Почему греется ноль в щитке?

Почему греется нулевой провод

Нагрев нулевого провода может привести к его отгоранию и аварии в электросети. Чаще всего это происходит при неравномерном распределении нагрузок по фазам в трехфазной электросети и из-за плохого контакта. В этой статье мы расскажем почему греется нулевой провод и что делать в этой ситуации.

Ток в трёхфазной цепи

Чтобы причины нагрева нуля нужно понять, как работает трехфазная сеть. Нагрузка в трёхфазной сети может быть соединена звездой и треугольником, также могут быть соединены обмотки питающего трансформатора. У обмотки есть два вывода — конец и начало.

Если концы обмоток трехфазного трансформатора соединяются в одной точке — тогда говорят, что это схема соединения звездой. В точке их соединения (О), согласно законам Кирхгофа, ток будет всегда равен нулю, то есть перетекать от фазы к фазе. Если нагрузка в каждой из фаз (a, b, c) одинакова, то будут равны и напряжения на началах обмоток (A, B, C) как и ток в них. Что проиллюстрировано на векторной диаграмме ниже, где фазы токов и напряжений обозначены векторами и сдвинуты на треть периода друг относительно друга (120 градусов).

Симметричной называют такую трехфазную нагрузку, у которого сопротивление нагрузки (соответственно и потребляемый ток или мощность) каждой из трех фаз одинаково.

Но как только ток в фазах начинает отличаться, когда нагрузка по фазам отличается мощностью, то и напряжения на фазах начинают отличаться друг от друга. Это называется перекосом фаз.

Чтобы решить эту проблему к точке соединения звезды трансформатора подключают точку соединения звезды нагрузки. Это называется нейтраль, или нулевой провод, или просто ноль.

Электроснабжение в быту для чайников

Мы плавно подошли к практике, при подключении однофазных потребителей в трёхфазную сеть нагрузки зачастую неравны, то есть несимметричны.

Такое зачастую встречается в многоквартирных домах. В дом заводятся три фазы и ноль, в каждую квартиру заводится одна фаза и ноль. В одной квартире включён только холодильник и лампочка, в другой работает мощный электрообогреватель, а в третьей вообще ничего не включено. То есть нагрузки в фазах не одинаковы. В настоящее время часто в квартирах встречается и трёхфазный ввод, но ситуация от этого не изменяется.

В частных домах ситуация аналогична — на улице по опорам проходит трехфазная ЛЭП, а в дома заводится 1—3 фазы и ноль.

Что будет если ухудшится контакт в нулевом проводе или он отгорит? Перекос фаз и ток в нуле:

Всё-таки почему греется

В результате неравномерного распределения нагрузки по фазам в домах и квартирах по нулевому проводнику начинает протекать ток. Вы замечали, что в толстых 4 жильных кабеля 3 «фазных» жилы с одинаковой площадью поперечного сечения, а четвертая жила «нулевая» или «земляная» обычно тоньше?

Это как раз-таки связано с тем, что при симметричной нагрузке по ней вообще не будет протекать ток, а при не симметричной нагрузке ток должен быть меньше чем в фазной жиле. Но так бывает не всегда.

При нелинейных нагрузках, а также нагрузках, которые потребляют ток прерывисто (импульсные блоки питания, а они сейчас используются повсеместно) токи в фазах не компенсируют друг друга, к тому же они насыщаются различными гармоническими составляющими. Всё это является причиной того, что токи в точке соединения звезды просто не компенсируются и может оказаться так, что ток в нулевом проводе будет больше чем в фазном.

При протекании электрического тока проводник нагревается, это безупречная работа закона Джоуля-Ленца на практике. Он гласит, что чем больше сопротивление проводника и чем дольше протекает электрический ток, тем больше выделится тепла на нём.

Также вспомним, о том, что чем меньше сечение проводника и чем больше его длина, тем больше сопротивление. Кроме того, от качества контактов на соединении клемм и проводов также зависит переходное сопротивление. Простыми словами, чем больше площадь соприкосновения контактов и чем сильнее они прижаты друг к другу – тем меньше переходное сопротивление и тем меньше их нагрев.

В таком контакте как на рисунке ниже поверхности плоские, площадь будет равна площади наконечника, касающейся шайбы, плюс сопротивление самой шайбы и площадь её соприкосновения с медной шиной. Если все составляющие в хорошем состоянии, не имеют окислов и нагара – итоговое переходное сопротивление будет низким.

Если поверхности подгорели, окислены или ржавые, контакт получается таким как изображено на иллюстрации ниже. Здесь явно видно, что касания происходят в отдельных точках, а не по всей площади.

В клеммниках типа ВАГО и других пружинных клеммниках площадь касания пластины с круглой токопроводящей жилой достаточно маленькая, поэтому основная сфера применения таких клеммников — цепи с током 8-16 Ампер, за редкими случаями, когда клеммник конструктивно способен пропустить больший ток.

В винтовых клеммниках и шинах площадь контакта в большей степени определяется площадью винта, которым прижимается токопроводящая жила. Ниже вы видите клеммники в полиэтиленовой оболочке.

Внутри полиэтиленового корпуса расположена втулка из материала похожего на латунь и два винта. Из-за конструкции винтовыми клеммниками нельзя соединять голые многопроволочные провода. Их нужно лудить или обжимать наконечниками НШВИ.

