Принцип работы усилителя звука

Усилитель звука – что это такое, устройство, принцип работы, зачем нужен, основные характеристики

Во многих аудиосистемах бытового и профессионального назначения используется специальный компонент – усилитель звука. Он необходим для качественного, громкого воспроизведения аудиоинформации без помех и искажений. Устройства отличаются исходными характеристиками, совместимостью с другими приборами и сферой применения.

Что такое усилитель звука?

Качественный аудиоприбор, будь то магнитола в автомобиле или акустическая система для домашнего кинотеатра, практически всегда снабжается усилителем звука. Это специальное электрическое устройство, преобразующее слабый электрический сигнал в более сильный с помощью увеличения мощности тока. Усилитель мощности звука может быть как отдельным прибором, входящим в аудиосистему, так и являться внутренним компонентом, например, колонок, входящим в их гибридную систему.

Устройство усилителя звука

Стандартный усилитель звука для колонок имеет следующие конструкционные особенности:

  1. Входная система усилителя звука. К ней подсоединяется сам источник, который может отличаться выходным напряжением.
  2. Блок питания, отвечающий за преобразование входящего тока в величину с более высоким напряжением. Основным прибором этой группы является трансформатор.
  3. Выходной каскад, главными элементами которого являются транзисторы. Они преобразуют повышенное напряжение от блока питания в нужную форму сигнала, который передается на устройство вывода звука.
  4. Блок регулировки настроек присутствует только в автономных устройствах и позволяет тонко настраивать качество получаемого звука на выходе.

Принцип работы усилителя звука

Любой простой усилитель звука вне зависимости от класса и конструктивных особенностей работает по следующей схеме:

  1. В блоке питания входящий электрический ток от стандартной сети электропитания или автомобильного аккумулятора преобразуется в постоянный ток.
  2. Усилители звука для домашней акустики через входную систему получает сигнал от подключенного устройства (CD-плеера, например) и изменяет (увеличивает) его амплитуду с помощью постоянного тока. Длина звуковой волны остается без изменений.
  3. Усиленный звуковой сигнал передается на выходное устройство (колонки), через которые и воспроизводится в новом, улучшенном качестве.

Зачем нужен усилитель звука?

Обыватели нередко полагают, что усилить звук стараются непременно для повышения его громкости. Такое утверждение верно лишь отчасти. Усилитель звука в машину или для домашнего, профессионального использования необходим для качественного преобразования слабого электрического сигнала в более мощный. Устройства воспроизведения – плееры, магнитофоны и магнитолы имеют разную величину выходного аудиосигнала, которой не всегда хватает для качественного звучания. После таких метаморфоз исходящий звук:

  1. Получается более качественным, без помех и искажений.
  2. В разы громче исходного, поэтому регулятор громкости можно не поворачивать на максимум, тем самым продлевая срок службы аудиоколонок.

Характеристики усилителя звука

Основные характеристики, которыми обладает усилитель звука для компьютера или другого прибора:

  1. Выходная мощность. Она может быть номинальной, то есть измеряемой при заданном коэффициенте нелинейных искажений и максимальной, которая учитывается при ненормированном коэффициенте.
  2. Даже мини усилитель звука для колонок обладает такими параметрами, как коэффициент усиления и коэффициент полезного действия.
  3. Частотный диапазон, то есть разнообразие частот, с которыми прибор способен работать. Оптимальный вариант – 20-20000 Гц.
  4. Коэффициент гармонических искажений показывает слышимую часть тех самых искажений на частоте 1 кГц и составляет 0,001-0,1%.
  5. Отношение сигнал/шум показывает, на сколько собственные шумы усилителя меньше полезного музыкального сигнала.
  6. Демпинг-фактор или способность подавлять паразитарные напряжения, влияющие на качество мелодии.

В качестве дополнительных характеристик могут быть указаны:

  • коэффициент интермодуляционных искажений;
  • скорость нарастания выходного сигнала;
  • перекрестные помехи.

Виды усилителей звука

Акустическая аппаратура имеет разнообразные характеристики и области применения, поэтому и усилитель звука имеет несколько разновидностей. По мощности бывают:

  • предварительные, являющиеся промежуточным звеном;
  • оконечные, непосредственно увеличивающие мощность;
  • интегральные, объединяющие две предшествующие разновидности в единый прибор.

По элементной базе различают:

  • ламповые;
  • транзисторные;
  • интегральные устройства.

По количеству подключаемых каналов приборы делятся на:

  • одноканальные устройства;
  • двухканальный девайсы;
  • многоканальные усилители.

Важным критерием классификации является и область применения устройства:

  1. Автомобильный усилитель звука.
  2. Домашние аудио комплексы.
  3. Концертная аппаратура.
  4. Студийная аппаратура.

Классы усилителей звука

Выбирая усилитель звука для ноутбука или другого прибора, стоит обратить внимание и на класс понравившейся модели. Он демонстрирует сумму выходного сигнала в зависимости от схемы прибора в течение одного цикла работы при возбуждении входящим синусоидальным сигналом. Все классы можно условно разделить на группы:

  1. Классическую, куда входят приборы класса А, В, АВ и С. Они считаются самыми качественными, дающими на выходе максимально «чистый» звук. В основе лежит ламповый или транзисторный способ преобразования, поэтому приборы применяются в домашней и профессиональной акустике.
  2. Новую, к которой причисляются устройства класса D, E, F, G, T, D. В них используются цифровые схемы и широтно-импульсные модуляции. Такие устройства чаще применяются в малогабаритных приборах.
  3. Отдельно стоит выделить класс H, используемый в автомобильной акустике.

Как выбрать усилитель звука?

