Почему возникает молния?

Боги гневаются, или Как возникает молния

Завораживающее и смертоносное небесное явление — именно так можно охарактеризовать молнию. Это одна из тех вещей, которые мы неоднократно наблюдаем, но не всегда понимаем их природу. Чтобы узнать, почему и как возникает молния, придётся совсем немного углубиться в физику.

Что такое молния

Молния — это внезапный электростатический разряд, возникающий в атмосфере внутри облака, между двумя облаками или между облаком и землей. Явление сопровождается яркими электрическими вспышками и громом. Напряжение одного разряда может достигать миллиарда вольт.

Чаще всего молнии возникают в грозовых облаках, но могут наблюдаться при извержении вулканов, пылевых бурях и торнадо.

Как появляется молния

Всё дело в процессах, которые происходят в облаках. Каждое облако состоит из огромного количества капелек, а когда их концентрация повышается, мы можем наблюдать тучу. Внутри облака капельки часто замерзают и становятся льдинками, которые сталкиваясь друг с другом, получают положительный и отрицательный заряды. Положительно заряженные льдинки всегда скапливаются наверху облака, отрицательные — в нижней его части. Так и получается, что верхняя часть облака заряжается положительно, нижняя — отрицательно.

Облако становится грозовым только при накоплении достаточного заряда и массы до момента, когда оно начнётся распадаться.

Чаще всего для возникновения молнии нужны два таких облака. Они должны подойти друг к другу: одно — положительной стороной, другое — отрицательной. До определённого момента два облака не контактируют из-за воздушной прослойки между ними, но со временем заряженные частицы начинают прорываться, ведь плюс и минус притягиваются.

Именно за первыми заряженными частицами, которые преодолели воздушный барьер, следует вся накопленная энергия. В этот момент и возникает молния.

Виды молний

В зависимости от того, куда направлен разряд, можно выделить такие разновидности:

  • Молния внутри облака. Нередко разряд проходит внутри одного облака, ведь в нём есть и положительный, и отрицательный заряды.
  • Молния облако-облако. Наиболее распространённый тип, когда разряд происходит между двумя облаками. Для этого они должны быть грозовыми и подойти друг к другу противоположно заряженными сторонами.
  • Молния облако-земля. В этом случае вместо второго положительно заряженного облака выступает поверхность земли или какой-либо объект на ней. Область земли под облаком оказывается положительной из-за того, что при испарении лишилась отрицательных электронов. Таким образом, складываются условия, когда разряд проходит между отрицательной нижней частью облака и положительной поверхностью земли.

Молния не проходит по прямой траектории. Каждая её «ступенька» — это место, где электроны столкнулись с молекулой воздуха и изменили направление.

Почему молния не возникает зимой

Ледяные кристаллы в облаке приходят в движение из-за восходящего с земли тёплого потока воздуха. Зимой такой поток не очень сильный, поэтому большинство облаков не становятся грозовыми.

Почему слышен гром

Раскат грома — это ничто иное, как ударная волна от молнии. Когда возникает электрический разряд, воздух вокруг резко нагревается до запредельных температур и мгновенно расширяется, создавая звуковую волну. Свет от молнии распространяется быстрее, чем звук, поэтому мы сначала видим вспышку, а потом слышим гром.

Почему молнию не используют для добычи электроэнергии?

Существует термин «грозовая энергетика», описывающий процесс улавливания молний с целью перенаправления энергии в электросеть. Однако такой подход очень ненадёжен, т.к. возникновение молний сложно предсказать. Кроме того, стоит вопрос того, как в доли секунды собрать такое большое количество энергии. Для этого нужны дорогостоящие суперкондерсаторы и преобразователи напряжения, а такие инвестиции никому не интересны из-за непредсказуемости источника энергии.

Как объяснить молнию ребёнку

Считаем, что тут главное не забивать голову малышу о каких-либо фантастических происшествиях в облаках. Лучше придерживаться реальной версии, попытавшись как можно проще всё объяснить.

Высоко в небе всегда прохладно, поэтому внутри тучек появляются льдинки. Они так сильно ударяются друг об друга, что тучка становится «электрической». Когда она встречается с другой такой же тучкой, то они начинают бить друг друга током. Так и получается молния.

У детей отличное воображение, поэтому им будет несложно всё представить. Можно даже всё изобразить в игровой форме. Когда ребёнок подрастёт и начнёт интересоваться более сложными вещами, он уже будет иметь некоторое представление, как возникает молния, и сможет сам разобраться в тонкостях этого процесса.

Из-за чего бьет молния и как она появляется

Мы часто говорим на нашем сайте о погоде, ураганах, грозах, и прочих погодных явлениях, которые могут быть интересны с точки зрения науки и могут нанести ущерб хозяйственной деятельности человека или его жизни и здоровью. Очень часто такие явления способствуют появлению в атмосфере молний. Это тоже очень интересное и не до конца изученное явление, которое возникает из-за появления в воздухе заряженных частиц. По сути это чем-то напоминает статический разряд от шерстяного свитера, вот только масштабы более крупные. Тем не менее, при образовании молний должно сложиться множество факторов, о которых мы сегодня и поговорим. Тем более, мы уже рассказывали об интересных фактах, связанных с этим явлением. Теперь надо разобраться с природой появления “стрел Зевса”.

Молния может напугать, если не знать откуда она берется.

Что такое молния?

Согласно науке, можно сказать, что молния является искровым разрядом, возникающим в атмосфере. В числе основных проявлений можно назвать яркую вспышку света и громкий звук, который принято называть громом. Кроме Земли, молнии можно встретить на других планетах, например, Венере, Юпитере, Сатурне, Уране и других, где есть какая-то газовая среда.

