Принцип работы регулятора напряжения генератора автомобиля

Принцип работы регулятора напряжения генератора автомобиля

Рейтинг 2.6/5 (121 голосов)

Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции — защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.

Все регуляторы напряжения работают по единому принципу. Напряжение генератора определяется тремя факторами — частотой вращения ротора, силой тока, отдаваемой генератором в нагрузку, и величиной магнитного потока, создаваемой током обмотки возбуждения. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение генератора. Увеличение силы тока в обмотке возбуждения увеличивает магнитный поток и с ним напряжение генератора, снижение тока возбуждения уменьшает напряжение.

Все регуляторы напряжения, отечественные и зарубежные, стабилизируют напряжение изменением тока возбуждения. Если напряжение возрастает или уменьшается, регулятор соответственно уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.

Блок-схема регулятора напряжения представлена на рис. 1.

Регулятор 1 содержит измерительный элемент 5, элемент сравнения 3 и регулирующий

элемент 4. Измерительный элемент воспринимает напряжение генератора 2 Ud и преобразует его в сигнал Uизм., который в элементе сравнения сравнивается с эталонным значением Uэт.

Если величина Uизм. отличается от эталонной величины Uэт, на выходе измерительного элемента появляется сигнал Uo, который активизирует регулирующий элемент, изменяющий ток в обмотке возбуждения так, чтобы напряжение генератора вернулось в заданные пределы.

Таким образом, к регулятору напряжения обязательно должно быть подведено напряжение генератора или напряжение из другого места бортовой сети, где необходима его стабилизация, например, от аккумуляторной батареи, а также подсоединена обмотка возбуждения генератора. Если функции регулятора расширены, то и число подсоединений его в схему растет.

Чувствительным элементом электронных регуляторов напряжения является входной делитель напряжения. С входного делителя напряжение поступает на элемент сравнения, где роль эталонной величины играет обычно напряжение стабилизации стабилитрона. Стабилитрон не пропускает через себя ток при напряжении ниже напряжения стабилизации и пробивается, т.е. начинает пропускать через себя ток, если напряжение на нем превысит напряжение стабилизации. Напряжение же на стабилитроне остается при этом практически неизменным.

Ток через стабилитрон включает электронное реле, которое коммутирует цепь возбуждения таким образом, что ток в обмотке возбуждения изменяется в нужную сторону. В вибрационных и контактно-транзисторных регуляторах чувствительный элемент представлен в виде обмотки электромагнитного реле, напряжение к которой, впрочем, тоже может подводиться через входной делитель, а эталонная величина — это сила натяжения пружины, противодействующей силе притяжения электромагнита.

Коммутацию в цепи обмотки возбуждения осуществляют контакты реле или, в контактно-транзисторном регуляторе, полупроводниковая схема, управляемая этими контактами.

Особенностью автомобильных регуляторов напряжения является то, что они осуществляют дискретное регулирование напряжения путем включения и выключения в цепь питания обмотки возбуждения (в транзисторных регуляторах) или последовательно с обмоткой дополнительного резистора (в вибрационных и контактно- транзисторных регуляторах), при этом меняется относительная продолжительность включения обмотки или дополнительного резистора.

Поскольку вибрационные и контактно-транзисторные регуляторы представляют лишь исторический интерес, а в отечественных и зарубежных генераторных установках в настоящее время применяются электронные транзисторные регуляторы, удобно рассмотреть принцип работы регулятора напряжения на примере простейшей схемы, близкой к отечественному регулятору напряжения Я112А1 и регулятору EE14V3 фирмы BOSCH (рис. 2).

Регулятор 2 на схеме работает в комплекте с генератором 1, имеющим дополнительный

выпрямитель обмотки возбуждения. Чтобы понять работу схемы, следует вспомнить, что, как было показано выше, стабилитрон не пропускает через себя ток при напряжениях ниже величины напряжения стабилизации. При достижении напряжением этой величины стабилитрон пробивается, и по нему начинает протекать ток.

Транзисторы же пропускают ток между коллектором и эмиттером, Т.е. открыты, если в цепи база-эмиттер ток протекает, и не пропускают этого тока, т.е. закрыты, если базовый ток прерывается.

Напряжение к стабилитрону VD1 подводится от выхода генератора Д через делитель напряжения на резисторах R1, R2. Пока напряжение генератора невелико, и на стабилитроне оно ниже напряжения стабилизации, стабилитрон закрыт, ток через него, а, следовательно, и в базовой цепи транзистора VT1 не протекает, транзистор VT1 закрыт. В этом случае ток через резистор R6 от вывода Д поступает в базовую цепь транзистора VT2, он открывается, через его переход эмиттер-коллектор начинает протекать ток в базе транзистора VT3, который открывается тоже. При этом обмотка возбуждения генератора оказывается через переход эмиттер-коллектор VT3 подключена к цепи питания.

Соединение транзисторов VT2, VT3, при котором их коллекторные выводы объединены, а питание базовой цепи одного транзистора производится от эмиттера другого, называется схемой Дарлингтона. При таком соединении оба транзистора могут рассматриваться как один составной транзистор с большим коэффициентом усиления. Обычно такой транзистор и выполняется на одном кристалле кремния.

Если напряжение генератора возросло, например, из-за увеличения частоты вращения его ротора, то возрастает и напряжение на стабилитроне VD1. При достижении этим напряжением величины напряжения стабилизации стабилитрон VD1 пробивается, ток через него начинает поступать в базовую цепь транзистора VT1, который открывается и своим переходом эмиттер-коллектор закорачивает вывод базы составного транзистора VT2, VТЗ на «массу». Составной транзистор закрывается, разрывая цепь питания обмотки возбуждения. Ток возбуждения спадает, уменьшается напряжение генератора, закрываются стабилитрон VD2, транзистор VT1, открывается составной транзистор VT2, VТЗ, обмотка возбуждения вновь включается в цепь питания, напряжение генератора возрастает и т.д., процесс повторяется.