Поэтому при аналогичном принципе действия клеммная колодки на карболитовом основании обеспечивают контакт лучше, за счет прижимной квадратной пластины-шайбы. Кроме того, вы можете сделать кольцо из провода и обернуть им винт или использовать наконечники типа НКИ.

Если вам интересны способы и средства для соединения проводов – пишите в комментариях и мы сделаем обзор всех видов с перечислением преимуществ и недостатков каждого из них.

Где греется

Почему греется ноль мы разобрались, а теперь давайте разберемся где это происходит чаще всего. В первую очередь ноль может отгореть в распределительном щите на вводе в здание. Это самая распространенная ситуация, потому что в этом месте на нулевой провод ложится нагрузка со всех квартир и со всех трёх фаз.

Далее часто возникают проблемы на нулевой шине в подъездном электрощите. Если шины вообще есть, и не подсоединено как на фотографии ниже.

Часто шина закреплена непосредственно на корпусе подъездного электрощита, тогда это выглядит так как показано ниже.

В клеммниках автоматических выключателей греется ноль, вплоть до обугливания частей его корпуса.

Если у вас старая электропроводка и установлены пробки с предохранителями или автоматические пробки, то обратите внимание как на винтовые клеммники, так и на сам цоколь пробки. Резьба и центральный контакт могут окисляться и подгорать, что проиллюстрировано на рисунке ниже.

Общие шины очень часто подвержены проблеме подгорания нуля. Это связано с их устройством и соблюдением правил работы с ними. Винтовой способ подключения проводников, хоть и безусловно удобен, но такие контакты нужно хотя бы изредка ревизировать – зачищать и протягивать, иначе вы получите то что изображено на рисунке ниже.

А в нормальном состоянии она должна выглядеть так:

Решение проблем вызванных нагревом простое — зачистить контакты, проводники и заново протянуть. Если клеммник был сильно перегрет — заменить его, если провод грелся в автомате, возможно автомат тоже нужно будет заменить!

Что происходит дальше и как избежать последствий?

По мере нагрева начинает подгорать и ухудшаться контакт. Ослабевают винтовые зажимы в связи с тепловым расширением и последующим охлаждение после снятия нагрузки. Это вызывает лавинообразный процесс роста сопротивления и нагрева соединения. В результате ноль рано или поздно отгорает полностью. При этом внешне может казаться что он всё еще находится в клеммнике, а фактически все прилегающие поверхности будут покрыты слоем окислов и нагара.

После чего происходит то явление о котором мы говорили в начале статьи – перекос фаз.

О том что ноль скоро отгорит можно косвенно судить по участившимся просадкам и возрастаниям напряжения, особенно если у вас выполнен трёхфазный ввод и установлены вольтметры или реле напряжения и индикацией величины напряжения в сети. Если напряжения постоянно стабильны (или отклонения несущественны) – у вас всё впорядке с проводкой.

При перекосе фаз нагрузка, в нашем случае частные дома или квартиры оказываются включенными последовательно на 380 Вольт. Напряжения распределятся согласно закону Ома – там где будет включена бОльшая нагрузка – напряжение просядет (сопротивление нагрузки маленькое), а в той квартире где включен минимум электроприборов напряжение повысится (сопротивление нагрузки высокое).

Последствием перекоса фаз в лучшем случае будет отгорание проводников на вводе, выбивание автомата и прочее. В худшем случае из-за возросшего тока может оплавиться изоляция электропроводки и произойти возгорание.

Чтобы обезопасить своё жильё от последствий отгорания нуля рекомендуем установить реле контроля напряжения, а еще лучше в паре с УЗИП. Стабилизатор напряжения на вводе в квартиру в этой ситуации может не решить проблему и сам выйти из строя.

Схему подключения реле напряжения вы видите ниже.

В качестве таких устройств мы можем порекомендовать популярные модели:

УЗМ-50Ц (комбинированное устройство с функцией вольт-амперметра);

Digitop VA-32 (недорогой, но надёжный вариант, модель может отличаться в зависимости от номинального тока);

Греться проводка в доме: разъясняем досконально

Нагрев электрического кабеля очень опасен, т.к. влечет за собой последующее расплавление изоляции и воспламенение электропроводки. Если вы обнаружили, что греется кабель электропроводки либо от электроприборов в доме, нужно срочно переходить к поиску неисправности и устранять ее. Далее мы расскажем, что делать, если нагревается провод и почему это может происходить.

Вступление

Нагрев кабеля или проводов электрической проводки, самый серьезный сигнал, что с проводкой что-то неладно и велика вероятность скорой аварийной ситуации. Если у вас греется проводка нужно срочно выяснять причины и принимать меры к их устранению.

Физика нагрева

Согласно закону Джоуля-Лоренца «Количество теплоты, выделяемое в единицу времени, пропорционально произведению квадрата силы тока на участке и сопротивлению проводника».

Далее всё просто:

Если на участке цепи увеличивается сила тока, то выделяемое тепло увеличивается по квадрату тока, то есть очень сильно. Без аварийной ситуации, сила тока в цепи может увеличиться при повышении потребляемой мощности, например, вы включили в сеть мощный бытовой прибор или включили много бытовых приборов в одну розетку. Это первая причина нагрева проводов.