Перед покупкой понравившуюся модель усилителя стоит внимательно изучить, а лучше протестировать в магазине в режиме реального времени. Лучшие усилители по качеству звука обладают следующими важными параметрами, указанными производителем:

  1. Совпадение по мощности и частоте с акустическим прибором. Сначала выбирается акустика, а к ней усилитель, не наоборот.
  2. Важно учитывать и площадь помещения, в котором будет работать аппаратура.
  3. Лучше брать прибор с запасом мощности от предполагаемой величины при использовании, чтобы не эксплуатировать прибор на предельно возможных характеристиках.
  4. Уровень интермодуляционных и переходных искажений в пределах 1-3%.
  5. Показатель демпфирования (подавления паразитных колебаний мембран колонок) должен быть не менее 100.
  6. Чем выше показатель сигнал/шум, тем качественнее и чище будет звук на максимальной громкости.
  7. Частотный диапазон лучше выбирать тот, который переходит за слышимые человеческим ухом границы. Тогда качество воспринимаемой мелодии будет лучше.

Рейтинг усилителей звука

При подборе оптимальной модели усилителя звуковой частоты можно ориентироваться и на отзывы профессионалов акустического дела и обычных пользователей. В рейтинг популярных приборов неизменно входят:

  1. SMSL SA-36A Plus – компактный прибор класса D с поддержкой беспроводной сети по протоколу Bluetooth. Стоимость – $70.
  2. Fiio A3 – портативная модель для использования в комплекте с наушниками. Стоимость – $78.
  3. Yamaha A-S201 – бюджетный прибор известного мультимедийного бренда с отличным качеством звучания при домашнем использовании. Стоимость – $233.
  4. Denon PMA-720AE известная интегральная модель с возможностью фонокоррекции и тонокомпенсации. Стоимость – $420.
  5. Rotel RA-1572 – премиальная модель для домашней акустики, гарантирующая чистый и мощный звук. Стоимость – $1785.

Усилитель звука своими руками

Некоторые аудиолюбители зная, как сделать усилитель звука, собирают прибор с нужными характеристиками самостоятельно. Для этих целей потребуются навыки работы с радиотехникой и следующие элементы:

  1. Аудио штекер для моно сигнала, стерео сигнала или стерео сигнала с микрофоном. Оптимальный вариант – двухпиновый стерео штекер.
  2. Динамики с одинаковой мощностью и сопротивлением звуковой катушки.
  3. Трансформаторный блок питания нужной мощности, к примеру, 9 или 12 Вт.
  4. Микросхема.
  5. Электролитические конденсаторы нужного напряжения.
  6. Переменный резистор для регулировки уровня громкости.
  7. Разводка печатной платы.

Ход работ не представляет сложности для опытного электронщика:

  1. Все выбранные элементы располагаются на печатной плате.
  2. Соединение элементов проводится с помощью паяльника.
  3. Подключаются вводы штекера и динамиков.
  4. Устанавливается корпус.

Как пользоваться усилителем звука?

Основные правила использования усилителя звука на ПК, в автомобиле и домашней аудиосистеме стандартны:

  1. Начинать важно с качественного прибора подходящего по характеристикам к выбранным проигрывателям и колонкам. Диссонанс системных требований приведет к снижению качества звука или поломке устройств.
  2. Подключать устройство нужно, строго следуя прилагаемой к каждой модели инструкции.
  3. После подключения важно перейти к настройкам прибора, если таковые имеются. Тестирование и подстройка могут проводиться как в ручном, так и автоматическом режиме. После этого можно наслаждаться качественным звучанием любимых мелодий.

Принцип работы усилителя

Схема усилителя низкой частоты. Классификация и принцип работы УНЧ

Усилитель низких частот (далее УНЧ) – электронное устройство, предназначенное для усиления колебаний низкой частоты до той, которая необходима потребителю. Они могут выполняться на различных электронных элементах вроде транзисторов разных типов, ламп или операционных усилителей.

Параметры

  • коэффициент усиления по току = выходной ток / входной ток;
  • коэффициент усиления по напряжению = выходное напряжение / входное напряжение;
  • коэффициент усиления по мощности = выходная мощность / входная мощность.

Для некоторых устройств вроде операционных усилителей значение этого коэффициента очень велико, но работать со слишком большими (равно как и со слишком малыми) числами при вычислениях неудобно, поэтому часто коэффициенты усиления выражают в логарифмических единицах.

Для этого применяются следующие формулы:

  • коэффициент усиления по мощности в логарифмических единицах = 10 * десятичный логарифм искомого коэффициента усиления по мощности;
  • коэффициент усиления по току в логарифмических единицах = 20 * десятичный логарифм искомого коэффициента усиления по току;
  • коэффициент усиления по напряжению в логарифмических единицах = 20 * десятичный логарифм искомого коэффициента усиления по напряжению;
  • коэффициент искажения сигнала.

Рассчитанные подобным образом коэффициенты измеряются в децибелах. Сокращенное наименование – дБ.

  1. Номинальная.
  2. Паспортная шумовая.
  3. Максимальная кратковременная.
  4. Максимальная долговременная.

Принцип работы усилителя

Основные технические показатели усилителей

· входные и выходные данные;

· коэффициент полезного действия (КПД);

· частотные характеристики (амплитудно-частотная и фазо-частотная);

· амплитудная характеристика и динамический диапазон;

Входные и выходные данные

Входными данными усилителя являются: его входное напряжение (UВХ), входной ток (IВХ) и входная мощность сигнала (PВХ), при которых усилитель отдаёт в нагрузку заданную мощность, ток или напряжение, а также входное сопротивление усилителя (ZВх). Входное сопротивление усилителя является комплексной величиной, но входные данные обычно определяют в условиях, при которых входное сопротивление можно считать чисто активным и равным RВХ.

Коэффициенты усиления

1. По напряжению: КU = UВЫХ / UВХ. Обычно коэффициент усиления по напряжению называют просто коэффициентом усиления усилителя (К) и обозначают без индекса.

2. По току: КI = IВЫХ / IВХ.

3. По мощности: КР = РВЫХ / РВХ

Коэффициенты усиления по напряжению и по току являются комплексными величинами, т.к. выходное напряжение и ток из-за наличия в нагрузке и цепях усилителя реактивных составляющих сопротивления сдвинуты по фазе относительно входных значений напряжения и тока.