Таким образом регулировка напряжения генератора регулятором осуществляется дискретно через изменение относительного времени включения обмотки возбуждения цепи питания. При этом ток в обмотке возбуждения изменяется так, как показано на рис. 3.

Если частота вращения генератора возросла или нагрузка его уменьшилась, время включения обмотки уменьшается, если частота вращения уменьшилась или нагрузка возросла — увеличивается.

В схеме регулятора по рис. 2имеются элементы, характерные для схем всех применяющихся на автомобилях регуляторов напряжения. Диод VD2 при закрытии составного транзистора VT2, VT3 предотвращает опасные всплески напряжения, возникающие из-за обрыва цепи обмотки возбуждения со значительной индуктивностью. В этом случае ток обмотки возбуждения может замыкаться через этот диод, и опасных всплесков напряжения не происходит. Поэтому диод VD2 называется гасящим.

Сопротивление R3 является сопротивлением жесткой обратной связи. При открытии составного транзистора VT2, VT3 оно оказывается подключенным параллельно сопротивлению R2 делителя напряжения. При этом напряжение на стабилитроне VD2 резко уменьшается, что ускоряет переключение схемы регулятора и повышает частоту этого переключения. Это благотворно сказывается на качестве напряжения генераторной установки.

Конденсатор С1 является своеобразным фильтром, защищающим регулятор от влияния импульсов напряжения на его входе. Вообще конденсаторы в схеме регулятора либо предотвращают переход этой схемы в колебательный режим и возможность влияния посторонних высокочастотных помех на работу регулятора, либо ускоряют переключения транзисторов. В последнем случае конденсатор, заряжаясь в один момент времени, разряжается на базовую цепь транзистора в другой момент, ускоряя броском разрядного тока переключение транзистора и, следовательно, снижая потери мощности в нем и его нагрев.

Из рис. 2 хорошо видна роль лампы контроля работоспособного состояния генераторной установки НL. При неработающем двигателе внутреннего сгорания замыкание контактов выключателя зажигания SA позволяет току от аккумуляторной батареи GA через эту лампу поступать в обмотку возбуждения генератора. Этим обеспечивается первоначальное возбуждение генератора. Лампа при этом горит, сигнализируя, что в цепи обмотки возбуждения нет обрыва.

После запуска двигателя, на выводах генератора Д и «+» появляется практически одинаковое напряжение и лампа гаснет. Если генераторная установка при работающем двигателе автомобиля не развивает напряжения, то лампа HL продолжает гореть и в этом режиме, что является сигналом об отказе генераторной установки или обрыве приводного ремня.

Введение резистора R в генераторную установку способствует расширению диагностических способностей лампы HL. При наличии этого резистора, если при работающем двигателе автомобиля произойдет обрыв цепи обмотки возбуждения, то лампа HL загорится.

Аккумуляторная батарея для своей надежной работы требует, чтобы с понижением температуры электролита напряжение, подводимое к батарее от генераторной установки, несколько повышалось, а с повышением температуры — понижалось.

Для автоматизации процессов изменения уровня поддерживаемого напряжения применяется датчик, помещенный в электролит аккумуляторной батареи и включаемый в схему регулятора напряжения. В простейшем случае термокомпенсация в регуляторе подобрана таким образом, что в зависимости от температуры поступающего в генератор охлаждающего воздуха напряжение генераторной установки изменяется в заданных пределах.

В рассмотренной схеме регулятора напряжения, как и во всех регуляторах аналогичного типа, частота переключений в цепи обмотки возбуждения изменяется по мере изменения режима работы генератора. Нижний предел этой частоты составляет 25-50 Гц. Однако имеется и другая разновидность схем электронных регуляторов, в которых частота переключения строго задана. Регуляторы такого типа оборудованы широтно-импульсным модулятором (ШИМ), который и обеспечивает заданную частоту переключения.

Применение ШИМ снижает влияние на работу регулятора внешних воздействий, например, уровня пульсаций выпрямленного напряжения и т.п.

В настоящее время все больше зарубежных фирм переходит на выпуск генераторных установок без дополнительного выпрямителя. Для автоматического предотвращения разряда аккумуляторной батареи при неработающем двигателе автомобиля в регулятор такого типа заводится фаза генератора.

Регуляторы, как правило, оборудованы ШИМ, который, например, при неработающем двигателе переводит выходной транзистор в колебательный режим, при котором ток в обмотке возбуждения невелик и составляет доли ампера.

После запуска двигателя сигнал с вывода фазы генератора переводит схему регулятора в нормальный режим работы. Схема регулятора осуществляет в этом случае и управление лампой контроля работоспособного состояния генераторной установки.

Реле-регулятор напряжения генератора: схема, принцип действия

Реле-регулятор напряжения генератора — это неотъемлемая часть системы электрооборудования любого автомобиля. С его помощью производится поддержка напряжения в определенном диапазоне значений. В данной статье вы узнаете о том, какие конструкции регуляторов существуют на данный момент, в том числе будут рассмотрены механизмы, давно не используемые.

Основные процессы автоматического регулирования

Совершенно неважно, какой тип генераторной установки используется в автомобиле. В любом случае он имеет в своей конструкции регулятор. Система автоматического регулирования напряжения позволяет поддерживать определенное значение параметра, независимо от того, с какой частотой вращается ротор генератора. На рисунке представлен реле-регулятор напряжения генератора, схема его и внешний вид.

Анализируя физические основы, с использованием которых работает генераторная установка, можно прийти к выводу, что напряжение на выходе увеличивается, если скорость вращения ротора становится выше. Также можно сделать вывод о том, что регулирование напряжения осуществляется путем уменьшения силы тока, подаваемого на обмотку ротора, при повышении скорости вращения.

Что такое генератор

Любой автомобильный генератор состоит из нескольких частей:

1. Ротор с обмоткой возбуждения, вокруг которой при работе создается электромагнитное поле.

2. Статор с тремя обмотками, соединенными по схеме «звезда» (с них снимается переменное напряжение в интервале от 12 до 30 Вольт).