Во время удара молнии высвобождается огромное количество энергии. В результате ее температура в несколько раз превышает температуру поверхности Солнца. Сила тока в разряде молнии на Земле достигает 500 ампер, а напряжение доходит до нескольких миллионов вольт.

Как раз из-за большого количества энергии, молния редко длится дольше долей секунд. Как правило значение доходит до четверти секунды (0,25), но бывают и исключения. Так, самая продолжительная молния зафиксирована на отметке почти восьми секунд (7,74).

Такая красота и почти восемь секунд.

Определение молнии согласно словарю Ожегова:
МОЛНИЯ, -и, ж. 1. Мгновенный искровой разряд в воздухе скопившегося атмосферного электричества. Бывает линейная, зигзагообразная, шаровая и сухая.

Сейчас мы не будем останавливаться на определении молнии, как пометке для срочной новости или печатного издания, хотя суть понятна, и именно из-за скоротечности или, если хотите, молниеносности события они так и называются.

Какие бывают молнии?

Прежде, чем подробно рассказать о типах молний, надо сказать, какими они вообще бывают. Четыре основных типа были приведены парой строк выше, а именно: линейная, зигзагообразная, шаровая и сухая.

Линейной молнией называют короткий резкий разряд, который вспыхивает моментально, озаряет собой небо и пропадет. Иногда даже самой молнии не видно, так как она проходит очень быстро и часто даже бьет не в землю, а между облаками.

Зигзагообразной принято называть чуть более долгие молнии, которые имеют кривую траекторию и дают хоть несколько долей секунды, чтобы себя рассмотреть. Иногда можно заметить даже небольшую пульсацию света в них.

Шаровая молния — это крайне редкое явление. Если с обычной молнией мы встречаемся по несколько раз в год, а жители некоторых регионов — несколько раз в неделю, то шанс увидеть шаровую молнию не превышает один к десяти тысячам. Именно поэтому явление считают очень мистический, и если вы ее видели, вам очень повезло. Надо бежать за лотерейным билетом.

С сухой молнией все просто. Так обычно называют молнию, которая происходит без дождя. Не самое часто явление, но периодически все равно случается. И уж точно чаще, чем шаровая.

Как происходит удар молнии?

Мы уже определились, что молния — это мощнейший электрический разряд, возникающий при накоплении заряда внутри облаков и появлении большой разницы электрических потенциалов объектов. В итоге молния может возникать между соседними облаками, между облаком и землей, и даже внутри одного облака, что тоже случается очень часто. В любом случае облако должно быть наэлектризовано. Но как оно электризуется?

Это можно назвать молнией в миниатюре. Процессы похожи.

Этот процесс знаком нам с детства. Достаточно вспомнить как электризуется расческа, воздушный шарик или многие другие вещи при трении. Подобный процесс происходит и в облаках на большой высоте и в существенно больших масштабах.

Дело в том, что облака представляют собой огромный водяной шар, пусть и не совсем шаровидной формы. Его высота может достигать нескольких километров, но в разном агрегатном состоянии вода в нем есть на всех высотах. До трех-четырех тысяч метров это капли, а выше — уже кристаллики льда.

Эти кристаллики имеют разный размер и постоянно перемешиваются. Более мелкие летят вверх из-за восходящих потоков воздуха от теплой земли. Поднимаясь, они постоянно сталкиваются с более крупными кристалликами. В итоге, все облако начинает электризоваться подобно предметам в приведенных выше примерах. Положительно заряженные частицы оказываются сверху, а отрицательно заряженные — снизу.

Примерно так выглядит разница потенциалов при формировании молнии.

Когда разность потенциалов получается очень высокой, происходит разряд. Если внутри облака для формирования разряда недостаточно условий, то разрядка происходит в землю. При этом она сопровождается яркой вспышкой с выделением тепла. Из-за выделения огромного количества энергии воздух вокруг молнии моментально нагревается до нескольких десятков тысяч градусов и взрывообразно расширяется в небольшом объеме. Эта взрывная волна и называется громом, расходясь на расстояние до 20 км от самой молнии.

При этом молнии состоят из нескольких разрядов, которые идут непрерывно друг за другом, но по одиночке длятся тысячные и миллионные доли секунды.

Почему молния имеет такую форму?

Мы знаем, что молния старается ударить в объект по кратчайшему расстоянию. Но почему же она такая изогнутая? Это же совсем не кратчайшее расстояние, при котором она была бы прямая, как геометрический луч.

Дело в том, что при формировании разряда электроны разгоняются до околосветовых скоростей, но периодически встречают на пути препятствия в виде молекул воздуха. При каждой такой “встрече” они меняют направление своего движения и мы получаем ступенчатую структуру молнии, к которой мы привыкли, и которая схематическим рисуется, как логотип автомобилей Opel.

Молния на логотипе этой компании впервые появилась на грузовике Opel Blitz (в переводе с немецкого Blitz — молния)

Может ли человек создать молнию?

Да, человек может создавать молнии. Каждый ребенок может дома поставить небольшой опыт, натерев два шарика и потом сблизив их. Если делать это в темноте, можно увидеть небольшой разряд и треск или щелчок. Это и есть молнии и гром в миниатюре.

С такими молниями можно столкнуться, поносив шерстяной свитер, расчесав волосы и во многих других ситуациях. Даже зажигалка с кнопкой создает минимолнию, которая и поджигает газ. Аналогичное оборудование установлено в газовых плитах а автоподжигом.

Обсудить все, что угодно связанное с наукой можно в нашем Telegram-чате.