Для многокаскадного усилителя, содержащего n каскадов, общий коэффициент усиления определяется выражением

КS = К1 × К2 × К3 × ……. × Кn ……………….. (1.3)

Чаще наиболее удобным является представление коэффициента усиления в логарифмических единицах (децибелах), для чего пользуются соотношениями:

К(дб) = 20lgK; КI(дб) = 20lgKI ; KP(дб) = 10lgKР …… (1.4)

При этом коэффициент усиления многокаскадного усилителя в логарифмических единицах будет иметь выражение:

КS(дб) = К1 + К2 + К3 + ……. + Кn …….. (1.5)

Коэффициент полезного действия

Для оценки экономичности работы мощных усилителей используют понятие коэффициента полезного действия (h), равного отношению отдаваемой усилителем в нагрузку мощности сигнала РНАГР к суммарной мощности РS, потребляемой им от всех источников питания:

h = РНАГР / РS …………………. (1,6)

Частотные характеристики

Так как коэффициент усиления усилителя при изменении частоты изменяется как по модулю, так и по фазе, отдельные гармонические составляющие сложного электрического сигнала, подаваемого на вход усилителя, усиливаются неодинаково и сдвигаются на различное время; обе эти причины приводят к изменению формы выходного сигнала.

Изменения формы сигнала, вызываемые неодинаковым усилением различных частот, называют частотными искажениями; искажения формы, вызываемые сдвигом фазы, вносимым усилителем, называют фазовыми искажениями.

Как частотные, так и фазовые искажения обусловлены линейными элементами схемы усилителя, т.е. элементами, подчиняющимися закону Ома; поэтому их называют линейными искажениями.

Допустимая величина частотных искажений зависит от назначения усилителя и может изменяться в широких пределах. Например, для усилителей звуковых частот радиоаппаратуры среднего качества допускают частотные искажения порядка ± (2 ¸ 4) дБ, почти незаметные на слух; для высококачественных усилителей, используемых в измерительной аппаратуре, допустимые искажения определяются необходимой точностью аппаратуры и могут составлять доли децибела.

Оценку фазовых искажений, вносимых усилителем, производят по его фазо-частотной (фазовой) характеристике, представляющей зависимость угла сдвига фазы j между выходным и входным напряжениями от частоты, построенной в линейном масштабе по обеим осям. Для удобства оценки фазовых искажений фазовую характеристику усилителя строят отдельно для нижних и верхних частот (рис.1.2а,б).

Переходная характеристика

В импульсных усилителях (видеоусилителях) линейные искажения усиливаемых сигналов обусловлены переходными процессами установления токов и напряжений в цепях, содержащих реактивные сопротивления.

Для оценки линейных искажений, называемых в импульсных усилителях переходными искажениями, используют переходную характеристику, представляющую собой зависимость мгновенного значения выходного напряжения (тока) сигнала от времени при мгновенном (скачкообразном) изменении напряжения (тока) во входной цепи усилителя.

Амплитудная характеристика и динамический диапазон

Это зависимость амплитуды (или действующего значения) напряжения сигнала на выходе от амплитуды (или действующего значения) напряжения сигнала на входе.

Нелинейные искажения

Это изменения его формы, вызываемые нелинейными элементами, входящими в схему усилителя.

Основные причины появления в усилителе нелинейных искажений:

1. Нелинейность характеристик УЭ (транзисторов, электронных ламп и др.)

2. Нелинейность характеристики намагничивания магнитных материалов сердечников трансформаторов и дросселей усилителя (если они присутствуют в схеме).

Так как выходной ток транзистора (ток коллектора) в первом приближении пропорционален входному току (току базы), нелинейные искажения последнего передаются в выходную цепь.

Усилитель на транзисторах: виды, схемы, простые и сложные

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах – музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин – практически прямая линия. Если на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» – ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно – чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД – свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД – менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Для повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток – полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений – не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше – до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется – характерный металлический звук.

«Альтернативные» конструкции

Нельзя сказать, что они альтернативные, просто некоторые специалисты, занимающиеся проектировкой и сборкой усилителей для качественного воспроизведения звука, все чаще отдают предпочтение ламповым конструкциям. У ламповых усилителей такие преимущества:

  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один минус, который перевешивает все достоинства, – обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление – несколько тысяч Ом. Но сопротивление обмотки динамиков – 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток – существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная – в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Причем КПД у таких устройств достаточно высокий – порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности – они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Таблица классов усилителей по углу проводимости

Усилители класса АВ, В и С могут быть определены в терминах угла проводимости θ следующим образом:

Как работает усилитель на транзисторе

Разбор схемы

Это моно-усилитель мощности звуковой частоты.

Транзистор VT1 является главным элементом в схеме усилителя. Поэтому схема называется транзисторный УНЧ (усилитель низкой частоты).

В данном случае используется n-p-n транзистор. Он включен по схеме с общим эмиттером (ОЭ). Эта схема позволяет выжить максимум из транзистора. Она усиливает и напряжение, и ток одновременно. Итого максимальная мощность.

Данная схема имеет один каскад усиления.

Что такое каскад

Каскад – это по сути этап усиления, который не зависит от другого. Бывают и двухкаскадные усилители. То есть, например, в схеме есть два транзистора. Один работает как предусилитель, и передает усиленный сигнал на вход второго. Поэтому схема называется двухкаскадной. Они не зависят друг от друга, но первый каскад передает сигнал на второй, что позволяет увеличить мощность сигнала.

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Вход усилителя

Вход усилителя – это клеммы Х1 и Х2.

Х2 это минус входа, а Х1 – плюс. Так как схема на один канал, то УНЧ называется моно.

Можно подключить как левый канал, так и правый и оба сразу.

Фильтрация входного сигнала

Электролитический конденсатор С1 позволяет отделить постоянную составляющую входящего сигнала от переменной.

По-простому, он пропускает только переменный сигналю. Если сигнала нет, или вход усилителя замкнут, то без этого конденсатора транзистор может перейти в режим насыщения (максимальное усиление), и на выходе появится неприятный хрип.