3. Кроме того, в конструкции присутствует трехфазный выпрямитель, состоящий из шести полупроводниковых диодов. Стоит заметить, что реле-регулятор напряжения генератора ВАЗ 2107 (инжектор или карбюратор в системе впрыска) одинаков.

Но работать генератор без устройства регулирования напряжения не сможет. Причина тому — изменение напряжения в очень большом диапазоне. Поэтому необходимо использовать систему автоматического регулирования. Она состоит из устройства сравнения, управления, исполнительного, задающего и специального датчика. Основной элемент — это орган регулирования. Он может быть как электрическим, так и механическим.

Работа генератора

Когда начинается вращение ротора, на выходе генератора появляется некоторое напряжение. А подается оно на обмотку возбуждения посредством органа регулировки. Стоит также отметить, что выход генераторной установки соединен напрямую с аккумуляторной батареей. Поэтому на обмотке возбуждения напряжение присутствует постоянно. Когда увеличивается скорость ротора, начинает изменяться напряжение на выходе генераторной установки. Подключается реле-регулятор напряжения генератора Valeo или любого другого производителя к выходу генератора.

При этом датчик улавливает изменение, подает сигнал на сравнивающее устройство, которое анализирует его, сопоставляя с заданным параметром. Далее сигнал идет к устройству управления, от которого производится подача на исполнительный механизм. Регулирующий орган способен уменьшить значение силы тока, который поступает к обмотке ротора. Вследствие этого на выходе генераторной установки производится уменьшение напряжения. Аналогичным образом производится повышение упомянутого параметра в случае снижения скорости ротора.

Двухуровневые регуляторы

Двухуровневая система автоматического регулирования состоит из генератора, выпрямительного элемента, аккумуляторной батареи. В основе лежит электрический магнит, его обмотка соединена с датчиком. Задающие устройства в таких типах механизмов очень простые. Это обычные пружины. В качестве сравнивающего устройства применяется небольшой рычаг. Он подвижен и производит коммутацию. Исполнительным устройством является контактная группа. Орган регулировки — это постоянное сопротивление. Такой реле-регулятор напряжения генератора, схема которого приведена в статье, очень часто используется в технике, хоть и является морально устаревшим.

Работа двухуровневого регулятора

При работе генератора на выходе появляется напряжение, которое поступает на обмотку электромагнитного реле. При этом возникает магнитное поле, с его помощью притягивается плечо рычага. На последний действует пружина, она используется как сравнивающее устройство. Если напряжение становится выше, чем положено, контакты электромагнитного реле размыкаются. При этом в цепь включается постоянное сопротивление. На обмотку возбуждения подается меньший ток. По подобному принципу работает реле-регулятор напряжения генератора ВАЗ 21099 и других автомобилей отечественного и импортного производства. Если же на выходе уменьшается напряжение, то производится замыкание контактов, при этом изменяется сила тока в большую сторону.

Электронный регулятор

У двухуровневых механических регуляторов напряжения имеется большой недостаток — чрезмерный износ элементов. По этой причине вместо электромагнитного реле стали использовать полупроводниковые элементы, работающие в ключевом режиме. Принцип работы аналогичен, только механические элементы заменены электронными. Чувствительный элемент выполнен на делителе напряжения, который состоит из постоянных резисторов. В качестве задающего устройства используется стабилитрон.

Современный реле-регулятор напряжения генератора ВАЗ 21099 является более совершенным устройством, надежным и долговечным. На транзисторах функционирует исполнительная часть устройства управления. По мере того как изменяется напряжение на выходе генератора, электронный ключ замыкает или размыкает цепь, при необходимости подключают добавочное сопротивление. Стоит отметить, что двухуровневые регуляторы являются несовершенными устройствами. Вместо них лучше использовать более современные разработки.

Трехуровневая система регулирования

Качество регулирования у таких конструкций намного выше, нежели у рассмотренных ранее. Ранее использовались механические конструкции, но сегодня чаще встречаются бесконтактные устройства. Все элементы, используемые в данной системе, такие же, как и у рассмотренных выше. Но отличается немного принцип работы. Сначала подается напряжение посредством делителя на специальную схему, в которой происходит обработка информации. Установить такой реле-регулятор напряжения генератора («Форд Сиерра» также может оснащаться подобным оборудованием) допустимо на любой автомобиль, если знать устройство и схему подключения.

Здесь происходит сравнение действительного значения с минимальным и максимальным. Если напряжение отклоняется от того значения, которое задано, то появляется определенный сигнал. Называется он сигналом рассогласования. С его помощью производится регулирование силы тока, поступающего на обмотку возбуждения. Отличие от двухуровневой системы в том, что имеется несколько добавочных сопротивлений.

Современные системы регулирования напряжения

Если реле-регулятор напряжения генератора китайского скутера двухуровневый, то на дорогих автомобилях используются более совершенные устройства. Многоуровневые системы управления могут содержать 3, 4, 5 и более добавочных сопротивлений. Существуют также следящие системы автоматического регулирования. В некоторых конструкциях можно отказаться от использования добавочных сопротивлений.

Вместо них увеличивается частота срабатывания электронного ключа. Использовать схемы с электромагнитным реле попросту невозможно в следящих системах управления. Одна из последних разработок — это многоуровневая система управления, которая использует частотную модуляцию. В таких конструкциях необходимы добавочные сопротивления, которые служат для управления логическими элементами.

Как снимать реле-регулятор

Снять реле-регулятор напряжения генератора («Ланос» или отечественная «девятка» у вас — не суть важно) довольно просто. Стоит заметить, что при замене регулятора напряжения потребуется всего один инструмент — плоская или крестовая отвертка. Снимать генератор или ремень и его привод не нужно. Большинство устройств находится на задней крышке генератора, причем объединены в единый узел с щеточным механизмом. Наиболее частые поломки происходят в нескольких случаях.

Во-первых, при полном стирании графитовых щёток. Во-вторых, при пробое полупроводникового элемента. О том, как провести проверку регулятора, будет рассказано ниже. При снятии вам потребуется отключить аккумуляторную батарею. Отсоедините провод, который соединяет регулятор напряжения с выходом генератора. Выкрутив оба крепежных болта, можно вытянуть корпус устройства. А вот реле-регулятор напряжения генератора ВАЗ 2101 имеет устаревшую конструкцию — он монтируется в подкапотном пространстве, отдельно от щеточного узла.

Проверка устройства

Проверяется реле-регулятор напряжения генератора ВАЗ 2106, «копеек», иномарок одинаково. Как только произведете снятие, посмотрите на щетки — у них должна быть длина более 5 миллиметров. В том случае, если этот параметр отличается, нужно проводить замену устройства. Чтобы осуществить диагностику, потребуется источник постоянного напряжения. Желательно, чтобы можно было изменить выходную характеристику. В качестве источника питания можно использовать аккумулятор и пару пальчиковых батареек. Еще вам необходима лампа, она должна работать от 12 Вольт. Вместо нее можно использовать вольтметр. Подключаете плюс от питания к разъему регулятора напряжения.

Соответственно, минусовой контакт соединяете с общей пластиной устройства. Лампочку или вольтметр соединяете со щетками. В таком состоянии между щетками должно присутствовать напряжение, если на вход подается 12-13 Вольт. Но если вы будете подавать на вход больше, чем 15 Вольт, между щетками напряжения не должно быть. Это признак исправности устройства. И совершенно не имеет значения, диагностируется реле-регулятор напряжения генератора ВАЗ 2107 или другого автомобиля. Если же контрольная лампа горит при любом значении напряжения или вовсе не загорается, значит, присутствует неисправность узла.

Выводы

В системе электрооборудования автомобиля реле-регулятор напряжения генератора «Бош» (как, впрочем, и любой иной фирмы) играет очень большую роль. Как можно чаще следите за его состоянием, проверяйте на наличие повреждений и дефектов. Случаи выхода из строя такого устройства нередки. При этом в лучшем случае разрядится аккумуляторная батарея. А в худшем может повыситься напряжение питания в бортовой сети. Это приведет к выходу из строя большей части потребителей электроэнергии. Кроме того, может выйти из строя и сам генератор. А его ремонт обойдется в кругленькую сумму, а если учесть, что АКБ очень быстро выйдет из строя, расходы и вовсе космические. Стоит также отметить, что реле-регулятор напряжения генератора Bosch является одним из лидеров по продажам. У него высокая надежность и долговечность, а характеристики максимально стабильны.

Реле регулятор напряжения: стабильность напряжения бортовой электросети

В каждом современном транспортном средстве присутствует развитая электрическая сеть, стабилизация напряжения в которой осуществляется специальным блоком — реле-регулятором. Все о реле-регуляторах, их существующих типах, конструкции и работе, а также о выборе и замене этих деталей — читайте в статье.

Что такое реле-регулятор напряжения?

Реле-регулятор напряжения (регулятор напряжения) — компонент электрической системы транспортного средства; механическое, электромеханическое или электронное устройство, обеспечивающее поддержку действующего в бортовой электросети напряжения в определенных границах.

Электрическая система транспортных средств построена так, что при остановленном силовом агрегате источником питания выступает аккумуляторная батарея (АКБ), а при запущенном — генератор, преобразующий часть мощности мотора в электроэнергию. Однако генератор имеет существенный недостаток — напряжение вырабатываемого им тока зависит от частоты вращения коленчатого вала, а также от потребляемого нагрузкой тока и окружающей температуры. Для устранения этого недостатка применяется вспомогательное устройство — реле-регулятор или просто регулятор напряжения.

Регулятор напряжения решает несколько задач:

  • Стабилизация напряжения — поддержка напряжения бортовой сети в заданных пределах (в пределах 12-14 или 24-28 вольт с допустимыми отклонениями);
  • Защита АКБ от разряда через цепи генератора при остановленном двигателе;
  • Отдельные типы регуляторов — автоматическое отключение стартера при успешном пуске двигателя;
  • Отдельные типы регуляторов — автоматическое подключение и отключение генератора от АКБ для ее заряда;
  • Отдельные типы регуляторов — изменение напряжения бортовой сети в зависимости от текущих климатических условий (перевод электросистемы на летнюю и зимнюю эксплуатацию).

Реле-регуляторами оснащаются все транспортные средства, тракторы и различные машины. Неисправность данного блока нарушает работу всей электросистемы, в отдельных случаях это может привести к поломке электрооборудования и пожарам. Поэтому неисправный регулятор необходимо как можно скорее заменить, а для верного выбора новой детали следует разобраться в существующих типах, конструкции и принципе действия регуляторов.

Типы, конструкция и принцип работы реле-регулятора

Сегодня существует несколько типов реле-регуляторов, однако в основе их работы лежат одинаковые принципы. Любой регулятор содержит три взаимосвязанных элемента:

  • Измерительный (чувствительный) элемент;
  • Элемент сравнения (управления);
  • Регулирующий элемент.

Регулятор подключается к обмотке возбуждения генератора (ОВГ) осуществляя измерение и изменение силы тока в ней — этим и обеспечивается стабилизация напряжения. В общем случае эта система работает следующим образом. Измерительный элемент, построенный на основе делителя напряжения, постоянно отслеживает силу тока в ОВГ и преобразует ее в сигнал, поступающий на элемент сравнения (управления). Здесь сигнал сравнивается с эталоном — тем значением напряжения, которое в норме должно действовать в электросистеме автомобиля. Элемент сравнения может строиться на основе вибрационных реле и стабилитронах. Если поступающий от измерительного элемента сигнал соответствует эталонному (с допустимым отклонением), то регулятор бездействует. Если же поступающий сигнал отличается от эталонного в ту или иную сторону, то элементом сравнения формируется управляющий сигнал, поступающий на регулирующий элемент, построенный на реле, транзисторах или иных элементах. Регулирующий элемент изменяет ток в ОВГ, чем и достигается возврат напряжения на выходе генератора в необходимые границы.

Как уже указывалось, блоки регулятора строятся на различной элементной базе, по этому признаку устройства делятся на несколько типов:

  • Вибрационные;
  • Контактно-транзисторные;
  • Электронные транзисторные (бесконтактные);
  • Интегральные (транзисторные, выполненные по интегральной технологии).

Исторически первыми появились вибрационные устройства, которые, собственно, и называются реле-регуляторами. В таком устройстве все три блока могут объединяться в одной конструкции — электромагнитном реле с нормально замкнутыми контактами, хотя измерительный элемент может выполняться в виде делителя на резисторах. В качестве эталонной величины в реле выступает сила натяжения возвратной пружины. В общем случае реле-регулятор работает просто. При малом токе на ОВГ или низком напряжении на выходе генератора (в зависимости от способа подключения регулятора) реле не работает и через его замкнутые контакты свободно проходит ток — это приводит к росту напряжения. При повышении напряжения реле срабатывает, напряжение в цепи падает и реле отпускается, напряжение вновь возрастает и реле опять срабатывает — так реле переходит в колебательный режим. При изменении напряжения на генераторе в ту или иную сторону изменяется частота колебаний реле, что и обеспечивает стабилизацию напряжения.

В настоящее время вибрационные реле, имеющие малую эффективность и недостаточную надежность, уже не используются на транспортных средствах. В свое время их вытеснили контактно-транзисторные регуляторы, в которых в качестве сравнивающего/управляющего элемента используется вибрационное реле, а в качестве регулирующего — транзистор, работающий в режиме ключа. Здесь транзистор играет роль контактов реле, поэтому в целом работа такого регулятора аналогично описанной выше. Сегодня регуляторы такого типа практически вытеснены бесконтактными транзисторными различных конструкций.

В бесконтактных транзисторных регуляторах реле заменено на более простой полупроводниковый прибор — стабилитрон. В качестве эталонного значения используется напряжение стабилизации стабилитрона, а регулирующий элемент построен на основе транзисторов. При низком напряжении стабилитрон и транзисторы находятся в таком состоянии, что на ОВГ подается максимальный ток, что приводит к росту напряжения. При достижении необходимого уровня напряжения стабилитрон и транзисторы переходят в другое состояние и начинают работать в колебательном режиме, что, как и в случае обычного реле, обеспечивает стабилизацию напряжения.

Современные электронные регуляторы строятся на транзисторах и могут иметь широтно-импульсный модулятор (ШИМ), посредством которого задается частота переключения схемы и возможность внедрения устройства в общую автомобильную систему управления.

Бесконтактные транзисторные регуляторы могут выполняться на дискретных элементах и по интегральной технологии. В первом случае используются обычные электронные компоненты (стабилитроны, транзисторы, резисторы и т.д.), во втором случае весь блок собран на одной микросхеме или компактном блоке из залитых компаундом компактных радиодеталей.

Рассмотренную конструкцию имеют простейшие реле-регуляторы, в реальности же используются более сложные устройства с различными вспомогательными блоками — управления стартером, предотвращения разряда АКБ через обмотку возбуждения, коррекции режима работы в зависимости от температуры, защиты схемы, самодиагностики и другими. На многих реле-регуляторах тракторов и грузовых автомобилей также реализована возможность ручной регулировки напряжения стабилизации. Данная регулировка выполняется с помощью переменного резистора (в вибрационных устройствах — с помощью пружины) посредством вынесенной за пределы корпуса рычажка или рукоятки.

Регуляторы выполняются в виде небольших блоков, монтируемых непосредственно на генератор или в удобном месте транспортного средства. Подключение устройства может осуществляться к ОВГ и/или выходу генератора, либо к участку бортовой электросети, где требуется стабилизированное напряжение. При этом один вывод ОВГ обязательно подключается к «+» или к «-» бортовой электросети.

Вопросы выбора, диагностики и замены реле-регуляторов напряжения

В реле-регуляторах могут возникать различные неисправности, которые в большинстве случаев проявляются отсутствием тока заряда АКБ и, напротив, чрезмерным током заряда АКБ. Простейшая проверка регулятора может быть проведена с помощью вольтметра — достаточно запустить двигатель и в течение 10-15 минут дать ему поработать с частотой 2500-3000 об/мин и со включенными фарами. Затем, не снижая оборотов и не выключая фар, измерить напряжение на клеммах АКБ — оно должно составлять 14,1-14,3 вольта (для 24-вольтовых в два раза выше). Если напряжение значительно ниже или выше, то это повод проверить генератор, и, если он в порядке — заменить регулятор.

На замену следует брать реле-регулятор того же типа и модели, что был установлен ранее. Особенно нужно обращать внимание на порядок подключения регулятора к бортовой сети (к каким клеммам генератора и других элементов), а также на напряжение питания и токи. Замену детали необходимо выполнять по инструкции, работ можно выполнять только при остановленном двигателе и снятой с АКБ клеммы. Если соблюдены все рекомендации, а регулятор подобран верно, то он сразу начнет работать, обеспечивая нормальное функционирование электросистемы.

Другие статьи

Грузовые автомобили «Урал» оснащаются системами регулирования давления воздуха в шинах, в которых применяются гибкие трубопроводы — шланги. О том, что такое шланги системы накачки шин, каких типов они бывают и как они устроены, а также об их выборе, замене и обслуживании читайте в данном материале.

В современных транспортных средствах предусмотрена вспомогательная система, обеспечивающая комфортное движение при осадках — стеклоочиститель. Привод данной системы осуществляется мотором-редуктором. Все об этом агрегате, его конструктивных особенностях, выборе, ремонте и замене — читайте в статье.

Современные транспортные средства оснащаются светосигнальными приборами, установленными в передней и задней части. Формирование светового пучка и его окрашивание в фонарях обеспечивается рассеивателями — все об этих деталях, их типах, конструкции, выборе и правильной замене читайте в данной статье.

Многие современные автомобили, особенно грузовые, оснащаются гидравлическим приводом выключения сцепления. Достаточный запас жидкости для работы главного цилиндра сцепления хранится в специальном бачке. Все о бачках ГЦС, их типах и конструкции, а также о выборе и замене этих деталей читайте в статье.

