Принцип действия операционного усилителя
Операционные усилители. Виды и работа. Питание и особенности
Операционные усилители являются одними из основных компонентов в современных аналоговых электронных устройствах. Благодаря простоте расчетов и отличным параметрам, операционные усилители легки в применении. Их также называют дифференциальными усилителями, так как они способны усилить разность входных напряжений.
Особенно популярно использование операционных усилителей в звуковой технике, для усиления звучания музыкальных колонок.
Обозначение на схемах
Операционные усилители на корпусе имеют обычно пять выводов, из которых два вывода – входы, один – выход, остальные два – питание.
Принцип действия
Существуют два правила, помогающие понять принцип действия операционного усилителя:
- Выход операционного усилителя стремится к нулевой разности напряжений на входах.
- Входы усилителя не расходуют ток.
Первый вход обозначен «+», он называется неинвертирующим. Второй вход обозначен знаком «–», считается инвертирующим.
Входы усилителя имеют высокое сопротивление, называемое импедансом. Это позволяет расходовать ток на входах в несколько наноампер. На входе происходит оценка величины напряжений. В зависимости от этой оценки усилитель выдает на выход усиленный сигнал.
Большое значение имеет коэффициент усиления, который иногда достигает миллиона. Это означает, что если на вход подать хотя бы 1 милливольт, то на выходе напряжение будет равно величине напряжения источника питания усилителя. Поэтому операционники не применяют без обратной связи.
Входы усилителя действуют по следующему принципу: если напряжение на неинвертирующем входе будет выше напряжения инвертирующего входа, то на выходе окажется наибольшее положительное напряжение. При обратной ситуации на выходе будет наибольшее отрицательное значение.
Отрицательное и положительное напряжение на выходе операционного усилителя возможно из-за использования источника питания, обладающего расщепленным двуполярным напряжением.
Питание операционного усилителя
Если взять пальчиковую батарейку, то у нее два полюса: положительный и отрицательный. Если отрицательный полюс считать за нулевую точку отсчета, то положительный полюс покажет +1,5 В. Это видно по подключенному мультиметру.
Взять два элемента и подключить их последовательно, то получается следующая картина.
Если за нулевую точку принять отрицательный полюс нижней батарейки, а напряжение измерять на положительном полюсе верхней батарейки, то прибор покажет +10 вольта.
Если за ноль принять среднюю точку между батарейками, то получается источник двуполярного напряжения, так как имеется напряжение положительной и отрицательной полярности, равной соответственно +5 вольта и -5 вольта.
Существуют простые схемы блоков с расщепленным питанием, использующиеся в конструкциях радиолюбителей.
Питание на схему подается от бытовой сети. Трансформатор понижает ток до 30 вольт. Вторичная обмотка в середине имеет ответвление, с помощью которого на выходе получается +15 В и -15 В выпрямленного напряжения.
Разновидности
Существует несколько разных схем операционных усилителей, которые стоит рассмотреть подробно.
Инвертирующий усилитель
Такая схема является основной. Особенностью этой схемы является то, что операционники характеризуются кроме усиления, еще и изменением фазы. Буква «k» обозначает параметр усиления. На графике изображено влияние усилителя в данной схеме.
Синий цвет отображает входной сигнал, а красный цвет – выходной сигнал. Коэффициент усиления в этом случае равен: k = 2. Амплитуда сигнала на выходе в 2 раза больше, сигнала на входе. Выходной сигнал усилителя перевернут, отсюда и его название. Инвертирующие операционные усилители имеют простую схему:
Такие операционные усилители стали популярными из-за своей простой конструкции. Для вычисления усиления применяют формулу:
Отсюда видно, что усиление операционника не зависит от сопротивления R3, поэтому можно обойтись без него. Здесь он применяется для защиты.
Неинвертирующие операционные усилители
Эта схема подобна предыдущей, отличием является отсутствие инверсии (перевернутости) сигнала. Это означает сохранение фазы сигнала. На графике изображен усиленный сигнал.
Коэффициент усиления неинвертирующего усилителя также равен: k = 2. На вход подается сигнал в форме синусоиды, на выходе изменилась только ее амплитуда.
Эта схема не менее простая, чем предыдущая, в ней имеется два сопротивления. На входе сигнал подается на плюсовой вывод. Для расчета коэффициента усиления требуется использовать формулу:
Из нее видно, что коэффициент усиления не бывает меньше единицы, так как сигнал не подавляется.
Схема вычитания
Эта схема дает возможность создания разности двух сигналов на входе, которые могут быть усилены. На графике показан принцип действия дифференциальной схемы.
Такую схему усилителя еще называют схемой вычитания.
Она имеет более сложную конструкцию, в отличие от рассмотренных ранее схем. Для расчета выходного напряжения пользуются формулой:
Левая часть выражения (R3/R1) определяет коэффициент усиления, а правая часть (Ua – Ub) является разностью напряжений.
Схема сложения
Такую схему называют интегрированным усилителем. Она противоположна схеме вычитания. Особенностью ее является возможность обработки больше двух сигналов. На таком принципе действуют все звуковые микшеры.