Но человек может создать и более серьезные молнии. Я даже не говорю о лабораториях под открытым небом, которые формируют разряд для его изучения, хотя так он тоже может быть очень сильным. Я имею ввиду молнию, которая появляется при ядерном взрыве.

Дело в том, что при протекании реакции ядерного взрыва гамма-излучение продуцирует электромагнитный импульс с напряжённостью на уровне 100—1000 кВ/м. Это не только выводит из строя незащищенные электромагнитные линии бункеров, шахт и других объектов, но и приводит к образованию молнии. Правда, эта молния бьет в небо, то есть, в обратную сторону, если можно так сказать. Разряд появляется перед приходом огненной полусферы и очень быстро исчезает. Происходит это примерно с 0,015 до 0,5 секунды процесса протекания реакции ядерного взрыва.

Так выглядит молния, сопровождающая атомный взрыв.

Откуда берутся молнии перед землетрясением?

Существуют молнии, которые проявляют себя во время землетрясений. До конца их природа пока неизвестна, но они тоже возникают из-за накопления заряда. Только в данном случае это происходит из-за трения слоев пород между собой.

Изначально ученые не воспринимали всерьез рассказы о том, что землетрясения сопровождаются молниями, но появление в последнее время камер заставило их задуматься над этим. В итоге они начали ставить эксперименты и пришли к выводу о трении слоев пород.

Куда более известны молнии при извержениях вулканов, которые еще называются “грязными молниями”. Они тоже возникают в результате трения между собой частиц, вылетающих из жерла.

Примерно так выглядит молния внутри вулкана.

Образование молний сопровождает и другие явления, например, пылевые бури, торнадо и некоторые другие, приводящие все к тому же накоплению заряда.

Что такое шаровая молния, и как она появляется?

Кроме обычных молний, с которыми все более менее понятно, хоть и остаются некоторые вопросы, есть еще и шаровые молнии, которые вообще не изучены толком и никто не может объяснить, откуда они берутся, почему и куда пропадают.

Изначально шаровая молния является светящимся шаром (иногда форма может немного отличаться), который по подсчетам имеет температуру 500-1000 градусов Цельсия, может перемещаться в пространстве, проходить через стекло и взрываться через несколько минут после появления. Пока больше неизвестно ничего.

Первые упоминания о них относятся еще ко временам до нашей эры. Правда, тогда это было очень иносказательно и включало в себя разговоры об огненных птицах и тому подобном. Сейчас это очень похоже на описание шаровых молний, но с уверенностью об этом говорить нельзя.

Это птица Феникс, но примерно так представляли себе шаровые молнии в древнем мире.

До недавнего времени многие ученые вообще не верили в существование такого явления, а заявления очевидцев считали следствием повреждения сетчатки после удара обычной молнией. Тем более все говорили о разной форме. Сейчас в это начали верить и занялись исследованиями, но информации все равно мало.

Кто-то считает их сгустками газа, кто-то особыми частицами с огромным количеством энергии, а кто-то и вовсе говорит о высших силах.

Тем не менее, это не отменяет того факта, что шаровые молнии могут повреждать объекты, с которыми вступили в контакт. Например, плавить стекло и металл, поджигать дерево и кипятить воду. Есть даже рассказы о том, как они замыкали высоковольтные линии передач, создавая дугу.

Есть несколько гипотез этого явления, каждая из которых до сих пор не подтверждена, но и не опровергнута.

Одна из них гласит, что шаровая молния это специфическое взаимодействие азота с кислородом, в результате которого и вырабатывается энергия на ее существование. Согласно другой гипотезе явление представляет собой вихрь шарообразной формы из пылевых частиц с активными газами. Такими они стали из-за полученного электрического разряда. В итоге, шаровая молния является чем-то вроде батареи. Эта гипотеза объясняет специфический запах и шлейфовое свечение рядом с шаровой молнией.

Шаровая молния может выглядеть так или иначе, но более изученной от этого она не становится.

Есть гипотеза, которая оспаривает обе предыдущих, говоря нам, что существование шаровой молнии невозможно без подпитки ее энергией снаружи. Но такая гипотеза рушится отсутствием доказательств существования волн нужной для питания длины.

Все это лишний раз доказывает, что шаровую молнию надо опасаться, так как даже нет четких описаний того, как надо действовать при ее появлении. Самой главной рекомендацией является немедленное покидание зоны ее действия, но без лишней спешки, чтобы не нарушить движение воздуха и не увлечь ее за собой.

Что мы знаем о молниях?

Об обычных молниях мы знаем много, хоть и не все. О шаровых почти ничего, но учитывая частоту их появления, можно допустить, что это не так страшно, хотя работать в этом направлении надо и надо продолжать исследования.

Молнии стали неотъемлемыми спутниками нашей жизни. Они проявляются во многих сферах и заставляют себя уважать из-за разрушительной мощи, спрятанной в них.

Тем не менее, средства борьбы с ними есть и достаточно эффективные. Надо только выполнять элементарные правила безопасности (не стоять в грозу рядом с деревьями, не запускать змеев, да и вообще лучше не выходить из дома) и ставить громоотводы на дома. В этом случае все будет существенно проще и безопаснее.

Физика атмосферы: как, почему и откуда появляются молнии

Каждую секунду в атмосфере Земли возникает примерно 700 молний, и каждый год около 3000 человек погибают из-за удара молнии. Физическая природа молнии не объяснена окончательно, а большинство людей имеют лишь приблизительное представление о том, что это такое. Какие-то разряды сталкиваются в облаках, или что-то в этом роде. Сегодня мы обратились к нашим авторам по физике, чтобы узнать о природе молнии больше. Как появляется молния, куда бьет молния, и почему гремит гром. Прочитав статью, вы будете знать ответ на эти и многие другие вопросы.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Что такое молния

Молния – искровой электрический разряд в атмосфере.

Электрический разряд – это процесс протекания тока в среде, связанный с существенным увеличением ее электропроводности относительно нормального состояния. Существуют разные виды электрических разрядов в газе: искровой, дуговой, тлеющий.

Искровой разряд происходит при атмосферном давлении и сопровождается характерным треском искры. Искровой разряд представляет собой совокупность исчезающих и сменяющих друг друга нитевидных искровых каналов. Искровые каналы также называют стримерами. Искровые каналы заполнены ионизированным газом, то есть плазмой. Молния – гигантская искра, а гром – очень громкий треск. Но не все так просто.

Физическая природа молнии

Как объясняют происхождение молнии? Система туча-земля или туча-туча представляет собой своеобразный конденсатор. Воздух играет роль диэлектрика между облаками. Нижняя часть облака имеет отрицательный заряд. При достаточной разности потенциалов между тучей и землей возникают условия, в которых происходит образование молнии в природе.

Ступенчатый лидер

Перед основной вспышкой молнии можно наблюдать небольшое пятно, движущееся от тучи к земле. Это так называемый ступенчатый лидер. Электроны под действием разности потенциалов, начинают двигаться к земле. Двигаясь, они сталкиваются с молекулами воздуха, ионизируя их. От тучи к земле прокладывается как бы ионизированный канал. Из-за ионизации воздуха свободными электронами электропроводность в зоне траектории лидера существенно возрастает. Лидер как бы прокладывает путь для основного разряда, двигаясь от одного электрода (тучи) к другому (земле). Ионизация происходит неравномерно, поэтому лидер может разветвляться.

Обратная вспышка

В момент, когда лидер приближается к земле, напряженность на его конце растет. Из земли или из предметов, выступающих над поверхностью (деревья, крыши зданий) навстречу лидеру выбрасывается ответный стример (канал). Это свойство молний используется для защиты от них путем установки громоотвода. Почему молния бьет в человека или в дерево? На самом деле ей все равно, куда бить. Ведь молния ищет наиболее короткий путь между землей и небом. Именно поэтому во время грозы опасно находиться на равнине или на поверхности воды.

Когда лидер достигает земли, по проложенному каналу начинает течь ток. Именно в этот момент и наблюдается основная вспышка молнии, сопровождаемая резким ростом силы тока и выделением энергии. Здесь уместен вопрос, откуда идет молния? Интересно, что лидер распространяется от тучи к земле, а вот обратная яркая вспышка, которую мы и привыкли наблюдать, распространяется от земли к туче. Правильнее говорить, что молния идет не от неба к земле, а происходит между ними.

Почему молния гремит?

Гром возникает в результате ударной волны, порождаемой быстрым расширением ионизированных каналов. Почему сначала мы видим молнию а потом слышим гром? Все дело в разности скоростей звука (340,29 м/с) и света (299 792 458 м/с). Посчитав секунды между громом и молнией и умножив их на скорость звука, можно узнать, на каком расстоянии от Вас ударила молния.

Нужна работа по физике атмосферы? Для наших читателей сейчас действует скидка 10% на любой вид работы

Виды молний и факты о молниях

Молния между небом и землей – не самая распространенная молния. Чаще всего молнии возникают между облаками и не несут угрозы. Помимо наземных и внутриоблачных молний, существуют молнии, образующиеся в верхних слоях атмосферы. Какие есть разновидности молний в природе?

  • Наземные молнии;
  • Внутриоблачные молнии;
  • Шаровые молнии;
  • «Эльфы»;
  • Джеты;
  • Спрайты.

Последние три вида молний невозможно наблюдать без специальных приборов, так как они образуются на высоте от 40 километров и выше.

Приведем факты о молниях:

  • Протяженность самой длинной зафиксированной молнии на Земле составила 321 км. Эта молния была замечена в штате Оклахома, 2007 г.
  • Самая долгая молния длилась 7,74 секунды и была зафиксирована в Альпах.
  • Молнии образуются не только на Земле. Точно известно о молниях на Венере, Юпитере, Сатурне и Уране. Молнии Сатурна в миллионы раз мощнее земных.
  • Сила тока в молнии может достигать сотен тысяч Ампер, а напряжение – миллиарда Вольт.
  • Температура канала молнии может достигать 30000 градусов Цельсия – это в 6 раз больше температуры поверхности Солнца.

Шаровая молния

Шаровая молния – отдельный вид молнии, природа которого остается загадкой. Такая молния представляет собой движущийся в воздухе светящийся объект в форме шара. По немногочисленным свидетельствам шаровая молния может двигаться по непредсказуемой траектории, разделяться на более мелкие молнии, может взорваться, а может просто неожиданно исчезнуть. Существует множество гипотез о происхождении шаровой молнии, но ни одна не может быть признана достоверной. Факт — никто не знает, как появляется шаровая молния. Часть гипотез сводят наблюдение этого явления к галлюцинациям. Шаровую молнию ни разу не удалось наблюдать в лабораторных условиях. Все, чем могут довольствоваться ученые – это свидетельства очевидцев.

Напоследок предлагаем Вам посмотреть видео и напоминаем: если курсовая или контрольная свалилась на голову как молния в солнечный день, не нужно отчаиваться. Специалиста студенческого сервиса выручают студентов с 2000 года. Обращайтесь за квалифицированной помощью в любое время. 24 часа в сутки, 7 дней в неделю мы готовы помочь вам.

Как образуется молния?

Что такое гроза?

Гроза – это атмосферное явление, которое сопровождается светомузыкальными эффектами под названиями молния и гром. Еще при грозе частенько бушует ветер и льется дождь. В общем-то каждый и сам все видел и все это знает. С дождем и ветром более менее понятно, но возникает вопрос откуда берутся молния и гром? Обычно люди, которые знают, что электричество живет в розетке, делают серьезное лицо и выдают ответ: “Это облака сталкиваются, поэтому сверкает.” Неплохой ответ конечно, но давайте ответим на этот вопрос с физической точки зрения.

Что такое молния?

Молния – это электрический разряд. Но откуда же он берется? А все начинается с облаков. С поверхности земли испаряется влага, которая поднимается вверх в виде капелек. “Стая” таких капелек собирается на определенной высоте и становится видна с земли в виде облака (в одном облаке просто невероятное количество капель). К облакам постоянно присоединяются новые капли, а старые могут отрываться от них. Если их присоединяется больше, чем отрывается, то облако растет. Размер облака по вертикали может достигать нескольких километров (расстояние от земли до нижней части облака примерно 0.5 – 2 км). В облаках температура может быть ниже нуля градусов по Цельсию, поэтому капельки замерзают и становятся льдинками. Эти льдинки находятся в постоянном движении, поэтому очень часто сталкиваются друг с другом. В результате этих столкновений одни капли/льдинки заряжаются положительно (они более легкие, поэтому поднимаются вверх), а другие отрицательно (они более тяжелые, поэтому скапливаются в нижней части облака).

При этом процессе нижняя часть облака заряжается отрицательно, а верхняя – положительно. При этом такое облако уже имеет большие размеры и становится грозовым. Нужно понимать, что не каждое облако становиться грозовым, так как этот процесс занимает длительное время, и нужно, чтобы сложились благоприятные условия (чтобы облако не распалось раньше, чем оно накопит достаточный заряд и наберет достаточную массу).

Теперь вернемся к молнии. Если два таких грозовых облака подходят на достаточно близкое расстояние (да еще одно подходит отрицательной стороной, а другое – положительной), заряженные частицы (электроны и ионы) начинают проскакивать через воздушную прослойку между двумя облаками (ведь плюс и минус, как мы знаем, должны притягиваться). Даже воздушная прослойка не может их остановить, настолько большие заряды у облаков!

Обычно первые частицы являются “полководцами”, так как они прокладывают канал между облаками, по которому сразу же устремляются миллиарды других заряженных частиц.

В этот момент мы и видим молнию!

Часто случается такое, что молния бьет прямо в землю. В этом случае сама земля выступает в качестве скопления положительного заряда, а остальное происходит как описано выше.

Почему молния имеет изломы?

Когда заряженные частицы летят через воздушную прослойку между облаками, они могут сталкиваться с молекулами воздуха или каплями (льдинками) воды. От этих столкновений меняется направление движения заряженных частиц, но в целом они продолжают двигаться в сторону второго облака, чтобы замкнуться на нем.

Почему мы слышим гром?

Гром – это звуковое сопровождение молнии, без которого невозможно достигнуть необходимого порога страха. Именно грома человек боится больше, чем светящейся полоски на небе.

При прохождении электрического разряда (молнии) происходит резкое повышение температуры окружающего воздуха до нескольких тысяч или даже миллионов градусов. Этот температурный скачок приводит к локальному расширению нагретого воздуха (взрыв), которое вызывает ударную волну (раскат грома). Если молния имеет много изломов, то мы слышим несколько раскатов грома при каждой резкой смене направления возникает новый “взрыв“.

Так как скорость звука в воздухе меньше скорости света, мы слышим гром немного позже самой вспышки. По времени задержки грома можно примерно посчитать расстояние до того места, где появилась молния. Для этого нужно посчитать: через сколько секунд слышится гром после вспышки. Каждые 3 секунды примерно равны расстоянию в 1 километр.

То есть, если после вспышки прошло 9 секунд до того как прогремел гром, то молния сверкнула на расстоянии 3 км.

Электрический потенциал: как возникает молния и насколько она опасна

Теории и практики

Грозы случаются на нашей планете чаще 40 тысяч раз в день — около 100 вспышек молний каждую секунду. Но до сих пор это явление до конца не изучено. «Теории и практики» публикуют отрывок из книги Уолтера Левина и Уоррена Гольдштейна «Глазами физика. От края радуги к границе времени», которую издательство «МИФ» подготовило к выставке Non/fiction. Авторы объясняют, что такое молния и может ли от нее спасти громоотвод, автомобиль или кроссовки на резиновой подошве.

Конечно, один из самых опасных видов тока — молния, которая также относится и к числу самых замечательных электрических явлений, мощных, не вполне предсказуемых, не до конца понятных и таинственных — в общем, настоящий коктейль. В мифах разных народов — от древних греков до индейцев майя — разряды молнии описываются либо как символы божеств, либо как орудие их возмездия. И это неудивительно. В среднем на земле ежегодно проходит около 16 миллионов гроз (более 43 тысяч ежедневно и примерно 1800 ежечасно), которые ежесекундно производят около 100 вспышек молний, или более 8 миллионов молний в день. Это в масштабах всей планеты.

Молния — это следствие заряжения грозовых облаков. Обычно верхняя часть облака заряжается положительно, а нижняя — отрицательно. Почему именно так, ученые пока до конца не разобрались. Хотите верьте, хотите нет, но в физике атмосферы еще очень много вопросов, на которые предстоит ответить. А пока в целях простоты обсуждения давайте несколько упростим ситуацию, представив себе облако, отрицательно заряженное на той стороне, которая находится ближе к земле. Из-за индукции земля, ближе всего расположенная к облаку, заряжается положительно, и между нею и облаком возникнет электрическое поле.

С физической точки зрения разряд молнии довольно сложен, но, по существу, ее вспышка (электрический пробой) возникает, когда электрический потенциал между облаком и землей достигает десятков миллионов вольт. И хотя мы нередко думаем о разряде молнии как о «стрельбе» с облака в землю, на самом деле движение идет и с облака на землю, и с земли на облако. Сила электрического тока во время разряда молнии средней интенсивности составляет около 50 тысяч ампер (хотя может достигать и нескольких сотен тысяч ампер), а максимальная мощность достигает около триллиона (1012) ватт, но продолжается это всего несколько десятков микросекунд. Тем не менее полная энергия, выделяющаяся в момент удара молнии, редко превышает несколько сотен миллионов джоулей, что эквивалентно энергии, потребляемой за месяц стоваттной лампочкой. Так что идея сбора энергии молнии совершенно непрактична и нецелесообразна.

Большинству из нас известно, что определить, как далеко от нас ударила молния, можно по времени, которое проходит между моментами, когда мы видим разряд и слышим гром. Причина, которой это объясняется, позволяет нам также получить кое-какое представление о мощных силах, задействованных в данном процессе. И она, кстати, не имеет ничего общего с объяснением, однажды услышанным мной от своего студента: что молния создает нечто вроде области низкого давления, куда устремляется воздух и сталкивается там с воздухом, поступающим с другой стороны, в результате чего получается гром. На самом деле все происходит практически в точности до наоборот. Энергия разряда нагревает воздух примерно до 20 тысяч °С, то есть до температуры, более чем в три раза превышающей температуру поверхности Солнца. Затем этот суперразогретый воздух создает мощную волну давления, она сталкивается с холодным воздухом вокруг нее, создавая звуковые волны, которые распространяются в воздухе. Так как звуковые волны в воздухе перемещаются со скоростью около полутора километров за пять секунд, подсчитав секунды, вы можете довольно легко выяснить, насколько далеко от вас ударила молния.

Тем фактом, что молния столь сильно нагревает воздух, объясняется и другое явление, с которым вы, возможно, сталкивались во время грозы. Вы когда-нибудь замечали, насколько свежий, особый запах стоит в воздухе после грозы, словно буря очистила его? Конечно, в большом городе это трудно почувствовать, потому что там воздух практически всегда пропитан выхлопными газами от автомобилей. Но даже если вам посчастливилось услышать этот замечательный аромат, вы вполне можете не знать, что это запах озона, молекулы кислорода, состоящей из трех атомов кислорода. Как известно, нормальные молекулы кислорода — без запаха — состоят из двух атомов кислорода, и мы записываем их как O2. Но потрясающий жар от молнии разбивает эти молекулы — не все, но достаточное количество, чтобы оказать определенный эффект. Получившиеся в результате отдельные атомы кислорода сами по себе нестабильны, поэтому прикрепляются к нормальным молекулам О2, создавая вещество О3 — озон.

Однако следует отметить, что озон приятно пахнет только в небольших количествах; в высоких концентрациях его запах не столь привлекателен. Его можно почувствовать, например, под высоковольтными проводами. Если вы слышите жужжащий звук, исходящий от проводов, это обычно означает, что там происходит искрение, называемое коронным разрядом, в результате которого и создаются молекулы озона. Когда нет сильного ветра, как правило, можно почувствовать довольно неприятный запах.

«Молния ударяет в самолеты в среднем более одного раза в год, но благодаря скин-эффекту они благополучно переживают эти удары»

А теперь вернемся к идее, что человека от последствий удара молнии могут спасти надетые на него кроссовки на резиновой подошве. Разряд молнии в 50–100 тысяч ампер, способный разогреть воздух до температуры, более чем в три раза превышающей температуру поверхности Солнца, почти наверняка сожжет вас дотла, заставит биться в конвульсиях от сильнейшего поражения электрическим током или попросту взорвет вас, мгновенно превратив всю воду в вашем теле в сверхгорячий пар. Совершенно независимо от того, во что вы обуты. Именно это происходит с деревом, в которое ударила молния, — сок в нем взрывается и срывает с него всю кору. Сто миллионов джоулей энергии — эквивалент почти тридцати килограммов динамита, — это вам не фунт изюма.

А как насчет того, безопасно ли находиться внутри автомобиля, защищающего вас от удара молнии благодаря резиновым шинам? Автомобиль действительно может защитить вас в этой ситуации (однако никаких гарантий!), но по совершенно иной причине. Дело в том, что электрический ток течет по поверхностным слоям проводника (это явление называется скин-эффектом), и, сидя в автомобиле, вы оказываетесь внутри металлической коробки, а металл, как мы уже знаем, хороший проводник. Вы даже можете прикоснуться к внутренней части панели воздуховода и не получить никакой травмы. Тем не менее я настоятельно призываю вас этого не делать, поскольку это крайне опасно, так как в большинстве современных автомобилей используются детали из стекловолокна, а в этом материале скин-эффект отсутствует. Иными словами, если молния ударяет в ваш автомобиль, вы — да и ваша машина — можете пережить не самые приятные секунды в жизни. Если интересно, посмотрите короткое видео, где показано, как молния поражает автомобиль. Думаю, вы сразу поймете, что с этим шутить не стоит!

На наше в вами счастье, с самолетами ситуация совершенно другая. Молния ударяет в них в среднем более одного раза в год, но благодаря все тому же скин-эффекту они благополучно переживают эти удары. Смотрите видео.

© paulprescott72/iStock

Есть еще один знаменитый эксперимент, связанный с молниями, авторство которого приписывают Бенджамину Франклину, но я настоятельно не рекомендую вам его проводить. Речь идет о запуске во время грозы воздушного змея с привязанным к нему металлическим ключом. Предположительно Франклин так намеревался проверить гипотезу о том, что грозовые облака создают электрический огонь. Он рассуждал следующим образом: если молния действительно является источником электроэнергии, то как только бечевка змея намокнет от дождя, она станет хорошим проводником (хотя ученый не использовал этого слова) электричества и оно пройдет вниз, к ключу, привязанному к ее концу. Рассказывают также, что стоило Франклину поднести руку к ключу, как тут же появлялась яркая искра. Так вот, как и в случае с Ньютоном, который на закате своей жизни якобы утверждал, что на создание закона всемирного тяготения его вдохновило яблоко, упавшее на землю с дерева, никаких современных доказательств того, что Франклин когда-либо действительно проводил этот эксперимент, нет. Есть только отчет в письме, посланном им в Королевское научное общество в Англии, и еще один письменный документ, составленный пятнадцать лет спустя другом Франклина Джозефом Пристли (кстати, первооткрывателем кислорода).

«Сто миллионов джоулей энергии — эквивалент почти тридцати килограммов динамита, — это вам не фунт изюма»

Но проводил ли Франклин этот эксперимент или нет — что было бы фантастически опасно и с очень высокой вероятностью привело бы к гибели великого изобретателя, — описание другого эксперимента он опубликовал точно. В данном случае задача была — увести молнию в землю, для чего ученый установил на верхушке башни длинный железный стержень. Несколько лет спустя француз Томас-Франсуа Далибар, который встретился с Франклином и перевел его идеи на французский язык, провел этот эксперимент в несколько иной версии и стал свидетелем поистине невероятного явления. Далибар установил железный стержень длиной больше 10 метров и, направив его в небо, увидел у его не заземленного основания искры.

Впоследствии профессор Георг Вильгельм Рихман, выдающийся ученый, родившийся в Эстонии и живший в , член Санкт-Петербургской Академии наук, много лет изучавший электрические явления, очевидно, вдохновленный экспериментом Далибара, решил также попробовать его провести. Как рассказывает Майкл Брайан в интереснейшей книге Draw the Lightning Down: Benjamin Franklin and Electrical Technology in the Age of Enlightenment («Как обезвредить молнию: Бенджамин Франклин и электротехника в эпоху Просвещения»), Рихман приладил железный прут к крыше своего дома и медной цепью соединил его с прибором для измерения электричества в своей лаборатории, расположенной на первом этаже.

Как нарочно — а может, это был знак судьбы, — в августе 1753 года во время заседания Академии наук разразилась сильнейшая гроза. Рихман бросился домой, захватив с собой художника, который должен был иллюстрировать его новую книгу. Пока Рихман наблюдал за оборудованием, ударила молния, прошла вниз по стержню и цепи, выпрыгнула в полуметре от головы ученого, ударила его током и отбросила через всю комнату; художник тоже получил сильный удар током и потерял сознание. В интернете можно найти несколько иллюстраций этой ужасной сцены, хотя точно неизвестно, был ли их автором художник, принимавший в ней непосредственное участие.

Франклин изобрел подобную штуковину, но его детище было заземлено; сегодня оно известно под названием громоотвод. Устройство отлично заземляет удары молнии, однако не по той причине, которую предполагал Франклин. Он считал, что громоотвод будет вызывать между заряженным облаком и зданием непрерывный разряд, тем самым сохраняя разность потенциалов на низком уровне и, следовательно, снижая опасность удара молнии. Ученый был настолько уверен в своей правоте, что посоветовал королю Георгу II установить громоотводы на крыше королевского дворца и на складах с боеприпасами. Оппоненты Франклина утверждали, что громоотводы будут только притягивать молнии и что эффект разряда, снижая разность электрических потенциалов между зданием и грозовыми облаками, будет совсем незначительным. Но король, как гласит история, доверился Франклину и установил громоотводы.

Вскоре после этого молния ударила прямо в один из складов боеприпасов, но повреждения оказались минимальными. То есть стержень сработал, но по совершенно иным причинам. Критики Франклина были абсолютно правы: громоотводы действительно притягивают молнии и разрядка стержня действительно ничтожна по сравнению с огромным зарядом грозовой тучи. Но громоотвод все же дает желаемый эффект — потому что когда стержень достаточно толстый, чтобы справиться с 10–100 тысячами ампер, ток будет оставаться в стержне и заряд уйдет в землю. Получается, Франклин был не только блестящим ученым — ему еще и здорово везло!

Разве это не удивительно, что, поняв природу тихого потрескивания, раздающегося, когда мы снимаем полиэстеровый свитер зимой, мы можем также постичь суть жуткой грозы с молниями, освещающими ночное небо, и разобраться в происхождении одного из самых громких и устрашающих звуков в природе?

В некотором смысле мы все — современные версии Бенджамина Франклина, пытающиеся выяснить и постичь в этом грозном явлении то, что пока еще находится за пределами нашего понимания. В конце 1980-х годов ученые впервые сфотографировали разные формы молний, сверкающих высоко-высоко в облаках. Одна из разновидностей называется красными призраками и состоит из электрических разрядов, происходящих в 50–90 километрах над землей. А есть еще синие струи — они гораздо больше, иногда длиной до 70 километров, и возникают в верхних слоях атмосферы. Но мы знаем о них всего лишь немногим более двадцати лет, и нам еще очень мало известно о причинах этого потрясающего природного явления. Даже несмотря на то, что люди изучили электричество уже весьма детально, грозы по-прежнему покрыты завесой тайны — а ведь они случаются на нашей планете около 45 тысяч раз в день.

Как и почему возникает молния(длиннопост).

Стало интересно как возникают молнии вот нарыл в интернете, решил поделится с вами думаю вам тоже понравится довольно интересный процесс.

Мы часто думаем, что электричество — это нечто такое, что вырабатывается только на электростанциях, а уж никак не в волокнистых массах водяных облаков, которые настолько разрежены, что в них спокойно можно просунуть руку. Тем не менее, в облаках есть электричество, как есть даже в человеческом теле.Все тела состоят из атомов — от облаков и деревьев до человеческого организма. У каждого атома есть ядро, несущее положительно заряженные протоны и нейтральные нейтроны. Исключением является простейший атом водорода, в ядре которого нет нейтрона, а есть только один протон. Вокруг ядра обращаются отрицательно заряженные электроны. Положительные и отрицательные заряды взаимно притягиваются, поэтому электроны вращаются вокруг ядра атома, как пчелы около сладкого пирога. Притяжение между протонами и электронами обусловлено электромагнитными силами. Поэтому электричество присутствует везде, куда бы мы ни посмотрели. Как мы видим, оно содержится и в атомах.

Природа молнии лежит в электричестве, которое содержится в облаках.

В нормальных условиях положительные и отрицательные заряды каждого атома уравновешивают друг друга, поэтому тела, состоящие из атомов, обычно не несут никакого суммарного заряда — ни положительного, ни отрицательного. В результате соприкосновение с другими предметами не вызывает электрического разряда. Но иногда равновесие электрических зарядов в телах может нарушиться. Возможно, вы это испытываете на себе, находясь дома в холодный зимний день. В доме очень сухо и жарко. Вы, шаркая босыми ногами, ходите по паласу. Незаметно для вас часть электронов с ваших подошв перешла к атомам ковра.

Вот теперь вы несете электрический заряд, так как количество протонов и электронов в ваших атомах уже не сбалансировано. Попробуйте теперь взяться за металлическую ручку двери. Между вами и ею проскочит искра, и вы почувствуете электрический удар. Произошло вот что — ваше тело, которому не хватает электронов для достижения электрического равновесия, стремится за счет сил электромагнитного притяжения восстановить равновесие. И оно восстанавливается. Между рукой и дверной ручкой возникает поток электронов, направленный к руке. Если бы в комнате было темно, то вы увидели бы искры. Свет виден потому, что электроны при перескакивании испускают кванты света. Если в комнате тихо, вы услышите легкое потрескивание.

Электричество окружает нас повсюду и содержится во всех телах. Облака в этом смысле — не исключение. На фоне голубого неба они выглядят очень безобидными. Но так же, как вы в комнате, они могут нести электрический заряд. Если это так — берегитесь! Когда облако восстанавливает электрическое равновесие внутри себя — вспыхивает целый фейерверк.

Как появляется молния?
Вот что при этом происходит: в темном огромном грозовом облаке постоянно циркулируют мощные воздушные потоки, которые сталкивают между собой разнообразные частицы — крупинки океанической соли, пыль и так далее. Точно так же, как ваши подошвы при трении о ковер освобождаются от электронов, и частицы в облаке при столкновении освобождаются от электронов, которые перескакивают на другие частицы. Так возникает перераспределение зарядов. На одних частицах, которые потеряли свои электроны, имеется положительный заряд, на других, которые приняли на себя лишние электроны, теперь отрицательный за ряд.

По причинам, которые не вполне ясны, более тяжелые частицы заряжаются отрицательно, а более легкие — положительно. Таким образом, более тяжелая нижняя часть облака заряжается отрицательно. Отрицательно заряженная нижняя часть облака отталкивает в сторону земли электроны, так как одноименные заряды отталкиваются. Таким образом, под облаком формируется положительно заряженная часть земной поверхности. Затем точно по такому же принципу, по которому между вами и дверной ручкой проскакивает искра, между облаком и землей проскочит такая же искра, только очень большая и мощная это и есть молния. Электроны гигантским зигзагом летят к земле, находя там свои протоны. Вместо едва слышного потрескивания раздается сильный удар грома.

Если просмотреть весь процесс в замедленном темпе, то вот что мы увидим. Из основания облака выступает тускло светящаяся полоса, называемая проводником. Проводник, он же «лидер», начинает быстрыми извилистыми движениями приближаться к земле. Сначала он проскакивает на 50 метров вправо, потом на 50 метров влево. Это тот самый зигзаг, который мы видим в небе. Путь лидера к земле продолжается в течение долей секунды, сила тока в молнии достигает 200 ампер. В домашней проводке сила тока не превышает 6 ампер. Когда лидер находится на расстоянии около 20 метров от земли, от нее в направлении к лидеру выскакивает искра и соединяется с ним. Ослепительный зигзаг несется кверху, к облаку, сила тока при этом достигает 10000 ампер.

Удар молнии содержит достаточно электричества, чтобы осветить все дома и предприятия в целом штате, но только на протяжении доли секунды.

По образовавшемуся коридору вниз тихо проскальзывает следующий лидер, навстречу которому вновь летит гигантская искра. Температура при ударе молнии достигает 28000 градусов Цельсия. Потоки электричества много раз пролетают по каналу вверх и вниз: именно этот процесс мы воспринимаем как один удар молнии.

Как велика энергия одной молнии?
Примерно 20 тысяч мегаватт, этой энергии достаточно, чтобы осветить все дома и предприятия целой республики, правда только на долю секунды.