Что такое регулятор напряжения генератора: автоликбез для новичков

Как известно, в любом транспортном средстве генератор является одним из основных узлов, выход из строя которого не позволит осуществить запуск двигателя. Такое устройство состоит из множества компонентов, но одним из самых основных является трехуровневый регулятор. Что представляет собой это устройство напряжения, каково его назначение, какие бывают виды, как произвести диагностику — читайте ниже.

Характеристика регулятора напряжения

Сколько генератор должен выдавать напряжения, какие существуют виды выносных реле, как работает элемент? Какие признаки неисправности, как повысить или увеличить выходные показатели, что делать если напряжение прыгает? В первую очередь, необходимо разобраться с вопросами конструкции и назначения.

Назначение

Итак, какие признаки неисправности, какие функции выполняет трехуровневый регулятор напряжения? Когда двигатель любого автомобиля запускается, в первую очередь, под воздействием постоянного тока, начинает работать коленвал. Именно из-за постоянного тока он начинает задавать движение ротору, и только после этих действий в работу вступает непосредственно автомобильный генератор. Трехуровневый регулятор напряжения производит мониторинг всех этих процессов, этот элемент также часто называется реле постоянного тока.

Без этого устройства ток в бортовой сети не сможет запустить сам генератор в работу, тем более, что не будет осуществляться контроль подачи тока. Кроме того, трехуровневый регулятор напряжения позволяет удерживать ток в определенном интервале.

Конструкция

Даже самый простой и самодельный регулятор должен быть способным оптимально регулировать напряжения, что осуществляется в результате работы ротора. Как правило, в автомобилях современного производства ротор крутится вправо, но бывают и исключения.

Любой регулятор напряжения генератора, даже самодельный и простой будет состоять из следующих компонентов:

  1. Крыльчатка. Этот компонент монтируется на внешней стороне устройства. Его предназначение заключается в обдуве, а также дальнейшем охлаждении обмотки.
  2. Крышка корпуса, предназначена для закрытия доступа к внутренним компонентам устройства, чтобы защитить конструкцию от грязи, пыли и прочего мусора. Помимо этого, крышка может быть дополнительно оснащена кожухом. Если кожух имеется, то сам регулятор будет установлен за ним.
  3. Устройство выпрямителей. Такая схема состоит из нескольких диодов. Как правило, диодов шесть. Следует отметить, что все диоды схемы подсоединяются друг к другу по так называемому мосту.
  4. Ротор с обмоткой. Данный компонент вращается вокруг оси, таким образом, ротор должен выдавать магнитное поле в корпусе.
  5. Статор — еще один компонент схемы. На корпусе статора находится три обмотки, которые соединены между собой. Эти обмотки схемы позволяют не только выдать большое количество заряда и мощности для АКБ, но и обеспечить постоянным током всю бортовую цепь машины.
  6. Непосредственно реле. Благодаря автомобильному реле схема может поддерживать оптимальный уровень напряжение в необходимом диапазоне. Напряжение не должно быть слишком большое — оно всегда оптимальное (автор видео — Николай Пуртов).

Сколько мощности в амперах должен выдавать автомобильный регулятор после подключения? Схема выработки напряжения осуществляется по определенному принципу. В результате вращений ротора, на обмотку возбуждения всегда воздействует не очень большое напряжение, пока генератор подключен к АКБ. Пока происходит вращение, на выводах появляется переменный ток, поступающий на обмотку. Вращение ротора обеспечивается ремешком генератора.

Сколько должен выдать энергии этот прибор — второстепенный вопрос, ведь когда эта энергия сгенерированная, в первую очередь большое напряжение нужно выпрямить. Для этой цели используются диодные мосты. Поскольку напряжение большое, в работу вступает электронный регулятор напряжения. Данный компонент реагирует на изменения тока, которые происходят на схеме, после чего отправляет эту информацию к сравнивающему прибору, предназначенному для анализа необходимых показаний с теми, которые поступили. Если напряжение на зажимах генератора становится более низким, регулятор начинает увеличивать уровень постоянного тока в схеме, повышая его до необходимого.

Принцип работы

Если подключить к источнику питания обмотку без регулятора, то уровень постоянного тока будет слишком высоким. Благодаря реле на схеме происходит выравнивание этого параметра, чтобы не допустить выхода из строя оборудования. Сам регулятор представляет собой, по сути, выключатель. В том случае, если уровень тока возрастает до 13.-14 вольт, устройство автоматически отключает от сети обмотку и включает ее, если уровень тока слишком низкий. В итоге осуществляется регулярная коммутация проводки с высокой частотой, соответственно, генератор может вырабатывать более высокое напряжение (автор видео — Alex ZW).

Разновидности

Для подключения к бортовой схеме автомобиля существует несколько типов регуляторов, предназначенных для работы в условиях постоянного тока в амперах. Следует отметить, что для некоторых из них характерны определенные неисправности. Но, как показывает практика, в большинстве случаев неисправности у этих устройств обычно идентичные друг другу. Перед тем, как мы расскажем о том, как осуществляется проверка регулятора напряжения постоянного тока в автомобиле и как выявить неисправности, уделим внимание видам.

Так вы сможете понять, какой тип лучше:

  1. Двухуровневый тип является морально устаревшим, но наши автолюбители сегодня продолжают его использовать. В основе таких регуляторов лежит электромагнит, который подключается к датчику обмотки. В качестве задающих элементов выступают пружины, а функцию сравнивающего компонента выполняет подвижный рычаг. Его габариты довольно небольшие, с его помощью выполняется коммутация. Основным недостатком, который зачастую приводит к неисправности, является небольшой ресурс использования устройства.
  2. Электронные устройства на 40 ампер считаются полупроводниковыми. Они характеризуются высоким ресурсом эксплуатации, соответственно, с неисправностями владельцы автомобилей с электронными регуляторами сталкиваются реже.
  3. Трехуровневые конструкции по своему устройству практически не отличаются от тех, которые мы уже рассмотрели. Принципиальная разница заключается только в том, что такие устройства оснащены добавочным сопротивлением.
  4. Многоуровневые — еще один вид. Некоторые эксперты считают, что такие регуляторы лучше других, поскольку они оснащаются тремя и даже пятью добавочными сопротивлениями. Кроме того, есть модели, которые могут работать в следящем режиме.

Стоимость регуляторов может варьироваться в зависимости от типа и модели. Какой лучше приобрести — дело сугубо каждого. В среднем стоимость таких элементов варьируется в районе 5 долларов. Если вам позволяет бюджет, лучше приобрести сразу два регулятора. Почему лучше? Потому что эта деталь является незаменимой в дороге.

Проведение диагностики регулятора напряжения своими руками

Как проверить регулятор напряжения автомобиля для выявления неисправностей своими руками? Что лучше замерить своими руками — амперы или вольты, чем лучше воспользоваться. Для выявления неисправностей своими руками необходимо использовать мультиметр или вольтметр. Необходимо, чтобы на устройстве была шкала для измерений на 15-30 вольт. Диагностику неисправностей автомобильного реле на 40 ампер или ниже своими руками с помощью мультиметра необходимо осуществлять только при заряженном аккумуляторе.

Диагностика вышедшего из строя реле с помощью вольтметра

  1. Сначала необходимо включить зажигание.
  2. Запустите своими руками двигатель, дайте ему поработать, при этом фары необходимо включить. Пусть мотор работает, пока количество оборотов не составит около 2.5-3 тыс. Как правило, для этого необходимо подождать около 10 минут.
  3. При помощи вольтметра произведите замер напряжения на клеммах АКБ. Параметр должен составлять около 14.1-14.3 вольт.

В том случае, если во время диагностики показатели получились ниже или выше, лучше приобрести новое реле на 40 ампер. В ходе диагностики штекеры ни в коем случае нельзя перемыкать, поскольку это может привести к деформации и неработоспособности выпрямительного блока. Для получения более точных показателей необходимо убедиться в том, что ремень генератора натянут хорошо.

Видео «Диагностика состояния реле регулятора»

Как своими руками осуществить проверку неисправностей этого элемента — узнайте из видео ниже (автор видео — Вячеслав Чистов).

Извините, в настоящее время нет доступных опросов.

Регулятор напряжения генератора — схема, проверка

Электрооборудование любого автомобиля включает в себя генератор — устройство, преобразующее механическую энергию, получаемую от двигателя, в электрическую. Вместе с регулятором напряжения он называется генераторной установкой.

На современные автомобили устанавливаются генераторы переменного тока. Они в наибольшей степени отвечают предъявляемым требованиям.

Что такое регулятор напряжения генератора?

Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции — защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.

Принцип действия регулятора напряжения генератора

В настоящее время все генераторные установки оснащаются полупроводниковыми электронными регуляторами напряжения, как правило, встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков.

Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки — тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется.

Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения. Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить — увеличивается.

Проверка регулятора напряжения генератора

Прежде чем проверить регулятор напряжения генератора , нужно убедиться, что проблема кроется именно в нём, а не в других элементах генератора (слабо натянут ремень, окислилась масса и т.д.), для этого нужно проверить сам генератор (Как проверить генератор?). После этого вам нужно снять регулятор напряжения. Процесс демонтажа регулятора описан в статье «как снять регулятор напряжения?».

В двух словах скажу, что сначала нужно снять минусовую клемму, снять все провода с генератора, снять пластиковый кожух с генератора, затем открутить и вынуть регулятор напряжения в сборе вместе с щётками.

Давайте перейдём непосредственно к проверке регулятора напряжения. Проверять регулятор напряжения нужно обязательно в сборе с щёткодержателями – т.к. в случае обрыва цепи щёток и регулятора напряжения, мы сразу это заметим. Перед проверкой, обратите внимание на состояние щёток: если они обломаны или их длина короче 5мм, неподвижны и не пружинят, – то их нужно заменить.

Для проверки нам понадобится:

  • провода;
  • аккумулятор автомобильный;
  • лампочка на 12в 1-3Вт;
  • две обычные пальчиковые батарейки.

Чтобы проверить регулятор напряжения, нам нужно будет построить две схемы: К щёткам подключаем лампочку, К выводам Б и В подключаем «+» от аккумулятора, «-» аккумулятора закрепляем на массу регулятора. Делаем ту же схему, но добавляем последовательно две пальчиковые батарейки. Вывод из всего вышесказанного таков.

Исправный регулятор напряжения генератора: в первой схеме лампа горит, во второй схеме лампа не горит, т.к. напряжение выше 14,7в и подача напряжения на щётки должна быть прекращена. Неисправный регулятор напряжения: в обоих случая лампа горит, значит в регуляторе пробой. Лампа не горит вообще – значит, отсутствует контакт между щётками и регулятором или обрыв цепи в регуляторе.

Трехуровневые регуляторы напряжения

Сначала узнаем, для чего нужен этот регулятор. Автомобильный генератор во время движения и работы двигателя должен подпитывать аккумуляторную батарею. Тем самым восстанавливается ёмкость аккумулятора, когда он разряжается во время стоянки. Если мы ездим каждый день, то аккумулятор почти не разряжается, если он в исправном состоянии.

Хуже приходиться аккумулятору, когда машина долго стоит без движения, ведь его энергия постепенно уходит на поддержание работы авто сигнализации. Ещё хуже дела обстоят зимой, когда при отрицательных температурах аккумуляторная батарея разряжается очень быстро.

А если вы ездите помалу и не часто, то аккумулятор не заряжается полностью во время движения и может полностью разрядится как-то утром.

Справиться с вышеуказанной проблемой, призван трехуровневый регулятор напряжения. У него три положения работы: это максимальное (выдаёт напряжение на генераторе 14,0-14,2 В), нормальное (13,6-13,8 В) и минимальное (13,0-13,2 В). Как мы знаем из статьи про проверку работоспособности аккумулятора, нормальное напряжение при заведённом двигателе должно быть от 13,2-13,6 В. Это означает, что генератор работает в нормальном режиме и АКБ заряжается в полном объёме.