Эта схема показывает возможность суммирования нескольких сигналов. Для расчета напряжения применяется формула:
Схема интегратора
Если в схему добавить конденсатор в обратную связь, то получится интегратор. Это еще одно устройство, в котором используются операционные усилители.
Схема интегратора подобна инвертирующему усилителю, с добавлением емкости в обратную связь. Это приводит к зависимости работы системы от частоты сигнала на входе.
Интегратор характеризуется интересной особенностью перехода между сигналами: сначала прямоугольный сигнал преобразуется в треугольный, далее он переходит в синусоидальный. Расчет коэффициента усиление проводится по формуле:
В этой формуле переменная ω = 2πf повышается с возрастанием частоты, следовательно, чем больше частота, тем коэффициент усиления меньше. Поэтому интегратор может действовать в качестве активного фильтра низких частот.
Схема дифференциатора
В этой схеме получается обратная ситуация. На входе подключена емкость, а в обратной связи подключено сопротивление.
Судя по названию схемы, ее принцип работы заключается в разнице. Чем больше скорость изменения сигнала, тем больше величина коэффициента усиления. Этот параметр дает возможность создавать активные фильтры для высокой частоты. Коэффициент усиления для дифференциатора рассчитывается по формуле:
Это выражение обратно выражению интегратора. Коэффициент усиления повышается в отрицательную сторону с возрастанием частоты.
Аналоговый компаратор
Устройство компаратора сравнивает два значения напряжения и переводит сигнал в низкое или высокое значение на выходе, в зависимости от состояния напряжения. Эта система включает в себя цифровую и аналоговую электронику.
Особенностью этой системы является отсутствие в основной версии обратной связи. Это означает, что сопротивление петли очень велико.
На плюсовой вход подается сигнал, а на минусовой вход подается основное напряжение, которое задается потенциометром. Ввиду отсутствия обратной связи коэффициент усиления стремится к бесконечности.
При превышении напряжения на входе величины основного опорного напряжения, на выходе получается наибольшее напряжение, которое равно положительному питающему напряжению. Если на входе напряжение будет меньше опорного, то выходным значением будет отрицательное напряжение, равное напряжению источника питания.
В схеме аналогового компаратора имеется значительный недостаток. При приближении значений напряжения на двух входах друг к другу, возможно частое изменение выходного напряжения, что обычно приводит к пропускам и сбоям в работе реле. Это может привести к нарушению работы оборудования. Для решения этой задачи применяют схему с гистерезисом.
Аналоговый компаратор с гистерезисом
На рисунке показана схема действия схемы с гистерезисом, которая аналогична предыдущей схеме. Отличием является то, что выключение и включение не происходит при одном напряжении.
Направление стрелок на графике указывает направление перемещения гистерезиса. При рассмотрении графика слева направо видно, что переход к более низкому уровню осуществляется при напряжении Uph, а двигаясь справа налево, напряжение на выходе достигнет высшего уровня при напряжении Upl.
Такой принцип действия приводит к тому, что при равных значениях входных напряжений, состояние на выходе не изменяется, так как для изменения требуется разница напряжений на существенную величину.
Такая работа схемы приводит к некоторой инертности системы, однако это более безопасно, в отличие от схемы без гистерезиса. Обычно такой принцип действия применяется в нагревательных приборах с наличием термостата: плиты, утюги и т.д. На рисунке изображена схема усилителя с гистерезисом.
Напряжения рассчитываются по следующим зависимостям:
Повторители напряжения
Операционные усилители часто применяются в схемах повторителей напряжения. Основной особенностью этих устройств является то, что в них не происходит усиления или ослабления сигнала, то есть, коэффициент усиления в этом случае равен единице. Такая особенность связана с тем, что петля обратной связи имеет сопротивление, равное нулю.
Такие системы повторителей напряжения чаще всего используются в качестве буфера для увеличения нагрузочного тока и работоспособности устройства. Так как входной ток приближен к нулю, а ток на выходе зависит от вида усилителя, то есть возможность разгрузки слабых источников сигнала, например, некоторых датчиков.
Операционный усилитель
Что такое операционный усилитель
Операционный усилитель (ОУ) англ. Operational Amplifier (OpAmp), в народе – операционник, является усилителем постоянного тока (УПТ) с очень большим коэффициентом усиления. Словосочетание «усилитель постоянного тока» не означает, что операционный усилитель может усиливать только постоянный ток. Имеется ввиду, начиная с частоты в ноль Герц, а это и есть постоянный ток.
Термин «операционный» укрепился давно, так как первые образцы ОУ использовались для различных математических операций типа интегрирования, дифференцирования, суммирования и тд. Коэффициент усиления ОУ зависит от его типа, назначения, структуры и может превышать 1 млн!
Обозначение на схеме операционного усилителя
На схемах операционный усилитель обозначается вот так:
Чаще всего ОУ на схемах обозначаются без выводов питания
Итак, далее по классике, слева два входа, а справа – выход.
Вход со знаком «плюс» называют НЕинвертирующий, а вход со знаком «минус» инвертирующий. Не путайте эти два знака с полярностью питания! Они НЕ говорят о том, что надо в обязательном порядке подавать на инвертирующий вход сигнал с отрицательной полярностью, а на НЕинвертирующий сигнал с положительной полярностью, и далее вы поймете почему.