Емкость конденсатора подобрана под частоту звукового сигнала. Звук начинается от 20 Гц и до 16 кГц.

Рабочая точка и смещение базы

Для того, чтобы транзистор не искажал входной сигнал, нужно его для начала чуть-чуть приоткрыть.

Это можно сделать при помощи делителя напряжения из двух резисторов R1 и R2. Этот делитель напряжения позволяет приоткрыть транзистор VT1 для того, чтобы входной сигнал не тратил свою электрическую энергию на его открытие.

Как определяется класс усилителя

Класс усилителя определяется его рабочей точкой. Рабочая точка выбирается с помощью вольтамперной характеристики транзистора. Чем выше напряжение подается на вход транзистора, тем больше ток, тем выше рабочая точка.

Например, точка по центру это А класс.


А класс самый качественный из усилителей. Он усиливает как положительные, так и отрицательные полуволны входного сигнала. В то же время, у этого класса есть существенный недостаток. Это ограничение мощности и снижение энергоэффективности. Дело в том, что пока на вход УНЧ не поступает входной сигнал, он работает все время, пока он включен.

Получается, что при это расходуется лишняя электроэнергия. Поэтому, еще рабочая точка называется точкой покоя, когда усилитель не усиливает входной сигнал.

Также от рабочей точки зависит и чувствительность усилителя.

Еще есть B класс, AB и D. Они отличаются друг от друга по эффективности усиления и наличию искажений. Все зависит от используемой схемы.

Например. D класс вообще не открывает транзистор, однако с точки зрения энергоэффективности – это самый лучший выбор. Транзистор в покое не потребляет ничего, он включается только при подаче входного сигнала. И при этом если на вход подается аналоговый звуковой сигнал, то он искажается. Такой класс не подойдет для схемы, которую разбираем в этой статье.

А режим АВ применяется в схемах, где есть несколько транзисторов, которые работают на свои полуволны. Есть схемы, где один транзистор усиливает только положительные полуволны, а второй только отрицательные. Такие усилители называются двухтактными.

Стабилизация работы схемы

Когда полупроводник нагревается, его сопротивление уменьшается. Транзистор сделан из полупроводника, и соответственно его p-n переходы тоже.

При работе схемы УНЧ ток течет через транзистор, и он нагревается. Обычно вся мощность рассеивается на коллекторе. И тем не менее, характеристики транзистора резко меняются, поскольку сопротивление его p-n переходом резко снижается по мере повышения температуры.

Чтобы стабилизировать работу транзистора, нужно сбалансировать его сопротивление другим источником. Это можно сделать при помощи дополнительного сопротивления.

Когда сопротивление транзистора VT1 уменьшается, резистор R3 забирает часть напряжения на себя и не позволяет увеличить ток в цепи.

Благодаря этому транзистор:

  • не закрывается;
  • не переходит в режим насыщения;
  • не искажает сигнал;
  • и не перегревается.

Это называется термостабилизация работы усилителя.

А чтобы в нормальном режиме работы, когда VT1 не нагревается, резистор R3 не уменьшал мощность схемы, в цепь включен шунтирующий электролитический конденсатор C2. Через него переменная составляющая входного сигнала проходит без потерь.

Выход усилителя

На выход к усилителю можно подключить как другой усилитель, который усилит сигнал еще больше, так и динамическую головку.
Динамическая головка — это обычный динамик. Он воспроизведёт звук с выхода транзистора VT1.

Однако и тут есть много нюансов.

Если сопротивление выхода транзистора намного больше, чем у динамической головки, то он не сможет передать всю мощность. Как минимум большая часть напряжения останется на его контактах.

Для данной схемы нужен динамик с сопротивлением около 1 кОм.

Если поставить меньше, например, на 4 Ома, то и половина мощности не воспроизведется, а коллектор VT1 начнет еще сильнее нагреваться.

Согласование сопротивлений входа, выхода и нагрузки усилителя рассчитывается на этапе проектирования схемы. Поэтому не следует их нарушать.

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.

Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.

В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

От чего зависит мощность схемы

У этой схемы есть ограничения. Можно поменять VT1 КТ315 на более мощный, у которого коэффициент усиления будет выше, но этот лимит усиления не бесконечный.

В первую очередь, все зависит от используемого транзистора. Если поменять его на более мощный, то и усиление будет выше. Но следует помнить, что чем мощнее транзистор, тем мощнее нужен входной сигнал. К тому же, придется сделать перерасчет всех компонентов. И подключать предусилитель, собирать схему блока питания, а это уже будет совсем другая схема.

У транзисторов есть ряд параметров, которые влияют на схему. Это коэффициент усиления по току (h21э), напряжению, мощности. А также важный параметр — это рассеиваемая мощность на коллекторе. С повышением мощности потребуется радиатор для отвода тепла.

Как собрать схему

Схему можно собрать на текстолите или на макетной плате. Перейдите по ссылке на эту статью, в ней подробнее описывается процесс сборки и проверки схемы.

Используйте качественные детали и хороший припой. Она рабочая. Это вообще классическая схема включения биполярного транзистора с общим эмиттером.

Также на сайте есть и другие схемы усилителей, которые не сложны в сборке и не дорогие по стоимости деталей.

Как проверить работу схемы

Достаточно прикоснуться до входа УНЧ отверткой, и на выходе послышаться треск. Это переменная наводка, которая усилится схемой.

Как работает усилитель класса «АВ», или Практичность правит миром

Класс АВ — это тот тип усилителей, который до недавнего времени применялся в Hi-Fi-аппаратуре в разы чаще, чем любой другой. Сейчас над ним уже нависла угрожающая тень усилителей класса D, занимающих все большую долю рынка Hi-Fi, но пока модели класса АВ по-прежнему в большинстве и сдаваться так легко они не собираются. В классе АВ могут работать как ламповые, так и транзисторные схемы, но если говорить об абсолютном большинстве класс АВ ассоциируется скорее с эпохой транзисторного Hi-Fi.

