Проверка петли фаза ноль методика

Как измерить сопротивление петли фаза-ноль?

Надежность работы электрических сетей TN с классом напряжения до 1 кВ во многом зависит от параметров срабатывания защитного оборудования, отключающего аварийный участок при образовании сверхтоков. Существует несколько методик, позволяющих проверить надежность срабатывания автоматов защиты, сегодня мы подробно рассмотрим одну из них — измерение сопротивления петли «фаза-ноль». Для лучшего понимания процесса начнем с краткого описания терминологии, после чего перейдем к методике электрических испытаний при помощи специального устройства MZC-300.

Что подразумевается под цепью «фаза-ноль»?

В системах с глухозаземленной нейтралью (подробно о них можно прочитать в статье https://www.asutpp.ru/programmy-dlja-cherchenija-jelektricheskih-shem.html) при контакте одной из фаз с рабочим нулем или защитным проводником РЕ, образуется петля фаза-ноль, характерная для однофазного КЗ.

Как и любая электроцепь, она имеет внутреннее сопротивление, расчет которого позволяет определить остальные значащие параметры, в частности, ток КЗ. К сожалению, самостоятельный расчет сопротивления такой цепи связан с определенными трудностями, вызванными необходимостью учета многих составляющих, например:

  • Суммарная величина всех переходных сопротивлений петли, возникающих в АВ, предохранителях, коммутационном оборудовании и т.д.
  • Движение электротока при нештатном режиме. Петля может образоваться как с рабочим нулем, так и заземленными конструкциями здания.

Учесть в расчетах все перечисленные составляющие на практике не реально, именно поэтому возникает необходимость в электрических измерениях. Спецоборудование позволяет получить необходимые параметры автоматически.

Необходимость в измерениях

Замер сопротивления петли проводится в следующих случаях:

  • При вводе в эксплуатацию, после ремонта, модернизации или переоборудовании установок.
  • Требование со стороны служб различных служб контроля, например Облэнерго, Ростехнадзор и т.д.
  • По заявлению потребителя.

В ходе электрических замеров устанавливаются определенные параметры петли Ф-Н, а именно:

  • Общее сопротивление цепи, которое включает в себя:

электросопротивление трансформатора на подстанции;

аналогичный параметр линейного проводника и рабочего нуля;

образующиеся в коммутационном оборудовании многочисленные переходные сопротивления, например в защитных устройствах (АВ, УЗО, диффавтоматах), пускателях, ручных коммутаторах и т.д. Также влияние оказывает сечение проводников, изоляция кабелей, заземление нейтрали трансформатора, параметры УЗО или другой защиты электроустановок.

    Ток КЗ (IКЗ). В принципе, его можно рассчитать, используя формулу: IКЗ = UН /ZП , где UН – номинальный уровень напряжения в электросети, а ZП – общее сопротивление петли. Учитывая, что защитные устройства при КЗ должны автоматически отключать питание согласно установленным временным нормам, то необходимо выполнение следующего условия: ZП*IABРасположение основных элементов прибора MZC-300

Обозначения:

  1. Информационный дисплей. Полное описание его полей можно найти в руководстве по эксплуатации.
  2. Кнопка «Старт». Запускает следующие процессы измерений:
  • ZП, напомним, это общее сопротивление цепи Ф-Н.
  • IКЗ – ожидаемый ток КЗ.
  • Активного сопротивления, необходимо для калибровки прибора.

Старт каждого измерения сопровождается характерным звуковым сигналом.