Питание операционных усилителей
Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять – двухполярное питание?
Давайте представим себе батарейку
Думаю, все вы в курсе, что у батарейки есть “плюс” и есть “минус”. В этом случае “минус” батарейки принимают за ноль, и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.
А давайте возьмем еще одну такую батарейку и соединим их последовательно:
Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.
А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?
Вот здесь мы как раз и получили двухполярное питание.
Идеальная и реальная модель операционного усилителя
Для того, чтобы понять суть работы ОУ, рассмотрим его идеальную и реальную модели.
1) Входное сопротивление идеального ОУ бесконечно большое.
В реальных ОУ значение входного сопротивления зависит от назначения ОУ (универсальный, видео, прецизионный и т.п.) типа используемых транзисторов и схемотехники входного каскада и может составлять от сотен Ом и до десятков МОм. Типовое значение для ОУ общего применения – несколько МОм.
2) Второе правило вытекает из первого правила. Так как входное сопротивление идеального ОУ бесконечно большое, то входной ток будет равняться нулю.
На самом же деле это допущение вполне справедливо для ОУ с полевыми транзисторами на входе, у которых входные токи могут быть меньше пикоампер. Но есть также ОУ с биполярными транзисторами на входе. Здесь уже входной ток может быть десятки микроампер.
3) Выходное сопротивление идеального ОУ равняется нулю.
Это значит, что напряжение на выходе ОУ не будет изменяться при изменении тока нагрузки. В реальных ОУ общего применения выходное сопротивление составляет десятки Ом (обычно 50 Ом).
Кроме того, выходное сопротивление зависит от частоты сигнала.
4) Коэффициент усиления в идеальном ОУ бесконечно большой. В реальности он ограничен внутренней схемотехникой ОУ, а выходное напряжение ограничено напряжением питания.
5) Так как коэффициент усиления бесконечно большой, следовательно, разность напряжений между входами идеального ОУ равняется нулю. Иначе если даже потенциал одного входа будет больше или меньше хотя бы на заряд одного электрона, то на выходе будет бесконечно большой потенциал.
6) Коэффициент усиления в идеальном ОУ не зависит от частоты сигнала и постоянен на всех частотах. В реальных ОУ это условие выполняется только для низких частот до какой-либо частоты среза, которая у каждого ОУ индивидуальна. Обычно за частоту среза принимают падение усиления на 3 дБ или до уровня 0,7 от усиления на нулевой частоте (постоянный ток).
Схема простейшего ОУ на транзисторах выглядит примерно вот так:
Принцип работы операционного усилителя
Давайте рассмотрим, как работает ОУ
Принцип работы ОУ очень прост. Он сравнивает два напряжения и на выходе уже выдает отрицательный, либо положительный потенциал питания. Все зависит от того, на каком входе потенциал больше. Если потенциал на НЕинвертирующем входе U1 больше, чем на инвертирующем U2, то на выходе будет +Uпит, если же на инвертирующем входе U2 потенциал будет больше, чем на НЕинвертирующем U1, то на выходе будет -Uпит. Вот и весь принцип ;-).
Давайте рассмотрим этот принцип в симуляторе Proteus. Для этого выберем самый простой и распространенный операционный усилитель LM358 (аналоги 1040УД1, 1053УД2, 1401УД5) и соберем примитивную схему, показывающую принцип работы
Подадим на НЕинвертирующий вход 2 Вольта, а на инвертирующий вход 1 Вольт. Так как на НЕинвертирующем входе потенциал больше, то следовательно, на выходе мы должны получить +Uпит. Мы получили 13,5 Вольт, что близко к этому значению
Но почему не 15 Вольт? Виновата во всем сама внутренняя схемотехника ОУ. Максимальное значение ОУ не всегда может равняться положительному либо отрицательному напряжению питания. Оно может отклоняться от 0,5 и до 1,5 Вольт в зависимости от типа ОУ.
Но, как говорится, в семье не без уродов, и поэтому на рынке уже давно появились ОУ, которые могут выдавать на выходе допустимое напряжение питания, то есть в нашем случае это значения, близкие к +15 и -15 Вольтам. Такая фишка называется Rail-to-Rail, что в дословном переводе с англ. “от рельса до рельса”, а на языке электроники “от одной шины питания и до другой”.
Давайте теперь на инвертирующий вход подадим потенциал больше, чем на НЕинвертирущий. На инвертирующий подаем 2 Вольта, а на НЕинвертирующий подаем 1 Вольт:
Как вы видите, в данный момент выход “лег” на -Uпит, так как на инвертирующем входе потенциал был больше, чем на НЕинвертирующем.
Чтобы не качать лишний раз программный комплекс Proteus, можно в онлайне с помощью программы Falstad сэмулировать работу идеального ОУ. Для этого выбираем вкладку Circuits—Op-Amps—>OpAmp. В результате на вашем экране появится вот такая схемка:
На правой панели управления увидите бегунки для добавления напряжения на входы ОУ и уже можете визуально увидеть, что получится на выходе ОУ при изменении напряжения на входах.
Что будет на выходе ОУ, если на обоих входах будет ноль вольт?
Итак, мы рассмотрели случай, когда напряжение на входах может различаться. Но что будет, если они будут равны? Что нам покажет Proteus в этом случае? Хм, показал +Uпит.