Принцип работы

Из самого обозначения класса АВ нетрудно сделать вывод, что данный режим является гибридом класса А и класса В. Как работают усилители класса А, мы уже разобрались, а с классом В ознакомиться не успели, поэтому начнем с него. И для начала вспомним логику, которой руководствовался создатель усилителя класса А. Для того, чтобы получить возможность воспроизводить и положительную, и отрицательную полуволну с помощью одного активного элемента, он применил смещение средней точки (тока покоя) в середину рабочей зоны лампы.

Создатели усилителей класса В рассуждали по-другому: «Если одна лампа или один транзистор с нулевым смещением способен воспроизвести только одну полуволну сигнала, почему бы не добавить в схему еще один активный элемент, разместив его зеркально, чтобы воспроизводить другую полуволну?».

Это вполне логично, ведь при таком раскладе оба транзистора работают с нулевым смещением. Пока на входе усилителя присутствует положительная полуволна — работает один транзистор, а когда приходит время воспроизводить отрицательную полуволну, первый транзистор полностью закрывается и вместо него в работу включается второй. В английском варианте этот принцип действия получил название push-pull или, говоря по-русски, «тяни-толкай», что в общем-то очень хорошо описывает происходящее.

Если сравнивать класс В с классом А, наиболее очевидным преимуществом является то, что в классе В на каждую волну приходится полный рабочий диапазон транзистора (или лампы), в то время как в классе А обе полуволны воспроизводятся одним активным элементом. Это значит, что усилитель класса В будет вдвое мощнее усилителя класса А, собранного на таких же транзисторах.

Второй, чуть менее очевидный, но очень важный плюс класса В — нулевые токи смещения. Когда сигнал на входе равен нулю, ток, протекающий через транзисторы, тоже равен нулю, а это значит, что напрасного расхода энергии не происходит, и энергоэффективность схемы получается в разы выше, чем в классе А.

Однако из этого же факта вытекает и главный недостаток усилителя класса В. Момент включения транзистора в работу после полностью закрытого состояния сопровождается небольшой задержкой, поэтому при прохождении звуковым сигналом нулевой точки, когда один транзистор уже закрылся, второй транзистор не успевает мгновенно подхватить эстафету, и в этой самой переходной точке возникают небольшие временные задержки.

На практике это выражается в особенной нелюбви усилителя к тихой музыке, а также в плохой передаче микродинамики. И хотя история знает успешные реализации класса В, например — легендарный Quad 405, проблемы данного режима работы никуда не делись. Тот же 405-й не только радовал энергичным и мускулистым звучанием, но также имел явную склонность рисовать звуковую картину крупными мазками, масштабно, не размениваясь на мелочи.

Для того, чтобы сохранить все плюсы класса В и решить проблему переходных процессов, инженеры пошли на хитрость. Они включили оба транзистора со смещением, как это делается в классе А, но величина смещения при этом была выбрана существенно меньшая: так, чтобы покрыть лишь те моменты, когда транзистор близок к закрытию, выводя тем самым переходные процессы из рабочей зоны.

Это позволило усилителю класса АВ незаметно преодолевать нулевую точку, а также дало еще один крайне полезный эффект. При малой амплитуде сигнала, укладывающейся в пределы смещения тока покоя, подобный усилитель работает в классе А и, только когда амплитуда выходит за пределы выбранной производителем величины смещения, он переходит в режим АВ.

Плюсы

Рассматривать достоинства и недостатки класса АВ имеет смысл на фоне двух исходных технологий. Класс АВ однозначно и существенно выигрывает у класса А по энергоэффективности. Его реальный КПД достигает 70–80%, если конечно производитель не сильно увлекся поднятием тока покоя. С точки зрения звучания класс АВ превосходит класс А в те моменты, когда сигнал достигает высокой амплитуды или требуется высокая мощность. В то же время на малых уровнях громкости класс АВ обычному классу А не уступает, по крайней мере в теории. В сравнении с классом В, класс АВ куда лучше ведет себя на малых громкостях и способен отрабатывать самые тихие и деликатные моменты в музыке, но при этом сохраняет практически ту же мощь и силу на больших динамических всплесках.

Имея большую мощность и лучшую энергоэффективность, усилители класса АВ куда менее капризны при выборе акустики. Они не нуждаются в высокой чувствительности и легче уживаются со сложными кроссоверами, используемыми в многополосных колонках. Вполне справедливо будет заявить, что подавляющее большинство пассивных акустических систем выпускаемых сегодня на рынок рассчитаны на работу со среднестатистическим транзисторным усилителем класса АВ.

Минусы

Объективные минусы у класса АВ можно разглядеть только на фоне еще более совершенных с технической точки зрения классов G, H или D, о которых мы расскажем чуть позже. В список претензий можно отнести разве что субъективные отзывы от ценителей класса А, которые, в целом, сводятся к тому, что класс АВ звучит не столь чисто, детально и изысканно. Чтобы оценить обоснованность данных претензий, рассмотрим схемотехнику усилителей класса АВ более детально, с точки зрения качества звучания.

Особенности

Одной из практических проблем усилителей класса В и АВ является подбор пар транзисторов, работающих в одном канале усиления. Располагаясь в схеме зеркально, два транзистора должны быть полностью идентичны друг другу. В противном случае, сигналы положительной и отрицательной полуволн будут воспроизводиться не симметрично, и это существенно повысит общий уровень искажений.

В реальной жизни абсолютная идентичность — понятие абстрактное, скорее имеет смысл рассуждать о степени похожести или, говоря техническим языком, о пределах допустимых отклонений транзисторов от заданных характеристик. Чем более похожи два транзистора друг на друга, тем меньше уровень искажений, и тем больше их совместная работа приближается к тому, что мы имеем в классе А, когда обе полуволны воспроизводит один транзистор.

Понимая, что даже при самом строгом отборе по параметрам отличия между двумя транзисторами в паре все же будут иметь место (пусть и в предельно малых значениях), мы вынуждены признать, что при прочих равных условиях один такой же транзистор работающий в классе А будет звучать чуть чище и чуть лучше, чем пара в классе АВ.