Увеличение выделяемого тепла может быть связано с увеличением сопротивления участка протекания тока. Это свойство используется во всех электрических нагревателях, где нагреваются спирали с высоким сопротивлением. В проводке увеличение сопротивления участка может быть связано с ослаблением или окислением электрических контактов при присоединении проводником или их соединении друг с другом.

Эти две причины, значительное увеличение потребляемой мощности и ослабление электрических контактов в цепи, являются основными причинами нагрева проводников и причина, почему греется проводка, скорее всего в них. Можно почитать: Основные электрические опасности в доме

Чем опасен перегрев нулевого провода?

Подобная нештатная ситуация почти гарантированно приведет к обрыву нуля. Чем это грозит, неоднократно упоминалось в других публикациях на нашем сайте. Кратко напомним, о чем в них шла речь, начнем с обрыва нуля в трехфазных сетях.

Обрыв нуля в трехфазной сети

Как видно из приведенного изображения, обрыв нулевого провода приведет к несимметрии фазных напряжений, такую нештатную ситуацию также называют перекосом фаз. В результате аварии в однофазных сетях могут образоваться напряжения близкие по величине к линейному, то есть, приблизиться вплотную к 380 В. Чем это грозит бытовой технике и электронике? В лучшем случае сработает защита БП, в худшем, – устройствам потребуется дорогостоящий ремонт.

Если отгорит ноль в системе однофазных нагрузок, то последствия для бытовой техники будут не столь печальные, как случае электрической сети на 3 фазы. Ниже продемонстрированы наиболее вероятные точки обрыва для бытовой сети.

Вероятные места обрыва нуля в квартире

Из рисунка видно, что обрыв возможен на вводных контактных соединениях автомата защиты. Проблемы с электрическим контактом могут образоваться на шине РЕ (особенно, если разводка выполнена алюминиевым кабелем). Последний вариант – обрыв в розетке. При любом из перечисленных вариантов бытовая техника не будет работать.

Казалось бы, ничего страшного, но любой прибор, оставшийся подключенным к сети, приведет к тому, что нейтральном проводе образуется опасный потенциал. В системе заземления TN-C это может создать прямую угрозу для жизни, поскольку на зануленном корпусе появится фазное напряжение. В более современных системах TN-C-S, подобная ситуация приведет к короткому замыканию и срабатыванию АВ.

Методы борьбы с нагревом проводки

Прежде чем устранять проблему, нужно выяснить, нагревается ли весь провод или только его часть. Обычно нагревание происходит в контактном соединении. В этом случае причиной нагрева является плохой контакт. Такая проблема часто возникает при смешанной проводке: медь в сочетании с алюминием. Лучше всего провести только медную проводку или же выполнить проблемный контакт через клеммники или использовать бронзовые шайбы в болтовом соединении. Во втором случае нагрев провода означает, что допустимая сила тока для этого сечения проводника превышена. Чтобы устранить проблему, можно сделать одно из действий:

  • снизить количество приборов на розетку;
  • заменить электропроводку на медную с необходимым сечением проводника;
  • использовать электроприборы меньшей мощности.

Если владелец квартиры не уверен в своих силах или же просто боится электрического тока, лучше доверить работу по замене проводки квалифицированному специалисту.

К чему приводит нагрев проводки

Режим работы электрической цепи, при котором греется проводка НЕЛЬЗЯ назвать рабочим. Это ситуация близкая к аварийной и вот почему.

Ощущаемый нагрев проводов (кабелей) означает, что температура токопроводящей жилы повышается, и жила начинает разогревать изоляцию и оболочку кабеля.

Материал изоляции жил и оболочка кабеля имеет вполне определенные температурные характеристики, превышение которых ведет к их разрушению (оплавлению). Как следствие изоляция перестает выполнять свою основную задачу, изолирование токопроводящих жил. Это приводит к короткому замыканию и необходимости замены всей линии электропроводки.

Как не допустить критического нагрева нуля?

Поскольку в масштабах квартиры влияние высших гармоник незначительно, то сразу перейдем к проблеме плохих электрических контактов. Если Вы обнаружили в квартирном щитке проблемное место, где греется электрическое соединение, то в первую очередь отключите вводный автомат и убедитесь, что после этого ток не течет. Проверку лучше выполнить, комбинируя пробник напряжения и мультиметр, включенный в режим измерения переменного тока.

Убедившись в отключении питания, ослабьте проблемный контакт (как правило, это винтовой зажим), чтобы извлечь из него провод. Произведите его зачистку, а также зажима. Если разводка щитка выполнена многожильным медным проводом, то его концы необходимо залудить или обжать. После этого можно собрать контакт. Следует учитывать, что «пережатие» провода винтовым соединением также нежелательно, как и слабый зажим.

Прямой контакт меди и алюминия недопустим, поскольку эти материалы образуют гальваническую пару, в результате электрическое сопротивление такого соединения довольно быстро возрастет.

Если монтаж выполнен при помощи тонких проводов, то желательно произвести их замену. Как правильно подобрать сечение в зависимости от тока нагрузки, рассказано на нашем сайте.