А что покажет Falstad? Ноль Вольт.
Кому верить? Никому! В реале, такое сделать невозможно, чтобы на два входа загнать абсолютно равные напряжения. Поэтому такое состояние ОУ будет неустойчивым и значения на выходе могут принимать значения или -E Вольт, или +E Вольт.
Давайте подадим синусоидальный сигнал амплитудой в 1 Вольт и частотой в 1 килоГерц на НЕинвертирующий вход, а инвертирующий посадим на землю, то есть на ноль.
Смотрим, что имеем на виртуальном осциллографе:
Что можно сказать в этом случае? Когда синусоидальный сигнал находится в отрицательной области, на выходе ОУ у нас -Uпит, а когда синусоидальный сигнал находится в положительной области, то и на выходе имеем +Uпит.
Скорость нарастания выходного напряжения
Также обратите внимание на то, что напряжение на выходе ОУ не может резко менять свое значение. Поэтому, в ОУ есть такой параметр, как скорость нарастания выходного напряжения VUвых .
Этот параметр показывает насколько быстро может измениться выходное напряжение ОУ при работе в импульсных схемах. Измеряется в Вольт/сек. Ну и как вы поняли, чем больше значение этого параметра, тем лучше ведет себя ОУ в импульсных схемах. Для LM358 этот параметр равен 0,6 В/мкс.
При участии Jeer
Также смотрите видео “Что такое операционный усилитель (ОУ) и как он работает”
Что такое операционный усилитель?
В радиоэлектронике и микросхемотехнике широкое распространение получил операционный усилитель (ОУ). Он обладает отличными техническими характеристиками (ТХ) по усилению сигналов. Чтобы понять сферы применения ОУ, нужно узнать его принцип действия, схему подключения и основные ТХ.
Что такое операционный усилитель
ОУ — интегральная микросхема (ИМС), основным предназначением которой является усиление значения постоянного тока. Она имеет только один выход, который называется дифференциальным. Этот выход обладает высоким коэффициентом, усиливающим сигнал (Kу). ОУ в основном применяются при построении схем с отрицательной обратной связью (ООС), которая при основной ТХ по усилению и определяет Kу исходной схемы. ОУ применяются не только в виде отдельных ИМС, но и в разных блоках сложных устройств.
У ОУ 2 входа и 1 выход, а также есть выводы для подключения источника питания (ИП). Принцип действия операционного усилителя прост. Существует 2 правила, взятых за основу. Правила описывают простые процессы работы ИМС, происходящие в ОУ, и как работает ИМС, понятно даже чайникам. На выходе разность напряжений (U) равна 0, а входы ОУ почти не потребляют ток (I). Один вход называется неинвертирующим (V+), а другой является инвертирующим (V-). Кроме того, входы ОУ обладают высоким сопротивлением (R) и практически не потребляют I.
Чип сравнивает значения U на входах и выдает сигнал, предварительно усиливая его. Kу ОУ имеет высокое значение, достигающее 1000000. Если произойдет подача низкого U на вход, то на выходе возможно получить величину, равную U источника питания (Uип). Если U на входе V+ больше, чем на V-, то на выходе получится максимальное положительное значение. При запитывании положительным U инвертирующего входа на выходе будет максимальная величина отрицательного напряжения.
Основным требованием для работы ОУ является применение двухполярного ИП. Возможно применение однополярного ИП, но при этом возможности ОУ сильно ограничиваются. Если использовать батарейку и принять за 0 ее плюсовую сторону, то при измерении значений получится 1,5 В. Если взять 2 батарейки и соединить их последовательно, то произойдет сложение U, т.е. прибор покажет 3 В.
Если принять за ноль минусовой вывод батарейки, то прибор покажет 3 В. В другом случае, если принять за 0 плюсовой вывод, то получается -3 В. При использовании в качестве нуля точки между двумя батарейками получится примитивный двухполярный ИП. Проверить исправность ОУ можно только при подключении его в схему.
Виды и обозначения на схеме
С развитием электросхемотехники операционные усилители постоянно совершенствуются и появляются новые модели.
Классификация по сферам применения:
- Индустриальные — дешевый вариант.
- Презиционные (точная измерительная аппаратура).
- Электрометрические (малое значение Iвх).
- Микромощные (потребление малого I питания).
- Программируемые (токи задаются при помощи I внешнего).
- Мощные или сильноточные (отдача большего значения I потребителю).
- Низковольтные (работают при U Читайте также: Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142
Основные характеристики
ОУ, как и другие радиодетали, имеют ТХ, которые можно разделить на типы:
- Усилительные.
- Входные.
- Выходные.
- Энергетические.
- Дрейфовые.
- Частотные.
- Быстродействие.
Коэффициент усиления является основной характеристикой ОУ. Он характеризуется отношением выходного сигнала ко входному. Его еще называют амплитудной, или передаточной ТХ, которая представлена в виде графиков зависимости. К входным относятся все величины для входа ОУ: Rвх, токи смещения (Iсм) и сдвига (Iвх), дрейф и максимальное входное дифференциальное U (Uдифмакс).