Совсем иная ситуация вырисовывается, когда речь заходит о работе на большой амплитуде сигнала и на нагрузке требующей высокой мощности. Имея высокий КПД класс АВ нуждается в менее мощном и громоздком блоке питания, нежели усилитель класса А, и тут уже поклонники однотактников вынуждены признать абсолютное и безоговорочное превосходство класса АВ.

Более того, разработчики имеют возможность гораздо свободнее экспериментировать с блоками питания, управляя характером и динамикой звучания путем подбора рабочих характеристик трансформатора и конденсаторов. Например, можно установить трансформатор с многократным запасом мощности, чтобы на пиках сигнала он не выходил из оптимального режима работы, или использовать улучшенные конденсаторы, способные мгновенно отдавать высокий ток.

Еще одна тонкость: работая в классе А, транзисторы выделяют большое количество тепла, что может негативно сказываться на качестве их работы, особенно при увеличении нагрузки. В классе АВ транзисторы греются в меньшей степени, вследствие чего они быстро приходят в рабочий режим и менее подвержены риску перегрева, снижающего качество звучания при работе усилителя на высокой громкости.

Практика

Защищать честь усилителей класса АВ в сравнительном прослушивании было уготовано мощному двухблочному усилителю Atoll серии Signature, состоящему из усилителя мощности AM200 и предварительного усилителя PR300. Интересующий нас усилитель мощности выстроен в полном соответствии с изложенными выше теоретическими выкладками.

Реализуя потенциал, заложенный в схемотехнике класса АВ, разработчики обеспечили по 120 Вт выходной мощности на канал, чего достаточно для большинства акустических систем за исключением самых низкочувствительных и просто монструозных моделей. Говоря об особенностях своего усилителя, производитель акцентирует внимание на применении подобранных пар транзисторов с последующей подстройкой схемы вручную для минимизации общего уровня искажений.

С целью лучшего разделения каналов и исключения перекрестных помех усилитель выстроен по схеме полного двойного моно, поэтому каждый канал усиления получил собственный блок питания. Суммарная мощность блока питания составляет 670 ВА, что покрывает потребности усилителя мощностью 120 Вт с большим запасом. Солидную дополнительную подпитку на пиках сигнала обеспечат конденсаторы емкостью 62 000 мкФ.

Внушительная мощность и отличная энергооснащенность усилителя дали в звучании вполне ожидаемое ощущение легкости и непринужденности при работе с любой акустикой и практически на любых уровнях громкости. Если выкрутить ручку громкости посильнее, можно услышать небольшую компрессию, а бас словно отодвигался на задний план, но это были очевидные признаки того, что НЧ-динамики приблизились к пределу своих возможностей, в то время как усилитель только начал разогреваться и был очень далек от состояния перегрузки.

В то же время на малых и средних уровнях громкости Atoll AM200 Signature показывал себя наилучшим образом. Середина была выразительна, детальность превосходна, а сцена — четко очерчена, с хорошо ощутимой глубиной и шириной. При прямом сравнении с усилителями класса А последние давали чуть более свободную и безграничную сцену и чуть тоньше отрабатывали мелкие детали в тихой камерной музыке.

Характер, свойственный классу АВ, наиболее ярко проявлялся у Atoll AM200 Signature на динамичной рок-музыке. Он выдавал очень собранный, быстрый и четкий бас, хорошо справляясь с резкими перепадами громкости и крупными штрихами. На джазе и классической музыке, требующих сочетать динамичность и мощь со способностью воспроизводить тонкие оттенки и нюансы, усилитель вел себя чуть менее уверенно. Казалось, что он слегка упрощает звучание, укрупняя музыкальные образы и уводя внимание от тонких оттенков к основной мелодической линии.

Однако все это можно заметить лишь в прямом сравнении с гораздо более дорогими представителями других классов. По общему впечатлению Atoll AM200 Signature был скорее всеяден и универсален. Являясь примером грамотной реализации класса АВ, когда разработчики приложили массу усилий чтобы минимизировать слабые места и максимально раскрыть потенциал данной схемотехники, он вполне конкурентен на фоне лучших представителей других классов.

Выводы

Высокая мощность, высокий КПД с умеренным тепловыделением, способность справляться со сложной нагрузкой и хорошая динамика — вот что такое усилитель класса АВ. Это делает его, в первую очередь, идеальным решением для массового производства усилителей, что подтверждает сама история развития индустрии Hi-Fi.

Однако крайне ошибочно руководствоваться стереотипным мнением о том, что массовый универсальный продукт и продукт элитный должны быть непременно вылеплены из разного теста. При должном внимании к деталям и глубоком понимании принципов работы данная схемотехника может быть реализована на самом высоком уровне качества. Так что сегодня High End-усилитель, работающий в классе AB — такая же обыденность, как и хайэндный усилитель, работающий в любой другой схемотехнике.

Статья подготовлена при поддержке компании «Аудиомания», тестирование усилителей проходило в залах прослушивания салона.

Другие полезные материалы в разделе «Мир Hi-Fi» на сайте «Аудиомании» и Youtube-канале компании:

Что такое усилитель в автозвуке

Автомобильные усилители берут сигнал от головного устройства, усиливают его, и передают на громкоговорители. Это позволяет получить от динамиков звук мощнее и чище чем, если сигнал подавался бы непосредственно с источника сигнала на громкоговорители. Идеально, если усилитель передает сигнал линейно – сигнал на выходе по форме такой, как и на входе, только с большей амплитудой, которая определяет мощность звука. Такая передача формы сигнала называется АЧХ – амплитудно-частотной характеристикой, которая показывает, как усилитель передает сигнал на разных частотах. Чем ровнее АЧХ, тем лучше для качества сигнала.

Типы усилителей

Производители продолжают создавать новые виды усилителей, но есть три главных вида схем усилителей: класс А, класс АВ, класс D.