Защита от перекоса фаз

Наиболее оптимальный вариант для данного случая – установка реле напряжения.

Реле напряжения

Это устройство обеспечит защиту, как от падения напряжения, так и его чрезмерного увеличения. В качестве альтернативного решения можно предложить установку стабилизатора на всю квартиру. Несмотря на более высокую стоимость преимущества очевидны – «проседание» или перенапряжение не будет вызывать отключение подачи электроэнергии.

Вывод

В жилых помещениях основной причиной, почему греется проводка, является превышение допустимой нагрузки на данную группу электропроводки или всего помещения в целом.

В нормальной ситуации, при таком превышении допустимой мощности, должен сработать автомат или устройство защиты. Но они тоже выходят из строя, или что еще хуже, нарочно завышаются, например, вместо пробки ставят «жучок».

Всё это приводит к нагреву проводки, которая рано или поздно закончится, как минимум выходом проводки из строя или, как максимум, пожаром.

Важно! Если вы стали постоянно чувствовать запах нагретой пластмассы, его трудно не заметить, значит, у вас греется проводка и пора заняться ей вплотную.

Почему греется нулевой провод и опасно ли это

Где греется нулевой провод

Чаще всего ноль греется в щите на вводе в дом или другом распределительном щите. Это может быть нагрев в клеммнике на вводном автомате. Также это явление наблюдается, если у вас установлены автоматические пробки или пробки с плавкими предохранителями, но в этом случае есть больше мест, которые могут греться. Здесь могут нагреваться винтовые клеммы для подсоединения провода и резьба (цоколь) пробки, а также другие соединения.

Простыми словами есть три фактора, почему нагревается нулевой провод или клемма:

  1. Слишком высокая нагрузка.
  2. Плохой контакт из-за слабой затяжки проводов.
  3. Плохой контакт из-за окислов или нагара.

Если клеммы покрыты нагаром, то происходит лавинообразный процесс усугубления ситуации. Например, нагар появился из-за плохой обжимки или кратковременных перегрузок проводки, в результате возросло переходное сопротивление контакта. Любое сопротивление греется, когда через него протекает ток, а из-за этого нагрева нагара становится еще больше. Рассмотрим каждую из причин на примере ситуаций и их решений.

Важно! Перед выполнением всех работ в электропроводке нужно обесточить электросеть. Если нет возможности это сделать, то с помощью индикаторной отвертки убедитесь, что это ноль, а не фаза. Также, если вы отключите нулевой провод, а фазу не отключите, и при этом хоть один из выключателей освещения или электроприборов будет включен в сеть, то у вас появится «две фазы», то есть на нулевом проводнике появится потенциал фазы опасный для жизни.

Выявление плохого контакта в автомате

Для подключения проводов к автоматическому выключателю в большинстве моделей используются винтовые зажимы. На фото ниже вы видите последствия плохого соединения в автомате:

Для устранения нужно просто извлечь провод и зачистить его от окислов и нагара, после чего вычистить клеммник любым способом:

  1. Удобнее всего использовать маленький надфиль, он отлично влезет в клеммник.
  2. Если нет надфиля – можно соскрести нагар жалом шлицевой отвертки подходящего размера или шилом.

После этого нужно хорошо затянуть винт и зажать провод, проверить, чтобы он не болтался. Если ноль на автомате долго грелся, то и его контакты могли повредиться. Если после чистки контактов нагрев не пропадет, то замените автомат полностью. В дифавтомате причины нагрева нуля и его устранения аналогичны.

Нагрев нулевой пробки

Обычно на ноль устанавливают предохранительную пробку, но часто можно встретить и автоматическую пробку, в принципе это функциональный аналог автомата. На картинке ниже вы видите пробку и её патрон (держатель), в который она вкручивается. В этом случае есть два возможных места нагрева – резьба держателя пробки и клеммники, к которым подключаются токопроводящие жилы.

Обратите внимание на поверхность держателя: если она мутная и окисленная – это может быть причиной того что он греется, от этого может выбивать пробки, тогда нужно её зачистить надфилем или наждачкой. Их нужно просто очистить, как и винтовые клеммы.

В розетке ноль нагревается по тем же причинам плохого контакта.

Другие причины нагрева

Провода и контакты, как уже было сказано, могут греться из-за возросшей нагрузки. Здесь есть три варианта проблемы:

  1. Токопроводящие жилы сильно тонкие, вы можете заметить нагрев, когда нагрузка на электропроводку возросла, например, зимой, когда вы начали использовать электрообогреватель. Тогда провода в щитке нужно заменить на более толстые.
  2. Нагрев ноля в шине. В этом случае самая вероятная проблема – плохой контакт винтовых зажимов шины. Чтобы обеспечить контакт сделать то же самое, что и с автоматом – зачистить и протянуть винт.
  3. По нулевому проводу течет «лишний ток». Это возможно, если ваш ноль использует сосед для хищения электроэнергии или из-за неумышленных ошибок при электромонтаже. Нужно проверить все соединения, возможно для этого придется раскрывать штробы в стенах или использовать устройство для поиска скрытых подключений.

В счетчике ноль греется крайне редко, он там используется только для измерений.