Iсм служит для работы ОУ на входах. Iвх нужен для функционирования входного каскада ОУ. Iвх сдвига — разность Iсм для 2 входных полупроводников ОУ.
Во время построения схем нужно учитывать эти I при подключении резисторов. Если Iвх не учитывать, то это может привести к созданию дифференциального U, которое приведет к некорректной работе ОУ.
Uдифмакс — U, которое подается между входами ОУ. Его величина характеризует исключение повреждения полупроводников каскада дифференциального исполнения.
Для надежной защиты между входами ОУ подключаются встречно-параллельно 2 диода и стабилитрона. Дифференциальное входное R характеризуется R между двумя входами, а синфазное входное R — величина между 2 входами ОУ, которые объединены, и массой (земля). К выходным параметрам ОУ относятся выходное R (Rвых), максимальное выходное U и I. Параметр Rвых должен быть меньшим по значению для обеспечения лучших характеристик усиления.
Для достижения маленького Rвых нужно применять эмиттерный повторитель. Iвых изменяется при помощи коллекторного I. Энергетические ТХ оцениваются максимальной мощностью, которую потребляет ОУ. Причина некорректной работы ОУ — разброс ТХ полупроводников дифференциального усилительного каскада, зависящего от температурных показателей (температурный дрейф). Частотные параметры ОУ являются основными. Они способствуют усилению гармонических и импульсных сигналов (быстродействие).
В ИМС ОУ общего и специального вида включается конденсатор, предотвращающий генерацию высокочастотных сигналов. На частотах с низким значением схемы обладают большим коэффициентом Kу без обратной связи (ОС). При ОС используется неинвертирующее включение. Кроме того, в некоторых случаях, например при изготовлении инвертирующего усилителя, ОС не используется. Кроме того, у ОУ есть динамические характеристики:
- Скорость нарастания Uвых (СН Uвых).
- Время установления Uвых (реакция ОУ при скачке U).
Где применяются
Существует 2 вида схем ОУ, которые различаются способом подключения. Главный недостаток ОУ — непостоянство Kу, зависящего от режима функционирования. Основные сферы применения — усилители: инвертирующий (ИУ) и неинвертирующий (НИУ). В схеме НИУ Kу по U задается резисторами (сигнал нужно подавать на вход). ОУ содержит ООС последовательного типа. Эта связь выполнена на одном из резисторов. Она подается только на V-.
В ИУ происходит сдвиг сигналов по фазе. Для изменения знака выходного отрицательного напряжения необходима параллельная ОС по U. Вход, который является неинвертирующим, нужно заземлить. Входной сигнал через резистор подается на инвертирующий вход. Если неинвертирующий вход уходит на землю, то разность U между входами ОУ равна 0.
Можно выделить устройства, в которых применяются ОУ:
- Предусилители.
- Усилители звуковых и видеочастотных сигналов.
- Компараторы U.
- Дифусилители.
- Диференциаторы.
- Интеграторы.
- Фильтрующие элементы.
- Выпрямители (повышенная точность выходных параметров).
- Стабилизаторы U и I.
- Вычислители аналогового типа.
- АЦП (аналого-цифровые преобразователи).
- ЦАП (цифро-аналоговые преобразователи).
- Устройства для генерации различных сигналов.
- Компьютерная техника.
Операционные усилители и их применение получили широкое распространение в различной аппаратуре.
Что такое биполярный транзистор и какие схемы включения существуют
Что такое триггер, для чего он нужен, их классификация и принцип работы
Что такое аттенюатор, принцип его работы и где применяется
Что такое компаратор напряжения и для чего он нужен
Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность
Что такое делитель напряжения и как его рассчитать?
Операционный усилитель это
Операционный усилитель это элемент электроники
Операционный усилитель это один из главных составных частей нынешней электроники. Обладая прекрасными характеристиками и легкости расчетных функций, ОУ довольно просты в использовании. У операционных усилителей есть еще другое, параллельное название — дифференциальный усилитель, из-за того, что у него имеется возможность усиления разности входных напряжений.
В основном операционные усилители производятся в виде интегральных микросхем. В зависимости от назначения, могут размещаться по одному чипу в корпусе, а в некоторых случаях по два и более. Также производители выпускают ОУ различных модификаций, которые имеют существенные различия в технических характеристиках относительно друг друга.
По теоретическим расчетам ОУ обладает совершенными параметрами, в практическом же применении его характеристики только на пути к безупречным. Тем не менее в определенных моментах они достигаются. Применение понятия «совершенного» операционного усилителя способствует сделать расчеты более простыми.
Ламповый операционный усилитель K2-W
Такими безупречными характеристиками являются:
- бесконечно большое усиление при открытой петли обратной связи;
- бесконечно широкая полоса передаваемых частот;
- бесконечно большое входное сопротивление;
- импеданс равный нулю;
- выходное напряжение равно нулю при равенстве входных напряжений.
Из этого можно понять, что такие параметрические данные не могут быть гарантированы в полном объеме, хотя производители ежегодно улучшают характеристики операционников, тем самым делая их почти идеальными.