Это соответствует среднему (нормальному) положению регулятора напряжения. А вот зимой, желательно повысить напряжение до 13,8-14,0 В, т.к. аккумулятор быстрее разряжается при отрицательных температурах. Это делается простым переводом рычажка на регуляторе напряжения. Так будет обеспечена лучшая зарядка АКБ зимой при работающем двигателе.

Летом, особенно когда жара превышает +25 градусов и выше — желательно понизить напряжение генератора до 13,0-13,2 В. Зарядка от этого не пострадает, но генератор не будет “выкипать”, т.е. не будет терять свою номинальную ёмкость и не сокращать ресурс.

Как снять или заменить регулятор напряжения генератора?

Перед заменой регулятора напряжения, обязательно проверьте генератор в целом. Регулятор напряжения нужно менять, если напряжение под нагрузкой бортовой сети (включены дальний, обогрев зеркал, печка) меньше 13в. Так же регулятор напряжения может стать причиной высокого напряжения (выше 14,7в).

Но, как писалось выше, перед снятием регулятора нужно проверить сам генератор, ознакомиться с другими возможными неисправностями (например слабо натянут ремень генератора), и только потом приступать к замене регулятора напряжения. Так же данная статья вам понадобится для замены щёток генератора, т.к. щётки и регулятор напряжения устанавливаются на генератор в сборе.

Итак, как же снять регулятор напряжения? Открываем капот, снимаем минусовую клемму аккумулятора, находим генератор, отсоединяем колодку проводов «D»:

  • снимаем защитный резиновый колпачок с наконечников проводов вывода «+». Откручиваем гайку крепления этих проводов, снимаем их с блока генератора;
  • далее нам нужно снять сам пластиковый блок генератора (чаще всего он черного цвета). Для этого нужно отсоединить три пружинных фиксатора, расположенных по периметру блока;
  • находим регулятор напряжения, и крестовой отверткой откручиваем его крепления;
  • вынимаем регулятор напряжения в сборе с щётками, и отключаем от него колодку проводов;
  • далее нам нужно проверить регулятор напряжения, дабы убедиться в его неисправности.

Устанавливаем регулятор напряжения строго в обратной последовательности. Стоит отметить, что в последнее время, многие автолюбители стали пользоваться трёхуровневым регулятором напряжения генератора, для того, чтобы избавиться от просадок напряжения в бортовой сети.

Реле-регулятор напряжения генератора: строение, функции и проверка

2.0 (105) AR 10520

Реле-регулятор напряжения генератора. Такое сложное, на первый взгляд, название имеет совсем небольшой компонент генератора автомобиля или мотоцикла и чей выход из строя может стать причиной целого ряда проблем. Вот например: недозаряд или же перезаряд аккумулятора. Подобное может возникнуть по множеству причин, но в большинстве случаев виновником проблемы является вышедшее из строя реле генератора (так его обычно называют). Давайте разберемся, что же представляет собой реле генератора, как данный компонент подключается к бортовой сети транспортного средства, как его проверить и в случае нужды заменить.

Базовые понятия

Реле-регулятор, являющийся важной частью бортовой электросети, ответственно за регулирование тока, вырабатываемого генератором транспортного средства. За счет работы реле предотвращается перезаряд аккумулятора, что является для него губительным. Сведущие в электротехнике авто и мотолюбители заметят: согласно описанию это обычный стабилизатор напряжения! По сути, это он и есть. Но давайте немного разберемся с генераторами.

По сути, генератор как постоянного, так и переменного тока являются электромашиной, преобразующей в электрический ток механическую энергию. Сегодня более распространены генераторы переменного тока, так как они не используют токосъемные щетки , имеющие тенденцию к пригоранию или сильной деформации по ходу эксплуатации устройства. Выходное напряжение генераторов обоих типов зависит от скорости, с которой внутри него вращается магнитное поле, и от магнитной силы. На обмотку возбуждения таких генераторов изначально подается т.н. ток возбуждения, за счет которого наводится магнитная индукция. Силу этого тока нужно регулировать. В определенный момент на обмотку возбуждения нужно перестать подавать питание – еще один момент, за которым необходимо проследить. Далее, так как в генераторах переменного тока положение полюсов «+» и «» постоянно изменяется, ток нужно выпрямлять. За это ответственен диодный мостик, однако диапазон выходных напряжений может быть довольно широким. И вот теперь можно выделить основные задачи реле-регулятора генератора:

  • Выдержка диапазона напряжений (13,5 – 14,5 Вольт) в сети автомобиля или мотоцикла, а также на клеммах их аккумулятора;
  • Регулировка тока возбуждения;
  • Прекращение подачи питания от аккумулятора к обмотке возбуждения.

По сути, реле генератора «следит» за выходным напряжением и силой тока, от которого питается обмотка напряжения. Как только выходное напряжение становится слишком большим, реле уменьшает силу тока возбуждения . Если ситуация обратная и напряжение генератора уменьшилось, следует повышение тока на возбуждающую обмотку. Так происходит множество раз, причем стабилизация длится долю секунды. Таким образом реле обеспечивает и нормальную работу генератора, который теперь дает оптимальное напряжение для электроприемников (магнитолы, например), и экономит ресурс аккумуляторной батареи, также предотвращая ее выход из строя вследствие подзарядки слишком большим током.

Типы реле-регуляторов

Современные реле-регуляторы не используют электромагнитные реле в качестве базы – они полностью полупроводниковые. Использование полупроводников сделало устройство и надежным, и очень компактными, однако свело практически на нет его ремонтопригодность. Типов реле-регулятора довольно много, но существенным является одно: принципиальных отличий между реле разных типов нет. Стоит выделить два типа:

  • Встроенное. Иногда реле такого типа называют «шоколадкой». Находится внутри генератора и совмещено с щеточным узлом;
  • Вынесенное. Крепится на автомобильном кузове.