Чем опасен нагрев нуля

Если ноль нагревается – он может отгореть. В однофазной сети это практически не опасно, в худшем случае просто произойдет обрыв нуля и в розетке появится две фазы, как это было описано выше, соответственно ваша проводка функционировать не будет. Если в трёхфазной сети отгорит нулевой провод, например на подъездном электрощите, то произойдет перекос фаз. В результате напряжения в каждой из фаз могу значительно превышать номинальные 220 вольт, из-за чего ваша бытовая техника и другие электроприборы могут выйти из строя.

Также нагрев возникает на скрутке, особенно если алюминий скручен с медью напрямую, в таком случае нужно использовать клеммники или болтовое соединение. При этом прямой контакт меди и алюминия исключается прокладкой шайбы между ними.

Теперь вы знаете, почему греется ноль в электропроводке и как устранить это столь опасное явление. Если вы обнаружили чрезмерный нагрев, сразу же приступайте к поиску причины, которая вызвала аварийную ситуацию, либо вызывайте электрика, т.к. дальнейшее развитие событий может быть плачевным!

Почему греется нулевой провод?

Довольно распространенная проблема старой проводки – нагрев нулевых проводов в распределительном щитке. Если вы столкнулись с такой неприятностью необходимо срочно принимать меры, поскольку обрыв нуля представляет серьезную опасность, особенно в трехфазных цепях электрического тока. Из сегодняшней статьи Вы узнаете, почему греется нулевой провод и как устранить эту проблему.

Наиболее вероятные причины нагрева

На тематических форумах периодически возникают споры относительно причин, вызывающих нагрев жил с нулевым потенциалом при нормальном состоянии фазных проводов бытовой сети. Несмотря многочисленные дискуссии по данному вопросу, существует всего три фактора, способные вызвать рассматриваемое негативное воздействие:

  1. Низкая надежность электрического контакта.
  2. Влияние высших гармоник.
  3. Повышенная нагрузка на ноль.

Предлагаем детально рассмотреть каждую из перечисленных выше причин.

Низкая надежность электрического контакта

Указанная причина наиболее характерна для старых проводок из алюминиевых проводов. Недостатки этого материала неоднократно описывались в других публикациях на нашем сайте, но не будет лишним еще раз кратко перечислить их:

  • Образование оксидной пленки на проводе, что вызывает рост сопротивления контакта.
  • Пластичность материала требует регулярного подтягивания соединений.
  • Перегрев алюминиевого провода повышает его хрупкость.

Учитывая, что внимание чаще уделяется электрическим контактам фазных проводов, про нулевую шину часто забывают. В результате со временем увеличивается сопротивление контакта, он нагревается и рано или поздно отгорает. Ради справедливости следует заметить, что данная проблема может наблюдаться и у медных проводов. Пример плохого контакта с нулевой шиной в квартирном щитке продемонстрирован на фото.

Перегрев нулевых проводов из-за плохого контакта

Характерно, что приведенная проблема чаще всего проявляется именно в квартирных щитках, а не электроточках. Это объясняется тем, что на контактные соединения проводов с нулевой шиной приходится более значительная нагрузка, чем на отдельную розетку.

Влияние высших гармоник

С появлением в быту и офисах большого количества электрических приборов, оснащенных импульсными БП возникла проблема с перегревом и, как следствие, разрушением (отгоранием) провода рабочего нуля. Это происходит по причине перегрузки последнего токами высших гармоник. То есть, возникает ситуация, при которой на ноль приходится больший ток, чем на фазные проводники. При этом установка защитных устройств часто производится только на последние.

В старых системах в расчет принималась исключительно линейная нагрузка, в которой присутствует лишь основная гармоника (В Советском Союзе, а впоследствии и на постсоветском пространстве это 50,0 Гц). В соответствии с этим считалось, что нагрузка фазные провода будет всегда выше, чем на рабочий ноль. Из этого следовала невозможность перегрузки нуля больше фазы. Таким образом, защита фаз от перегрева обеспечивала и безопасность нуля.

С появлением большого числа электропотребителей, создающих нелинейные нагрузки, происходит повышение тока, идущего через рабочий ноль. Это может привести к отгоранию последнего в старых энергосистемах. Примеры бытовых электроприборов вызывающих нелинейность:

  • Микроволновые, индукционные, а также дуговые электропечи.
  • Светодиодные и газоразрядные источники света.
  • Все устройства с импульсными БП.
  • Инверторные электрические машины и т.д.

Чтобы не допустить обрыва нуля вследствие влияния высших гармоник, в некоторые нормативные документы были внесены изменения. В качестве примера можно привести ГОСТ 30804.4.30 2013, в котором предписывается при расчетах принимать во внимание гармоники, чей порядок от 40-го и выше. В ГОСТе 50571.5.52 2011 рекомендуется выбирать сечение кабеля в зависимости от самой нагруженной токоведущей жилы, при этом должна учитываться и токовая нагрузка рабочего нуля.

К сожалению, рамки текущей статьи не позволяют более полно раскрыть тему высших гармоник, но мы обязательно к ней вернемся в одной из последующих публикаций на нашем сайте.