  1. Класс А имеет мягкий звук, но он не эффективен по КПД и сильно перегревается.
  2. Класс АВ работает намного эффективнее по КПД, но звук получится обычным, нейтральным.
  3. Усилители класса D являются самыми эффективными по потерям энергии, но они имеют низкий демпфирующий фактор, который показывает степень затухания паразитных колебаний и зависит от выходного сопротивления усилителя.

Усилители обычно делают 5 или 4 канальными, стерео 2 канальные или моноблоки с одним каналом, для подключения сабвуфера. Некоторые производители выпускают усилители и с большим количеством каналов, но они намного меньше применяются в системах автозвука.

Как работает усилитель

Нет ничего важного в принципе работы усилителя, что может пригодиться пользователю. Эта информация больше подойдет для энтузиастов, которые задают себе вопросы, как усилитель работает и как он управляет сигналом. Мы не будем углубляться в работу электрической схемы, в историю транзисторов или в принципы работы трансформаторов, скорее мы рассмотрим, что усилитель делает с сигналом, который он получает от головного устройства и проводит этот сигнал по своим путям.

Обычно считают, что усилитель берет исходный маленький сигнал и увеличивает его до определенной величины. Это верно только от части, фактически усилитель создает новый сигнал, который должен быть точной копией входного сигнала.

Сравним звуковой усилитель и копировальный аппарат. Вы, вероятно, спросите, как можно сравнивать эти две различные технологии. Но если вы делали копию на копировальном аппарате, то вы заметили, что можно с его помощью увеличить исходный документ на определенную величину. Если иметь исходное изображение и увеличить его до других размеров, то вы будете иметь два одинаковых изображения разных размеров, но на разных листах бумаги. Новое изображение – большая копия старой картинки, то есть это новый лист со своим изображением. Теперь перенесем эти принципы работы в усилитель. Он берет сигнал с входа и выдает на выход уже увеличенный сигнал. Однако сигнал на выходе, подобно копировальщику, не тот же что и на входе. Увеличение сигнала происходит только по амплитуде, но не в длине звуковой волны иначе это будут уже помехи и искажения сигнала и копии точной не получиться. Эта аналогия должна вам дать общее представление о работе усилителя.

Усилитель берет слабый сигнал от источника, например, CD проигрывателя и увеличивает его для нормальной работы динамиков. И хотя это не один и тот же сигнал отличие между ними заключается только в их мощности.

Сигналы

Первый шаг к пониманию работы усилителя – это понятие о сигналах. Сигналы используются, чтобы передать данные из одного места в другое. Есть два вида сигнала – аналоговые и цифровые. В нашем примере используется аналоговый сигнал, который передается по аудио кабелям и представляет собой аналогию звуковой волны в электрической форме с помощью изменяющегося уровня напряжения. Головное устройство по кабелям передает в усилитель электрический сигнал, соответствующий звуку (музыке).

Большинство усилителей обрабатывают входной сигнал с помощью трех узлов

Источники звука отличаются по выходному напряжению. Первое головное устройство может подать на усилитель сигнал в 1 вольт, когда другое может подать тот же сигнал уже с напряжением в 3 вольта.
Усилители должны быть способны обрабатывать сигналы разного уровня. Некоторые усилители, особенно штатные, способны обрабатывать только один уровень сигнала, но большинство усилителей обрабатывает два уровня сигналов от источника звука. Один высокий уровень позволяет к головному устройству подключать сразу динамики, а второй низкий уровень сигнала должен пройти через усилитель.

Обязательно чувствительность входной схемы усилителя должна соответствовать уровню сигнала выхода головного устройства. Входная чувствительность регулируется в усилителе и определяет коэффициент усиления, но большая входная чувствительность может привести к большим искажениям сигнала. Поэтому нужно контролировать уровень громкости по регулятору громкости источника сигнала. Ведь регулировка чувствительности используется только что бы устранить несоответствие в уровнях выходного сигнала различных элементов в системе автозвука. Другими словами, если регулятор громкости устанавливается в максимум и на усилитель идет максимальный по уровню сигнал, и нет искажений в динамиках, то в усилителе входная чувствительность отрегулирована правильно.

Блок питания отвечает за преобразование напряжения питания автомобиля (напряжение от аккумулятора) в более высокое напряжение. Обычно напряжение с аккумулятора подается постоянное на уровне 13,8 вольт. Это маленькое напряжение и его не достаточно что бы запустить динамики на звуковую мощность требуемую пользователем.
Все автомобильные динамики имеют постоянное сопротивление, в среднем это сопротивление равно 4 Ом.

Если мы будем подавать на наш усилитель питание 13,8 вольт и подключим на выход динамики сопротивлением 4 Ом, то максимальная возможная мощность, которую мы сможем получить, составит не больше 49 Вт. Ведь по формуле мощность (Р) равняется напряжению (V), взятому в квадрате, деленному на сопротивление (R). Если взять питание аккумулятора в 13,8 вольт и возвести в квадрат, то получим 190. Громкоговорители имеют сопротивление 4 Ом, это значение и подставим в формулу. Поделив 190 на 4, получаем максимально возможную мощность нашего усилителя равную 47,5 Ватт, и это с условием, что КПД усилителя 100%.

Если подключить к усилителю динамики на 2 Ом (что плохо может сказаться на качестве звука), и подставим это значение в формулу мощности, то получим максимальную мощность в 95 Ватт. Но и этого может не хватить для большого 15 дюймового низкочастотного динамика.

Так как можно увеличить мощность на выходе усилителя? Ответ один – повысить питающее напряжение. Очевидно, что повысить напряжение питающей сети автомобиля мы не можем, значит, эту задачу будет выполнять усилитель. Фактически, повышение и контроль напряжения — это работа усилителя.

Повышение напряжения осуществляется блоком питания усилителя. Большой и мощный блок питания означает, что выходной каскад усилителя сможет лучше выполнить свою работу и подать на динамики большую мощность. Что бы повысить напряжение сети автомобиля блок питания усилителя использует трансформатор.