Существует некоторое количество ключевых схем, по которым работает ОУ:
- инвертирующий
- не инвертирующий
- вычитание
- сложение
- дифференцирование
- интегрирование
- повторитель напряжения
- аналоговый компаратор
Принцип действия инвертирующего усилителя
Данная аналоговая схема считается наиболее простой и часто используемая в электронике. Рабочие действия ОУ заключаются в усилении либо снижении сигнала на входе устройства, при этом он способен выполнять фазовую модуляцию. Функция усиливающая сигнал определяется буквенным обозначением k. Представленное графическое изображение демонстрирует определенное воздействие операционного усилителя в данной схеме:
Амплитуда отображенная синим цветом является сигналом во входном тракте устройства, а амплитуда красного цвета — выходная цепь. Как можно заметить на графике, идет двойное усиление сигнала, при этом амплитуда имеет перевернутый вид.
Принципиальная схема данного усилителя показана на снимке ниже:
Принцип действие данной схемы, как бы обосновывает популярность этого электронного прибора. Для того, чтобы определить коэффициент усиления сигнала на выходе нужно воспользоваться формулой приведенной ниже:
Включенный в схему постоянное сопротивление R3 выполняет функцию защиты микросхемы.
Принцип действия не инвертирующего усилителя
Схема не инвертирующего усилителя выполнена по аналогии инвертирующего усилителя, но с одним лишь отличием, в этом варианте не выполняется изменение полярности сигнала, то-есть фаза остается без изменений. Показанное ниже графическое изображение показывает прохождение выходного сигнала:
В данной схеме, при подаче во входную цепь синусоидального сигнала, усиленный выходной импульс, так же как и в предыдущей схеме составляет k=2, то есть двойной коэффициент усиления. График показывает, что при этом изменился только размах амплитуды.
На изображении ниже, показана схема ОУ работающего как не инвертирующий усилитель:
Показанная здесь схема, с включенными в нее парой резисторов, так же отличается своей простотой в исполнении. Сигнальный импульс по входу поступает на плюсовой вход микросхемы. Для расчета коэффициента усиления сигнала служит следующая формула:
Формула определяет: у усиливающего сигнала не должно быть условное значение, которое меньше «1», тем самым микросхема не даст возможности уменьшить сигнал.
Принцип работы операционного усилителя в схеме вычисления — дифференциальный усилитель
Следующим вариантом применения ОУ будет дифференциальный усилитель, и возможностью получения по входу разность двух сигнальных импульсов с последующим усилением. Представленный ниже график показывает работу микросхемы.
Очередная схема, способна выполнить следующую работу ОУ:
Данный вариант принципиальной схемы не такой простой как представленные выше, а немного посложнее. Для вычисления выходного напряжения, нужно воспользоваться формулой:
Одна часть формулы определяет усиление либо уменьшение, другая часть высчитывает разницу 2-х напряжений.
Операционный усилитель работающий по схеме сложения
Этот характер работы микросхемы кардинально отличается от варианта вычитания. В данном случае имеется значительное преимущество прибора, а именно: его способность обрабатывать одновременно несколько сигнальных импульсов. Такой принцип функционирования используют все звуковые микшеры.
Представленная схема показывает ее возможность сложения большого количества сигналов, она не очень сложная и разобраться с ней не составит никакого труда. Для вычисления данных применяется формула:
Начинающим. Операционные усилители
Операционный усилитель. Принцип работы и схемы включения.
Продолжаем изучать основы электроники на нашем сайте, и героем сегодняшней статьи будет еще одно замечательное устройство – а именно операционный усилитель. Сегодня разберемся, что это вообще такое, как он работает, ну и парочку основных схем по традиции разберем
Итак, по определению ОУ – это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления и несимметричным выходом. Теперь разберемся, что это значит…
ОУ имеет два входа и один выход. Один из этих входов называют неинвертирующим и обозначают на схемах плюсом, второй, соответственно, является инвертирующим. Так вот, напряжение на выходе ОУ определяется следующим образом:
K – это коэффициент усиления операционника, обычно он имеет значения порядка 100000 – 1000000. Из формулы видим, что в случае, когда сигналы на обоих входах ОУ равны, на выходе ноль. Если, например, потенциал инвертирующего входа (-) стал более положительным, чем потенциал неинвертирующего входа (+), то выходной сигнал изменится в отрицательном направлении. В этом и заключается работа операционного усилителя.
Помимо уже упомянутых входов и выхода ОУ имеет также выводы для подачи питания, и вот как выглядит его обозначение на принципиальных схемах:
Чаще всего в схемах на операционниках используется обратная связь, поскольку коэффициент усиления ОУ без обратной связи слишком уж велик В замечательной книге Хоровица и Хилла приведены несколько, а точнее два правила, которые определяют как работает операционник в схемах с обратной связью.
- Итак, первое правило заключается в том, что входы ОУ не потребляют ток. Конечно, в реальности потребление все-таки есть, поскольку идеального ничего не бывает, но это потребление составляет единицы нА, а то и меньше.
- Второе правило заключается в том, что выход ОУ стремится к тому, чтобы разность напряжений между его входами была равна нулю. Вот эта формулировка мне, честно говоря, не слишком нравится. А суть тут заключается в том, что часть выходного напряжения через цепь обратной связи передается на вход и в результате этого потенциал обоих входов ОУ выравнивается.
Для того, чтобы разобраться в работе операционного усилителя, давайте рассмотрим пару-тройку схем. И начнем со схемы неинвертирующего усилителя (кстати на схемах порой опускают обозначение выводов для подачи питания на ОУ, мы, пожалуй, тоже так поступим ):
Для начала определим, какое же значение напряжения мы получим на выходе, подав на вход U_ <вх>. Как следует из второго правила – операционник с обратной связью “добьется” того, чтобы потенциалы входов выровнялись, а это значит, что:
Но в то же время R_1 и R_2 образуют делитель напряжения и тогда:
Приравниваем эти два значения и получаем, что:
Получили такой вот коэффициент усиления для неинвертирующего усилителя на операционном усилителе с обратной связью.
Давайте рассмотрим конкретный пример, чтобы еще лучше понять работу данной схемы. Пусть будут такие номиналы: R_2 = 10medspace КОм , R_1 = 1medspace КОм . На вход подадим 1 В. В этом случае напряжение на выходе ОУ начнет расти, поскольку ( U_+medspace-medspace U_- > 0 ).
И расти оно будет до тех пор, пока потенциал на инвертирующем (-) выходе не станет равен 1 В (так как на неинвертирующем входе (+) у нас как раз-таки 1 В). Остается определить, при каком выходном значении напряжения, U_- будет равно 1 В. Входы ОУ ток не потребляют, значит ток протекает по цепи выход – R_2 – R_1 – земля:
Из этого равенства без проблем определим U_ <вых>, при значении U_- равном 1 В:
Подставив наши значения, получим U_ <вых>= 11medspace В . Это подтверждает верность выведенной нами ранее формулы U_ <вых>= U_<вх>medspace(1 + frac
С неинвертирующим усилителем разобрались, давайте рассмотрим еще одну схему – инвертирующий усилитель.
В принципе работает эта схема практически так же, как предыдущая. На неинвертирующем (+) входе потенциал земли, значит на инвертирующем тоже будет такой же потенциал. То есть:
Не забываем, что ток входы ОУ не потребляют, а значит ток протекает по цепи выход – R_2 – R_1 – вход и равен он:
Отсюда нам остается только выразить U_
Сразу же становится понятно, почему усилитель называется инвертирующим Сигналы на входе и на выходе разных знаков.
В завершение рассмотрим, пожалуй, еще одну небольшую схемку, а именно схему повторителя на операционном усилителе с обратной связью:
Если внимательно посмотреть на эту схему, то становится понятно, что это всего лишь неинвертирующий усилитель, у которого R_1 равно бесконечности, а R_2 равно нулю. Подставив эти значения в формулу для U_
Таким образом, напряжение на выходе повторяет сигнал на входе! Огромный плюс такого повторителя заключается в том, что его входной импеданс огромен, а выходной, напротив, мал.
Наверно, на этом сегодня закончим, а в следующей статье рассмотрим и проанализируем какие-нибудь схемки посложнее До скорых встреч!
Принцип действия операционного усилителя
Операционные усилители в источниках питания – типы и математика работы
Операционные усилители являются важным элементом схемотехники источников питания, прежде всего – в части построения систем обратной связи и регулировки выходного напряжения, тока, мощности, схемы обратной связи по току. Из большого числа типов операционных усилителей в силовой электронике применяются следующие классы ОУ:
— ОУ общего применения (индустриальные LM324, LM358);
— ОУ с однополярным питанием;
— ОУ с широким диапазоном выходного напряжения – усилители так называемого класса rail-to-rail (R2R).
Другие классы ОУ при построении источников питания используются существенно реже. Условное обозначение операционного усилителя представлено на рисунке OPAMP.1.
Рисунок OPAMP.1 — Условное обозначение операционного усилителя
Операционный усилитель – это математический прибор, обеспечивающий выполнение математических операций с аналоговыми сигналами. Отдельный операционный усилитель содержит:
При отсутствии обратной связи напряжение на выходе Vout в математически идеальном ОУ связано с напряжением на входе следующим образом:
Vout – напряжение на выходе ОУ;
V+ – напряжение на неинвертирующем (+) входе;
V− – напряжение на инвертирующем (-) входе;
Gopenloop — коэффициент усиления с разомкнутой петлёй обратной связи.
В реальном ОУ максимальное выходное напряжение ограничивается величиной напряжения питания. Режим без обратной связи практически не используется (т.к. он в принципе не нужен), а используются схемы с обратной связью, основными из которых являются:
— схема неинвертирующего усилителя;
— схема инвертирующего усилителя;
— схема дифференциального усилителя.
Основные параметры операционного усилителя
1. Напряжение питания (Supply Voltage) V – напряжение питания операционного усилителя. Обычно указывают минимальный уровень напряжения, при котором еще возможна работа ОУ и максимальное значение между «+» и «-» входами питания выше которого усилитель выходит из строя.
2. Максимальное дифференциальное входное напряжение (Differential Input Voltage) – максимальное напряжение между инвертирующим и неинвертирующим входами ОУ.
3. Максимальное входное напряжение (Input Voltage) – максимальное напряжение на любом из входов ОУ.
4. Максимальная рассеваемая мощность (Power Dissipation) – максимальная мощность рассеваемая корпусом ОУ.
5. Входной ток ОУ (Input Current) – величина тока входов операционного усилителя. В ОУ с входными каскадами на биполярных транзисторах выходной ток может зависеть от полярности напряжения: при положительных входных напряжениях он будет незначительным (единицы-десятки мкА), а при отрицательных напряжениях относительно «–» напряжения питания – составлять десятки мА.
6. Напряжение смещения (Input Offset Voltage) – максимальная разность напряжений между «+» и «-» входами ОУ в линейном режиме работы в составе одной из схем с положительной обратной связью. Этот параметр характеризует точность (прецезионность) ОУ.
7. Входной ток смещения, эквивалентный входной ток (Input Bias Current) – входной ток в линейном режиме работы.
8. Разность входных токов (Input Offset Current) – разность между входными токами ОУ.
9. Диапазон входных напряжений (Input Common-Mode Voltage Range) – показывает минимальное и максимальное напряжения на входах ОУ при условии работы в линейном режиме.
10. Потребляемый ток (Supply Current) – ток питания ОУ. Как правило, указывается ток собственного потребления ОУ без нагрузки.
11. Статический коэффициент усиления при большом сигнале (Large Signal Voltage Gain) – показывает отношение изменения выходного напряжения к вызвавшему это изменение изменению разности потенциалов между входами ОУ.
12. Коэффициент ослабления синфазного сигнала (common-mode rejection ratio).
13. Коэффициент подавления пульсаций напряжения питания (power supply rejection ratio).
14. Коэффициент связи между ОУ – для нескольких ОУ и одном корпусе (Amplifier-to-Amplifier Coupling).
15. Выходной ток цепи источника питания/цепь стока (Output Current Source/Sink).
Основные схемы включения операционных усилителей
Схема неинвертирующего усилителя
На рисунке OPAMP.2 изображена электрическая схема неинвертирующего усилителя на ОУ и её частный случай — повторитель напряжения. Резисторы R1 и R2 образуют резисторный делитель, обеспечивающий отрицательную обратную связь – часть напряжения с выхода ОУ поступает на инвертирующий вход усилителя. Коэффициент усиления регулируется глубиной обратной связи – коэффициентом деления резисторного делителя. Если же напряжение с выход ОУ напрямую подается на инвертирующий вход, то получается схема повторителя напряжения. Преимуществом схемы неинвертирующего усилителя является высокое входное сопротивление, отсутствие инверсии сигнала.
Рисунок OPAMP.2 — Схема неинвертирующего усилителя (a) и повторителя напряжения (b)
Схема инвертирующего усилителя
На рисунке OPAMP.3 изображена электрическая схема инвертирующего усилителя на ОУ. Здесь отрицательная обратная связь обеспечивается за счет резистора R2 соединенного с выходом микросхемы ОУ.
Недостатками схемы является низкое входное сопротивление, полностью определяемое сопротивлением R1 и инверсия входного сигнала.
Рисунок OPAMP.3 — Схема инвертирующего усилителя
Схема дифференциального усилителя
Схема дифференциального усилителя на ОУ (рисунок OPAMP.4) усиливает разность между входными напряжениями. Входное сопротивление схем определяется резистором R1 для входа 1 и суммой сопротивлений R1’ и R2’ для входа 2. Видно, что в общем случае в данной схеме перестановка входных сигналов местами изменяет результат – выходное напряжение. И лишь при равенстве сопротивлений резисторов:
Выходное напряжение равно:
Рисунок OPAMP.4 — Схема дифференциального усилителя
Схема прецизионного двухполупериодного выпрямителя
Схема прецизионного двухполупериодного выпрямителя представлена на рисунке OPAMP.5. Величина RL – внутреннего нагрузочного сопротивления, выбирается в разумных пределах исходя из требования, что рабочий ток через него не будет превышать максимальный выходной ток ОУ (как правило, 10-50% от максимального выходного тока). Диоды VD1 и VD2 выбираются одного типа и с максимально близкими вольт-амперными характеристиками.
Рисунок OPAMP.5 — Схема прецизионного двухполупериодного выпрямителя усилителя (единичный коэффициент усиления, RL – внутренне нагрузочное сопротивление, выбирается в соответствии с параметрами ОУ)
Виртуальный ноль для питания операционных усилителей
В ряде случаев, когда необходимо обеспечить биполярное питание операционного усилителя при наличии только одного источника питания (с двумя выводами – положительным и отрицательным). Наиболее простым решением по созданию виртуального нуля (искусственной средней точки) является использование резисторного делителя (рисунок OPAMP.6) с буферными конденсаторами для сглаживания импульсных нагрузок. Схемы с операционным усилителем обеспечивают четкую фиксацию напряжения средней точки даже при значительном «перекосе фаз» т.е. большой разности токов потребляемых от «плюсового» и от «минусового» выводов. При значительных потребляемых токах можно использовать схему с дополнительным токовым буфером, выполненным на двух комплементарных транзисторах. В схеме можно использовать недорогие и доступные ОУ общего применения, такие как LM324, LM358. Другим преимуществом схемы является меньшее потребление энергии, что важно при питании от гальванических батарей.
Рисунок OPAMP.6. Схемы формирования виртуального нуля (искусственная средняя точка) для питания операционных усилителей