Повышенная нагрузка на ноль

Иногда можно услышать, что перегрев провода нуля связан с повышенной нагрузкой из-за подключения соседа к шине РЕ с целью воровства электричества. Такой вариант интересен, но не реализуемый. В одной из наших публикаций, где описывались различные конструкции электросчетчиков, рассматривалась их устойчивость к различным способам воровства электрической энергии. В частности, там разбирался вариант использования земли в качестве рабочего нуля и объяснялось, почему данный способ не работает на современных устройствах энергоучета.

Как уже упоминалось выше, в нулевом рабочем проводе ток может превысить фазный только в случаях проявления высших гармоник. Подключение соседа к нулю (в Вашем щитке) вызовет перегрев данного провода, если в результате таких действий образуется плохой контакт с общей шиной.

Чем опасен перегрев нулевого провода?

Подобная нештатная ситуация почти гарантированно приведет к обрыву нуля. Чем это грозит, неоднократно упоминалось в других публикациях на нашем сайте. Кратко напомним, о чем в них шла речь, начнем с обрыва нуля в трехфазных сетях.

Обрыв нуля в трехфазной сети

Как видно из приведенного изображения, обрыв нулевого провода приведет к несимметрии фазных напряжений, такую нештатную ситуацию также называют перекосом фаз. В результате аварии в однофазных сетях могут образоваться напряжения близкие по величине к линейному, то есть, приблизиться вплотную к 380 В. Чем это грозит бытовой технике и электронике? В лучшем случае сработает защита БП, в худшем, — устройствам потребуется дорогостоящий ремонт.

Если отгорит ноль в системе однофазных нагрузок, то последствия для бытовой техники будут не столь печальные, как случае электрической сети на 3 фазы. Ниже продемонстрированы наиболее вероятные точки обрыва для бытовой сети.

Вероятные места обрыва нуля в квартире

Из рисунка видно, что обрыв возможен на вводных контактных соединениях автомата защиты. Проблемы с электрическим контактом могут образоваться на шине РЕ (особенно, если разводка выполнена алюминиевым кабелем). Последний вариант – обрыв в розетке. При любом из перечисленных вариантов бытовая техника не будет работать.

Казалось бы, ничего страшного, но любой прибор, оставшийся подключенным к сети, приведет к тому, что нейтральном проводе образуется опасный потенциал. В системе заземления TN-C это может создать прямую угрозу для жизни, поскольку на зануленном корпусе появится фазное напряжение. В более современных системах TN-C-S, подобная ситуация приведет к короткому замыканию и срабатыванию АВ.

Как не допустить критического нагрева нуля?

Поскольку в масштабах квартиры влияние высших гармоник незначительно, то сразу перейдем к проблеме плохих электрических контактов. Если Вы обнаружили в квартирном щитке проблемное место, где греется электрическое соединение, то в первую очередь отключите вводный автомат и убедитесь, что после этого ток не течет. Проверку лучше выполнить, комбинируя пробник напряжения и мультиметр, включенный в режим измерения переменного тока.

Убедившись в отключении питания, ослабьте проблемный контакт (как правило, это винтовой зажим), чтобы извлечь из него провод. Произведите его зачистку, а также зажима. Если разводка щитка выполнена многожильным медным проводом, то его концы необходимо залудить или обжать. После этого можно собрать контакт. Следует учитывать, что «пережатие» провода винтовым соединением также нежелательно, как и слабый зажим.

Прямой контакт меди и алюминия недопустим, поскольку эти материалы образуют гальваническую пару, в результате электрическое сопротивление такого соединения довольно быстро возрастет.

Если монтаж выполнен при помощи тонких проводов, то желательно произвести их замену. Как правильно подобрать сечение в зависимости от тока нагрузки, рассказано на нашем сайте.

Защита от перекоса фаз

Наиболее оптимальный вариант для данного случая — установка реле напряжения.

Реле напряжения

Это устройство обеспечит защиту, как от падения напряжения, так и его чрезмерного увеличения. В качестве альтернативного решения можно предложить установку стабилизатора на всю квартиру. Несмотря на более высокую стоимость преимущества очевидны – «проседание» или перенапряжение не будет вызывать отключение подачи электроэнергии.

Почему греется ноль в щитке?

Текущее время: Вт июл 13, 2021 23:58:45

Часовой пояс: UTC + 3 часа

Колодка нуля в щитке греется

Страница 1 из 10 [ Сообщений: 193 ] На страницу 1 , 2 , 3 , 4 , 5 . 10 След.

_________________
Д о л о й и д и о т и з м !
На вопросы по заказам на форуме и в личке НЕ отвечаю! Пишите письма.

сначала электричества
потом искричества
в завершении пожар

1 провода должны соответствовать нагрузке и ни как не иначе
2 постоянно подтягивать места крепления проводов

_________________
Лечу лечить WWW ашу покалеченную технику.

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Вообще, в таких случаях фото выкладывают.
Причин может быть много:окислился контакт — вот и пожалуйста. Периодически протягивать надо.
Вопрос: какой провод подходит к колодке/дифу? Многожила или моножила? Многожила должна быть опрессована наконечником НШВИ.

UPD: За протяжку уже успел m.ix сказать.

_________________

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Приглашаем всех желающих 15 июля 2021 г. принять участие в бесплатном вебинаре, посвященном решениям Microchip и сервисам Microsoft для интернета вещей. На вебинаре вы узнаете, как быстро разработать устройства IoT с использованием готовых функциональных узлов – микроконтроллеров, микропроцессоров, модулей беспроводной связи и крипто-ускорителей. Особое внимание будет уделено облачным сервисам Microsoft и рассмотрен вопрос практического подключения отладочных плат от Microchip к облаку Azure.

_________________
Если прибор, будет способен видеть сигналы с частотами в пару сотен мегагерц, не превратив их в синус, — я готов настраивать его через ключи в командной строке, или правя текстовый файл. (с) Microtech

Analog Devices (ADI) выпустила обновленное поколение DC/DC с усиленной изоляцией ADuM5x2x и ADuM6x2x. Новая серия эффективна для двухслойной PCB. В ней используются технологии ADI iCoupler® и isoPower. ADUM5x2x/ADUM6x2x устраняют необходимость проектирования изолированных преобразователей постоянного тока в приложениях до 500 мВт.

_________________

_________________
«Мы так жить будем, что наши внуки нам завидовать будут» В.С. Черномырдин

_________________
Если прибор, будет способен видеть сигналы с частотами в пару сотен мегагерц, не превратив их в синус, — я готов настраивать его через ключи в командной строке, или правя текстовый файл. (с) Microtech

_________________
пути ТОКА неисповедимы.
Злословец есть самый лютый из диких зверей,
а льстец — самый опасный из ручных животных. (ДИОГЕН)

gfgeuf, можно и одной обойтись, просто зажимая провод П-образно, то есть с одной стороны в одно отверстие завел, с другой выпустил, согнул, и завел в соседнее отверстие. И так далее.

UPD: хто ж наконечники опаивает? Они опрессовываются. И только на многожилку.

_________________

Спокуха. У меня жена, ребенок, не могу же я сидеть не отходят.
Огромное всем спасибо.
Отвечаю на вопросы.

вот фото, на котором нихрена не видно

но слева на колодке, к черному винту и походит это провод. Видно, что он весь в термоусадке.
Вообще он синий должен быть. Видно поврежденные другие нулевые провода (оплавлены).

Провода разумеется все медь. Этот — одножильный.
Сечение на глазок 6. Так как дальше сразу 10, а это точно не 10, то с большой вероятностью именно 6.
6 при открытом способе должно хватать до 9КВт (50А), а при закрытом (в трубе) 7.4Квт (34А).
Тут уже сразу вопрос. Мне на квартиру выделено 9КВт. Проложили мне 6, но в трубе разумеется, т.е. уже нарушение что ли выходит? Должны были 10-ку прокладывать?

Далее, есть холовый щиток, где общий входной автомат, счетчик. А есть щиток у меня к вартире, где уже мой входной автомат (причем на 40А), туча автоматов и дифы на группы. Я говорю про щиток в квартире, к которому приложили руки электрики. Причем за деньги.

Сами автоматы убогие — ИЕК, будь он неладен. Все никак не заменю их на ABB. Причем, при нагрузке более 2-3Квт там толи входной то ли другой какой начинает жужжать, что для меня плохой признак. Но я мало что тут понимаю.

Несоответствие сечения здесь не вариант. И вот почему. Когда я делал тест, то было включена духовка и свет. Духовка по паспорту макс 3.5Квт, свет 300Вт был на все (светодиодки, люминисцентные, немного галогенок). Итого в худшем случае 4Квт. Это никак не превышение. Я могу бы заподозрить превышение по группе, но там сечение 2.5, автомат на 16А. Но самое интересное, что точка нагрева была именно в месте крепления общего вводного нуля. Именно это место пострадало больше всего и очевидно, что нагрев расходился от него.

Отсюда вывод, что проблема в контакте. И для меня очевидно откуда она взялась. В колодке отверстия примерно на 1мм больше диаметром, чем провод сечение 6мм2. Вводить туда провод. Получается окружность касается малой площадью другую окружность. Притягиваем винтом. Сколько я бы не усирался, но 6мм винтиком я расплющить не смогу, чтобы площадь касания колодки и провода стала адекватной, т.е. не менее площади сечения самого провода. Вот и вопрос КАК, еханый бабай, правильно этот одножильный медный 6мм2 провод закрепить в клемнике, чтобы площадь касания с клемником была афигительной.

Только написал это, увидел что рекомендуют загнуть и прокинуть в соседнее отверстие — это дельное предложение. И про расклепать для завода в автоматы тоже понял. В эту колодку я уже ничего не загну — у нее 6мм только в два крайних входило и одно отверстие, как я сказал, отпало. Так что куплю и сделаю.

_________________
Д о л о й и д и о т и з м !
На вопросы по заказам на форуме и в личке НЕ отвечаю! Пишите письма.

Почему греется нулевой провод в электропроводке?

Автор: admin
Дата записи

Жители многоквартирных домов очень часто сталкиваются с проблемой нагрева нулевого проводника в распределительном щитке. Причем данная проблема бывает настолько актуальной, что порой можно наблюдать картину, когда место подключения проводника к нулевой шине раскаляется докрасна. Естественно оставлять без внимания подобное отклонение нельзя, так как чрезмерный нагрев может вызвать банальное отгорание нулевого провода, а это в свою очередь может привести к возникновению аварийных ситуаций.

Основные причины нагрева нулевого провода

Если рассматривать нагрев нулевого проводника чисто с физической точки зрения, то данный недочет, может быть вызван следующими факторами:

Плохой контакт в месте соединения

Учитывая, что в 90% случаев электрическая проводка в многоквартирных домах выполнена из алюминиевых проводников, становится ясно, почему возникает плохой контакт в месте соединения с нулевым проводом. Ведь в отличие от меди, на алюминии при коммутации с инородными материалами образуется оксидная пленка, которая в свою очередь ухудшает прохождение тока, ввиду уменьшения пятна контакта. Понятно, что подобный круговорот заканчивается существенным перегревом такого соединения.

Помимо этого, алюминий характеризуется хорошей пластичностью и даже после незначительных нагрузок, место соединения желательно периодически подтягивать, обеспечивая тем самым качественный контакт. Ну а если подобное условие игнорировать, то в течение непродолжительного периода времени место соединения ослабнет, и контакт ухудшится, провоцируя тем самым его нагрев.

Безусловно, медные проводники так же могут перегреваться (например, из-за неправильно подобранного сечения или плохой обтяжки контактов), но все же они менее подвержены подобным отклонениям.

Плюс ко всему, медь более прочный металл и даже при одинаковых условиях, медные проводники способны более длительно противостоять негативным воздействиям от перегрева (не так быстро отгорает как алюминий).

Превышение потребляемой нагрузки выше номинальной

Естественно, такая причина будет вызывать перегрев не только нулевых проводников, но и всей электропроводки. Ввиду чего не желательно подключать к непредназначенной для этого электросети мощные электропотребители (особенно одновременно).

Неплохим решением для разгрузки такой электропроводки будет поочередное включение в работу электропотребителей посредством программируемых реле времени или таймеров. Кстати с методикой подбора сечений для электропроводки можно ознакомиться здесь.

Также очень важно для предотвращения деформации проводников вследствие перегрузки применять точно рассчитанные устройства защиты (автоматические выключатели с тепловым расцепителем, УЗО, реле напряжения и т.п.)

Воздействие высших гармоник в электросети

Не вдаваясь в технические подробности, можно отметить, что с появлением современных электробытовых приборов, оснащенных импульсными источниками питания или имеющих реактивную нагрузку (микрволновки, светодиодные источники света, инверторные приводы) возникло такое негативное воздействие как появление высших гармоник в электросети. Причем, по словам специалистов, такие потребители способны повышать уровень тока в нулевом проводнике, даже выше тока в фазном проводнике. Ввиду чего расчет сечений электропроводки в таком случае следует производить с учетом подобных критериев.

Перегрев нулевого проводника – чем это опасно?

Не нужно быть специалистом, чтобы понимать тот факт, что чрезмерный перегрев нулевого проводника впоследствии может привести к его отгоранию, и как следствие – вызвать появление аварийных ситуаций.

Так, к примеру, если в многоквартирных домах используется трехфазная питающая сеть (ноль – общий, а фазы распределяются поочередно между квартирами), то отгорание нулевого проводника неизбежно вызовет перекос фаз, с возможностью повышения фазных напряжений, до величины линейных (380В). Естественно без дополнительных защит в виде реле напряжения, бытовая техника при таких параметрах питающей сети непременно выйдет из строя.

При использовании однофазного питающего напряжения, при обрыве нулевого проводника, на его жилах будет оставаться потенциал (через включенные потребители), опасный для человека.

Профилактика нулевого подключения

Естественно, для того чтобы избежать всего вышеописанного желательно периодически осматривать места подключения проводников и при необходимости осуществлять их ревизию. Конечно работать с электрическими проводниками должен специалист – электрик.

Так, при выявлении места нагрева следует выполнить переподключение нулевого провода к шине. Для чего вначале следует обесточить место проведения работ и убедиться в отсутствии напряжения на выходе с автоматического выключателя и непосредственно на участке проведения работ.

Затем следует ослабить зажимные винты и отсоединить нулевой проводник от места подключения (обычно шина или винтовая клемма).

Далее нужно выполнить ревизию точек подключения, для чего в случае с алюминиевыми и моножильными проводниками нужно выполнить их зачистку от окислений, а при необходимости – произвести полную перезачистку провода.

В случае же с многожильными проводниками, их также желательно зачистить и качественно пролудить или же обжать специальной гильзой или кабельным наконечником.

В финале производится соединение проводника с точкой подключения в обратной последовательности.

Кстати, если возникает необходимость непосредственного соединения медных и алюминиевых участков, то этого допускать нельзя (высокое сопротивление переходного контакта), а как вариант применять алюмомедные наконечники или же делать соединение через хромированные шайбы (устанавливаются на шпильку между медью и алюминием).

Ну и конечно же следует защищать собственную электропроводку от подобных явлений при помощи специальных устройств типа УЗО, реле напряжения, автоматический выключатель с тепловым расцепителем. О чем мы уже неоднократно рассказывали на страницах нашего ресурса.

Если Вам понравился материал буду благодарен, если порекомендуете его друзьям или оставите полезный комментарий.

Добавить комментарий

Для любых предложений по сайту: [email protected]