Трансформатор – устройство, которое берет напряжение одного уровня и изменяет его на напряжение другого уровня. Трансформаторы бывают повышающие или понижающие. Это означает, что они берут напряжение определенного уровня и на выходе выдают или повышенное или пониженное напряжение. Типичный понижающий трансформатор используется в системах промышленных электропередающих линий, когда нужно понизить напряжение с передающих линий в несколько киловольт до 220 вольт, используемых в наших домах. В автомобильных усилителях используется повышающий трансформатор, который берет напряжение автомобиля и повышает его до уровня, необходимого усилителю для нормальной работы.

Поскольку аудио сигнал – это сигнал АС (переменный ток), то нам понадобиться и положительное и отрицательное напряжение для работы динамиков. Что бы реализовать это с трансформатора снимается два постоянных напряжения, которые противоположны друг другу. Одно из этих напряжений управляет положительными колебаниями сигнала, а другое – отрицательными колебаниями. При комбинации этих колебаний получиться сигнал АС.

Если у нас блок питания, который выдает +25 вольт, то он должен выдавать и -25 вольт. Это положительное и отрицательное напряжение питания усилителя. В этом примере разница напряжения будет 50 вольт. Если подставить это значение в формулу мощности, рассмотренную выше, то получиться максимально возможная мощность усилителя 625 Ватт. Если сказать другими словами, то усилитель имеет пиковую мощность 625 Ватт.

Большая разница напряжения блока питания дает возможность усилителю выдать больше мощности на динамики. Считается, что при питании с большим напряжением усилитель будет иметь больший «headroom» (это зона на шкале уровня сигнала в dB, где кратковременные пики аудио сигнала не приводят к искажениям звука, другими словами – больший уровень сигнала без искажений), чем усилитель с меньшим уровнем питания.

Выходной каскад усилителя выдает сигнал, который напрямую подается на громкоговорители. Главными элементами выходного каскада являются мощные транзисторы. Наиболее популярными выходными транзисторами являются MOSFET. Транзисторы служат ключами для подачи повышенного напряжения с блока питания на выход усилителя. Что бы сделать это они преобразуют напряжение от блока питания в нужную форму сигнала.

Помните определение сигнала из этой статьи выше? Вот этот сигнал и служит для управления открыванием и закрыванием транзисторов выходного каскада. Так фактически входной сигнал управляет транзисторами, что бы напряжение с блока питания приняло форму аудио сигнала. То есть он переводит транзисторы во включенное и отключенное состояние в соответствии с входным сигналом, когда они воспроизводят входной сигнал в более мощной форме, который подается на выход усилителя и затем на динамики.

Лада 2112 › Бортжурнал › Устройство автомобильных усилителей

Всем Привет, в этой статье хотел немного рассказать об устройстве автомобильного усилителя, может быть для кого-то окажется интересным а может быть даже полезным)) Все автомобильные усилители устроены одинаково, разница лишь в мощности и в качестве компонентов и качестве сборки. Рассмотрим устройство на 3х бюджетных усилителях, их стоимость примерно одинаковая (посмотрим какой же предпочтительней купить).
Усилитель состоит из 2х основных блоков это силовой (блок питания) и аккустический который в свою очередь делится на сам усилитель и кроссовер.

Питание в сети автомобиля 12-14.4в что крайне мало для питания усилителя свыше 20Вт, для питания мощных усилителей требуется двуполярное питание от 20 и до 50-60 вольт в зависимости от мощности усилителя. Блок питания как раз и выполняет эту функцию преобразует 12 вольт в более высокое двуполярное напряжение. В блоке питания использован задающий генератор на микросхеме TL494 и мощные транзисторы на выходе (их может быть 2 а может быть и больше 4-6) их характеристики и количество указывают на мощность усилителя, далее уже переменное напряжение поступает на трансформатор (по его размерам и толщине проводов которыми он намотан можно судить о мощности блока питания, так и о мощности усилителя в целом ведь без хорошего питания мощного усилителя не получится.

Теперь повышенное напряжение выпрямляется и поступает на питания самих усилителей.

Теперь рассмотрим внутренности нескольких усилителей на фото выше изображен Blaupunkt GTA250, теперь посмотрим на Prology CA200

И что мы видим? Абсолютно тот же самый усилитель собранный на тех же самых компонентах, немного различаются трансформаторы размерами они одинаковые но в первом случае он намотан большим количеством более тонких жил а во втором жил меньше но провод толще в итоге одно и тоже. Так что при выборе из этих моделей не заморачивайтесь внутри они одинаковые)))

Следующим усилителем был Сalcell VAC90.2 стоимость его такаяже как у двух предыдущих но внутренности гораздо интересней, Трансформатор значительно больше и намотан более толстыми проводами, в выходном каскаде блока питания использовано уже на 2 а 4 транзистора, все это указывает на более высокую выходную мощность блока питания.

Теперь хотелось бы немного рассказать о простейших неисправностях встречающихся в усилителях и которые подсилу починить любому желающему. Уязвимым местом усилителя является блок питания и именно он обычно выходит из строя, реже ломается сам усилитель, и совсем резко блок кроссовера. Вскрываем усилитель и в первую очередь визуально осматриваем компаненты очень часто выходят из строя конденсаторы (вздуваются вытекают а иногда даже взрываются)

Если все компоненты целы и нет визуально сгоревших, часто выходят из строя транзисторы выходного каскада блока питания (как их проверить можно найти в интернете или сразу заменить на новые)

Если есть напряжение питания есть, но звука нет или работает только один из каналов то переходим непосредственно к самому усилителю, здесь тоже в основном подвержены к выходу из стря выходные тразисторы усилителя (проверяемменяем на новые)

Н и конечно визуально осматриваем на предмет инородных тел в усилители, вчера друг попросил посмотреть его сломавшийся усилитель, дело оказалось в том что он на на болты прикрепил куллер к корпусу усилителя, и одна из гаек открутилась упала внутрь и устроила там небольшое короткое замыкание))) после удаления гайки усилитель заработал как прежде, так что будьте внимательны в доработках усилителей)))
Ну и в конце все тоже самое но в небольшом видеоролике: