, также ее можно собрать из нескольких.
Также рекомендуем посмотреть вот такое видео:
Напряжение, ток и типы светодиодов, от чего зависит их цвет
Про светодиоды, которые ворвались в нашу жизнь написано много. Но какое правильное и безопасное напряжение для светодиодов и ток, какие бывают их типы, и собственно, от чего зависит их цвет? Давайте попробуем в этом разобраться, чтобы правильно и грамотно их использовать.
Из существующих типов светодиодов, это традиционные неорганические в традиционной форме диода, которая была доступна с 1960 года. Он изготовлен из наиболее широко используемых полупроводниковых соединений, таких как алюминиевый арсенид галлия, арсенида фосфида галлия, и многих других. Используются как панели индикаторов, одноцветные 5 мм, светодиоды для поверхностного монтажа, и даже двухцветные и многоцветные светодиоды, мигающие, буквенно-цифровые светодиодные дисплеи.
Органические светодиоды -типа светодиодных дисплеев на основе органических материалов, которые изготовлены в виде листов и обеспечивают диффузный свет. Обычно изготовляются с использованием очень тонкой пленки органического материала, которая размещена на подложке из стекла. Электрические заряды от электронных схем, заставляют их светиться.
Светодиоды высокой яркости (HBLEDs), являются своего рода неорганическими светодиодами, которые начинают использоваться для освещения с большой светоотдачей. Ввиду их нагрева от значительных мощностей они должны быть установлены на радиаторах для удаления нежелательного тепла.
Из них уже изготовляют компактные люминесцентные лампочки и лампы. HBLEDs имеют больший уровень эффективности и более длительный срок службы, особенно когда они включаются, и выключаются много раз. Вообще, в мире выпускается более 30 миллиардов различных светодиодов, и их потребление растет семимильными шагами, поэтому всегда можно приобрести вот здесь светодиодные лампы оптом здесь — led-st.ru, и в розницу.
Полупроводниковые соединения в светодиодах классифицируют по валентности. Для арсенида галлия- галлий имеет валентность три, мышьяк валентность пять, их относят к называемой группе III-V полупроводниковых материалов. Диод излучает свет, когда его переход смещен в прямом направлении. При подаче напряжения на переход протекает ток, в результате рекомбинации возникают световые фотоны.
Было обнаружено, что большинство света возникает на площади перехода ближе к P-зоне, что отражено в конструкции светодиодов, направленной на минимум внутреннего поглощения. Цвет свечения во многом связан с конструкцией и типом используемых полупроводниковых материалов и приложенным напряжением. Чистый арсенид галлия высвобождает энергию в инфракрасной части спектра. Для светового излучения в видимом красном конце спектра алюминий арсенида галлия (AlGaAs). Добавление в полупроводник фосфора также может дать красный свет. Для других цветов используются другие материалы. Так фиолетовый цвет (длина волны 400-400-450 нм) получают с использованием в светодиоде индия нитрида галлия (InGaN) при напряжении 2,8-4,0 В, синий (450-500 нм) – с использованием такого же материала и добавлением карбида кремния (SiC) с напряжением 2,5-3,7 В, синий (500-570 нм) -фосфида галлия (GaP), алюминиевого фосфида индия галлия (AlGaInP), алюминиевого фосфида галлия (AlGaP) при напряжении 1,9-4,0 В (на графиках по горизонтали напряжение на переходе, по вертикали- рабочий ток, каждому графику соответствует цвет).
Светодиоды должны включаться с использованием ограничивающего ток через него резистора. Резистор должен быть рассчитан на требуемый уровень тока по закону Ома. Для многих светодиодов рабочий ток составляет около 20 мА, при меньшем токе свет будет тусклее. При большем токе светодиод сразу или быстрее выйдет из строя. При расчете тока учитывают напряжение на светодиоде – в прямосмещенном состоянии оно составляет чуть более вольта, хотя точное напряжение зависит от диода и, в частности его цвета.
Обычно красный светодиод имеет прямое напряжение чуть менее 2 вольт, и около 2,5 вольт для зеленого или желтого цвета. Светодиоды чаще всего бывают на рабочее напряжение 3 В и 12 В, но есть и на другие напряжения. О напряжении светодиода всегда говорит продавец.
При прикладывании напряжения обратной полярности, светодиод часто пробивается и выходит из строя. Поэтому защитить его от этого можно обычным дополнительным диодом, или специальной простейшей схемой. Либо надо просто быть внимательным при подключении светодиода, сохраняя его полярность, узнав о ней у продавца или в характеристиках. На схеме, к верхнему выводу прикладывается «+» питания.
Первый зарегистрированный эффект свечения светодиода был зафиксирован еще в начале ХХ века. В 1907 г. британский инженер по имени HJ Round, работавший у Маркони, провел некоторые эксперименты с использованием кристаллических детекторов, и в итоге получил их свечение. Результаты исследований он опубликовал в 1907 году в журнале Electrical World. Дальнейшие успехи были связаны с теоретическими и практическими исследованиями русского инженера, работавшего в медуниверситете, выходца из дворян Олега Владимировича Лосева. Он обнаружил, и исследовал излучение света от выпрямителя из оксида цинка и кристаллов карбида кремния. В результате своих наблюдений и исследований, Лосев опубликован ряд работ в технической прессе в период между 1924 и 1930 годами в СССР, а затем в других британских и немецких изданиях. С развитием материаловедения идея светового излучения диодов всплыла в 1951 году. В середине 1960-х. с использованием галлия, мышьяка и фосфора получили светодиоды, включая и красное свечение, но с эффективностью произвело на красный свет, и хотя эффективность устройства была низкой (обычно около 1 — 10 mcd при токе 20 мА), и они начали широко использоваться в качестве индикаторов на оборудовании. И пошло, и поехало, например, светодиодные ленты на каждом шагу на улицах, в магазинах, офисах и жилых домах.
Светодиоды дают полет мысли для самого разнообразного их применения. Так например, если дома есть старые неиспользуемые мобильные телефоны с устаревшими блоками питания для них, то всегда можно самому сделать, например, светодиодную подсветку — ночник из зарядного устройства.
Так мы кратко узнали, какое напряжение, ток и типы светодиодов, от чего зависит их цвет.
Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория
Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.
Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.
Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.
С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.
Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».
В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.
Содержание статьи
Теория
Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.
Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.
Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.
Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.
Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.
Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.
Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.
Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.
Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.
Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы
Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.
Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:
R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.
Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.
Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.
Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.
Расчёт выходного тока достаточно прост:
Получается достаточно компактное решение:
Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:
Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.
Способы регулирования яркости: ШИМ-регулировка
ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.
При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).
Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.
Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:
А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.
Подробнее про широтно-импульсную модуляцию:
Как регулировать яркость светодиодных ламп на 220В
Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.
Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.
Устройство диммируемых светодиодных ламп:
Почему нельзя диммировать светодиодные лампы 220В
Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.
Различают такие диммеры по фронту работы:
1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:
2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.
Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.
Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.
Регулировка яркости светодиодных ламп – рациональное решение 12В
Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.
Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.
Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».
Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.
Вот пример использования такого решения:
Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.
Заключение
Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.
Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!
Записывайтесь в онлайн-университет от GeekBrains:
Изучить C, механизмы отладки и программирования микроконтроллеров;
Получить опыт работы с реальными проектами, в команде и самостоятельно;
Получить удостоверение и сертификат, подтверждающие полученные знания.
Starter box для первых экспериментов в подарок!
После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.
Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.
Принцип регулировки яркости светодиодов
Если упустить подробности и объяснения, то схема регулировки яркости светодиодов предстанет в самом простом виде. Такое управление отлично от метода ШИМ, который мы рассмотрим чуть позже.
Итак, элементарный регулятор будет включать в себя всего четыре элемента:
- блок питания;
- стабилизатор;
- переменный резистор;
- непосредственно лампочка.
И резистор, и стабилизатор можно купить в любом радиомагазине. Подключаются они точно так, как показано на схеме. Отличия могут заключаться в индивидуальных параметрах каждого элемента и в способе соединения стабилизатора и резистора (проводами или пайкой напрямую).
Собрав своими руками такую схему за несколько минут, вы сможете убедиться, что меняя сопротивление, то есть, вращая ручку резистора, вы будете осуществлять регулировку яркости лампы.
В показательном примере аккумулятор берут на 12 Вольт, резистор на 1 кОм, а стабилизатор используют на самой распространенной микросхеме Lm317. Схема хороша тем, что помогает нам сделать первые шаги в радиоэлектронике. Это аналоговый способ управления яркость. Однако он не подойдет для приборов, требующих более тонкой регулировки.
Необходимость в регуляторах яркости
Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.
- Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
- Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
- Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
- Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.
В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.
ШИМ управление
Выходом из, казалось бы, сложной ситуации стало ШИМ управление (широтно-импульсная модуляция). Ток на светодиод подается импульсами. Причем значение его либо ноль, либо номинальное – самое оптимальное для свечения. Получается, что светодиод периодически то загорается, то гаснет. Чем больше время свечении, тем ярче, как нам кажется, светит лампа. Чем меньше время свечения, тем лампочка светит тусклее. В этом и состоит принцип ШИМ.
Управлять яркими светодиодами и светодиодными лентами можно непосредственно с помощью мощных МОП-транзисторов или, как их еще называют, MOSFET. Если же требуется управлять одной-двумя маломощными светодиодными лампочками, то в роли ключей используют обычные биполярные транзисторы или подсоединяют светодиоды напрямую к выходам микросхемы.
Вращая ручку реостата R2, мы будет регулировать яркость свечения светодиодов. Здесь представлены светодиодные ленты (3 шт.), которые присоединили к одному источнику питания.
Зная теорию, можно собрать схему ШИМ устройства самостоятельно, не прибегая к готовым стабилизаторам и диммерам. Например, такую, как предлагается на просторах интернета.
NE555 – это и есть генератор импульсов, в котором все временные характеристики стабильны. IRFZ44N – тот самый мощный транзистор, способный управлять нагрузкой высокой мощности. Конденсаторы задают частоту импульсов, а к клеммам «выход» подсоединятся нагрузка.
Поскольку светодиод обладает малой инертностью, то есть, очень быстро загорается и гаснет, то метод ШИМ регулирования является оптимальным для него.
Готовые к использованию регуляторы яркости
Регулятор, который продается в готовом виде для светодиодных ламп, называются диммером. Частота импульсов, создавая им, достаточно велика для того, чтобы мы не чувствовали мерцания. Благодаря ШИМ контролеру осуществляется плавная регулировка, позволяющая добиваться максимальной яркости свечения или угасания лампы.
Встраивая такой диммер в стену, можно пользоваться им, как обычным выключателем. Для исключительно удобства регулятор яркости светодиодов может управляться радио пультом.
Способность ламп, созданных на основе светодиодов, менять свою яркость открывает большие возможности для проведения световых шоу, создания красивой уличной подсветки. Да и обычным карманным фонариком становится значительно удобнее пользоваться, если есть возможность регулировать интенсивность его свечения.