  1. Кнопка «SEL». Служит для последовательного вывода на информационный дисплей всех характеристик петли, полученных в результате последнего замера. В частности отображается следующая информация:
  • Параметры ZП.
  • Ожидаемый IКЗ.
  • Уровень активного и реактивного сопротивления (R и Х).
  • Фазный угол ϕ.
  1. Кнопка «Z/I». По окончании испытаний переключает на дисплее отображение характеристик между ожидаемым IКЗ и ZП.
  2. Кнопка отключения/включения измерительного устройства. Если при запуске прибора одновременно с данной кнопкой нажать «SEL», то измеритель перейдет в режим автокалибровки. Его подробное описание можно найти в руководстве пользования.
  3. Разъем для подключения щупа, контактирующего с рабочим нулем, проводником РЕ или, PEN. Соответствующее обозначение нанесено на корпус прибора.
  4. Разъем щупа, подключаемого к одному из фазных проводов. Как правило, помечен литерой «L».
  5. Как и разъем i, в отличии от гнезд для измерительных проводов, используется только в режиме автоматической калибровки. На корпусе прибора обозначаются как «К1» и «К2».

Подготовительный этап

Практически все методы измерений цепи «фаза-ноль» не позволяют получить точную информацию о таких характеристиках, как ZП и IКЗ. Это связано с тем, что векторная природа напряжения не принимается во внимание. Проще говоря, учитываются упрощенные условия при коротком замыкании. В процессе испытания электроустановок такая приближенность допускается только в тех случаях, когда уровень реактивного сопротивления не имеет существенного влияния.

Перед тем, как приступить к измерению характеристик петли «Ф-Н», предварительно следует провести ряд предварительных испытаний. В частности, проверить непрерывность и уровень сопротивления защитных линий. После этого измерить сопротивление между контуром заземления и основными металлическими элементами конструкции здания.

Методика измерений с использованием MZC-300

Прежде, чем переходить непосредственно к испытаниям, кратко расскажем о принятом порядке, он включает в себя:

  • Соблюдение определенных условий, обеспечивающих необходимую точность.
  • Выбор способа подключения устройства.
  • Получение информации о напряжении сети.
  • Измерение основных характеристик петли «Ф-Н».
  • Считывание полученной информации.

Рассмотрим каждый из перечисленных выше этапов.

Соблюдение определенных условий

Следует принять во внимания некоторые особенности работы измерителя:

  • Устройство не допустит проведение испытаний, если номинальное напряжение сети превысит максимальное значение (250В). Превышение диапазона измерения (250,0 В) приведет к тому, что на экране прибора отобразится предупреждение «OFL» сопровождаемое продолжительным звучанием зуммера. В этом случае прибор следует выключить и отключить от измеряемой петли.
  • При обрыве нулевых или защитных проводников на экране устройства будет высвечиваться ошибка в виде символа «—», сопровождаемая длительным сигналом зуммера.
  • Уровень напряжения в измеряемой петле недостаточное для испытаний, как правило, если ниже 180,0 вольт. В таком случае экран выдаст ошибку с символом «U», сопровождаемую двумя сигналами зуммера.
  • Срабатывание термической блокировки прибора. При этом на экране высвечивается символ «Т», а зуммер выдает два продолжительных сигнала.

Выбор способа подключения устройства

Рассмотрим несколько вариантов электрических схем подключения прибора для проведения испытаний:

  1. Снятие характеристик с петли «Ф-Н», в примере, приведенном на рисунке измеряются параметры в цепи С-N. Испытание петли С-N
  2. Измерение в петле между одной из фаз и проводником РЕ. Испытание петли С-РЕ
  3. Измерения в цепях ТТ.

Подключение прибора в цепях с защитным заземлением

  1. Для проверки надежности заземления электрооборудования применяется способ подключения, приведенный ниже.

Испытание надежности заземления корпусов электрооборудования

Важно! Вне зависимости способа подключения прибора необходимо убедиться в надежности соединения проводов.

Получение информации о напряжении сети

Рассматриваемый нами прибор позволяет измерить UH в пределах диапазона от 0 до 250,0 вольт. Фазное напряжение отображается на дисплее прибора сразу после нажатия кнопки включения или по истечении пяти секунд, после проведения испытаний (если не было произведено нажатие управляющих кнопок, отвечающих за отображение результатов на экране).

Измерение основных характеристик петли «Ф-Н»

Методика измерения ZП в петле, применяемая в модельном ряде MZC основана на создании искусственного КЗ с использованием ограничивающего сопротивления (10,0 Ом), понижающего величину IКЗ. После испытаний микропроцессор прибора производит расчет ZП, выделяя реактивные и активные составляющие. Процедура измерения не превышает 30,0 мс.

Характерно, что прибор автоматически выбирает нужный диапазон для измерения ZП. При нажатии кнопки «Z/I» на дисплей поочередно выводятся такие основные характеристики петли, как ожидаемый ток КЗ (IКЗ) и общее сопротивление (ZП).

Следует учитывать, что при вычислениях микропроцессор устанавливает величину UH на уровне 220,0 вольт, в то время, как текущее номинальное напряжение может отличаться от расчетного. Поэтому для увеличения точности замеров электрической цепи следует вносить поправку. Например, при действительном UH, равном 240,0 В, поправка для снижения погрешности прибора будет равна 1,09 (то есть необходимо 240 разделить 220).

Процесс измерения характеристик петли запускается кнопкой «Старт».

Важно! Испытания, проводимые при помощи приборов модельного ряда MZC, практически гарантированно приводят к срабатыванию УЗО. Чтобы избежать этого, необходимо предварительно зашунтировать устройства защитного отключения. После проведения измерений не забудьте снять шунт с УЗО.

Считывание полученной информации

Как уже упоминалось выше, испытания начинаются после нажатия кнопки «Старт». После завершения измерений, на экране отображаются характеристики петли «Ф-Н», в зависимости от установленных настроек. Перебор отображаемой на дисплее информации осуществляется при помощи кнопок «SEL» и «Z/I».

Следует учитывать, что прибор MZC-300 отображает только результаты последнего измерения. Если необходимо хранение в электронной памяти результатов всех испытаний потребуется устройство с расширенными возможностями, например прибор MZC-303E.

Устройство MZC-303E для измерения характеристик петли «Ф-Н»

Такое устройство позволяет не только хранить информацию обо всех измерениях в электронной памяти, но и при необходимости переносить ее на компьютер, при помощи интерфейса USB.

Меры безопасности при измерении петли «Ф-Н»

Согласно требованиям ПУЭ и норм ПТБ испытания должны проводиться подготовленными сотрудниками электролабораторий. Для проведения данных работ необходимо распоряжение или наряд-допуск, выданный работником, обладающим данным правом.

Испытания могут проводить лица, чей возраст не менее 18 лет, прошедшие соответствующее обучение и проверку знаний ПТБ. Бригада электролаборатории должна быть обеспечена соответствующим инструментом, а также всеми необходимыми средствами индивидуальной защиты.

Бригада должна включать в себя, как минимум, двух работников с третьей группой электробезопасности.

Испытания запрещается проводить в помещениях повышенной опасности, а также, если имеет место высокая влажность.

По завершению процесса испытаний результаты вносятся в специальные протоколы испытаний (проверки).

Что такое петля фаза-ноль простым языком — методика проведения измерения

Электроприборы должны работать без нареканий, если электрическая цепь соответствует всем нормам и стандартам. Но в линиях электропитания происходят изменения, которые со временем сказываются на технических параметрах сети. В связи с этим необходимо проводить периодическое измерение показателей и профилактику электропитания. Как правило, проверяют работоспособность автоматов, УЗО, а также параметры петли фаза-ноль. Ниже описаны подробности об измерениях, какие приборы использовать и как анализировать полученные результаты.

Что подразумевается под термином петля фаза-ноль?

Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль.

Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:

  • сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
  • невозможно рассчитать влияние аварийной ситуации на сопротивление.

Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.

Для чего проверяют сопротивление петли фаза-ноль

Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. Результатом измерения петли фаза-ноль является практическое нахождение сопротивления силовой линии до автомата. На основе этого рассчитывается ток короткого замыкания (напряжение сети делим на это сопротивление). После чего делаем вывод: сможет ли автомат, защищающий данную линию отключиться при КЗ.

Например, если на линии установлен автомат C16, то максимальный ток КЗ может быть до 160 А, после чего он расцепит линию. Допустим в результате измерения получим значение сопротивления петли фазы-ноль равным 0,7 Ом в сети 220 В, то есть ток равен 220 / 0,7 = 314 А. Этот ток больше 160 А, поэтому автомат отключится раньше, чем начнут гореть провода и поэтому считаем, что данная линия соответствует норме.

Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.

Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:

  • неплотный контакт на клеммах;
  • несоответствие тока характеристикам провода;
  • уменьшение сопротивления провода из-за устаревания.

Использование измерений позволяет получить подробные данные про параметры сети, включая переходные сопротивления, а также влияние элементов контура на его работоспособность. Другими словами, петля фаза-ноль используется для профилактики защитных устройств и корректного восстановления их функций.

Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или начнут гореть провода.

Периодичность проведения измерений

Надежная работа электросети и всех бытовых приборов возможна только в том случае, если все параметры соответствуют нормам. Для обеспечения нужных характеристик требуется периодическая проверка петли фазы-ноль. Замеры проводятся в следующих ситуациях:

  1. После ввода оборудования в эксплуатацию, ремонтных работ, модернизации или профилактики сети.
  2. При требовании со стороны обслуживающих компаний.
  3. По запросу потребителя электроэнергии.

Справка! Периодичность проверки в агрессивных условиях — не менее одного раза в 2 года.

Основной задачей измерений является защита электрооборудования, а также линий электропередач от больших нагрузок. В результате роста сопротивления кабель начинает сильно нагреваться, что приводит к перегреву, срабатыванию автоматов и пожарам. На величину влияет множество факторов, включая агрессивность среды, температура, влажность и т.д.

Какие приборы используют?

Для измерения параметров фазы используют специальные поверенные устройства. Аппараты отличаются методиками замеров, а также конструктивными особенностями. Наибольшей популярностью среди электриков пользуются следующие измерительные приборы:

  • М-417. Проверенное опытом и временем устройство, предназначенное для измерения сопротивления без отключения источника питания. Из особенностей выделяют простоту использования, габариты и цифровую индикацию. Прибор применяют в любых сетях переменного тока напряжением 380В и допустимыми отклонениями 10%. М-417 автоматически размыкает цепь на интервал до 0,3 секунды для проведения замеров.
  • MZC-300. Современное оборудование для проверки состояния коммутационных элементов. Методика измерений описаны в ГОСТе 50571.16-99 и заключается в имитации короткого замыкания. Устройство работает в сетях с напряжением 180-250В и фиксирует результат за 0,3 секунды. Для большей надежности работы предусмотрены индикаторы низкого или высокого напряжения, а также защита от перегрева.
  • ИФН-200. Устройство с микропроцессорным управлением для измерения сопротивления петли фаза-ноль без отключения питания. Надежный прибор гарантирует точность результата с погрешностью до 3%. Его используют в сетях с напряжением от 30В до 280В. Из дополнительных преимуществ следует выделить измерение тока КЗ, напряжения и угла сдвига фаз. Также прибор ИНФ-200 запоминает результаты 35 последних замеров.

Важно! Точность результатов измерения зависит не только от качества прибора, но и от соблюдения правил выполнения выбранной методики.

Как измеряется сопротивление петли фаза ноль

Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:

  • Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замеряет ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
  • Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
  • Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.

Расчет и методика измерения петли фаза ноль

При существующем разнообразии электрического оборудования, устанавливаемого в силовых цепях, важно научиться правильной эксплуатации систем энергоснабжения и поддержанию их в рабочем состоянии. Нарушение этого требования приводит к снижению эксплуатационных показателей и возможности повреждения подключенных к ней устройств. Проверка электропроводящих линий предполагает организацию тестирования, включающего в себя измерение распределенных электрических параметров. При проведении периодических испытаний обязательно обследуются все защитные устройства и электрические проводники, а также так называемая «петля фаза ноль».

Определение понятия

Измеритель сопротивления петли фаза-ноль

Любое подключенное к электросети оборудование оснащается защитным заземляющим контуром. Это приспособление обустраивается в виде сборной металлической конструкции, располагающейся либо рядом с контролируемым объектом, либо на трансформаторной подстанции. В случае аварийной ситуации (при повреждении изоляции проводов, например) фазное напряжение попадает на заземленный корпус, а затем стекает в землю.

Для надежного растекания в грунт опасного потенциала сопротивление цепочки не должно превышать определенной нормы (единиц Ома).

Под петлей фаза ноль понимается проводной контур, образуемый при замыкании фазной жилы на токопроводящий корпус подключенного к сети оборудования. Фактически он образуется между фазой и заземленной нейтралью (нулем), что и явилось причиной такого названия. Знать его сопротивление необходимо для того, чтобы контролировать состояние цепей защитного заземления, обеспечивающих стекание аварийного тока в грунт. От состояния этого контура зависит безопасность человека, пользующегося оборудованием и бытовыми приборами.

Методика определения сопротивления петли фаза-нуль

В соответствии с требованиями ПТЭЭП при эксплуатации промышленного и бытового электрооборудования необходим постоянный контроль состояния защитных устройств. Согласно требованиям нормативной документации в установках до 1000 Вольт с глухозаземленной нейтралью они проверяются на однофазное замыкание в грунт. В известных методиках испытаний в первую очередь учитывается техническая база, представленная образцами специальных измерительных приборов.

Используемая аппаратура

Для измерения цепочки фаза-нуль применяются электронные приборы, отличающиеся как своими возможностями (способом снятия показаний и их погрешностью, в частности), так и назначением. К самым распространенным образцам измерителей относятся:

  • Приборы М417 и MSC300, позволяющие определять искомую величину, по окончании измерений токи КЗ на землю вычисляются на основе полученных результатов.
  • Устройство ЭКО-200, посредством которого удается замерить только ток замыкания.
  • Прибор ЭКЗ-01, применяемый для тех же целей, что ЭКО-200.
  • Измеритель ИФН-200.

ИФН-200

ЭКО-200

Прибор М417 позволяет проводить измерения в цепях 380 Вольт с глухозаземленной нейтралью без необходимости снятия питающего напряжения. При проведении замеров используется метод его падения в режиме размыкания контролируемой цепи на промежуток времени, составляющий 0,3 секунды. К недостаткам этого устройства относят необходимость калибровки системы перед началом работы.

Прибор MSC300 относится к изделиям нового типа с электронной начинкой, построенной на современных микропроцессорах. При работе с ним используется метод падения потенциала при подключении фиксированного сопротивления величиной 10 Ом. Рабочее напряжение – 180-250 Вольт, а время замера контролируемого параметра – 0,03 сек. Устройство подсоединяется к проверяемой линии в самой дальней ее точке, после чего нажимается кнопка «Старт». Итоги измерений выводятся на встроенный в прибор цифровой дисплей.

Когда в наличии не имеется ни одного образца измерительного прибора (а также при необходимости дублирования операций), для практического определения искомой величины используется способ измерения с помощью вольтметра и амперметра.

Существующие методики измерений

Известные методики включают в себя расчетную часть, представленную в виде формул. Общепринятый расчетный инструмент позволяет узнать суммарное сопротивление петли по следующей формуле:

Zпет = Zп + Zт/3, где

  • Zп – полное сопротивление проводов на участке КЗ,
  • Zт – то же, но для силового трансформатора подстанции (источника тока).

Для дюралевых и медных проводов Zпет в среднем составляет 0,6 Ом/км. По найденному сопротивлению находится ток однофазового замыкания на землю: Iк = Uф/Zпет.

Если в результате приведенных выкладок выяснится, что значение искомого параметра не превышает трети от допустимой величины (смотрите ПУЭ), можно ограничиться этим вариантом расчета. В противном случае проводятся прямые измерения тока посредством приборов ЭКО-200 или ЭКЗ-01. В их отсутствие может применяться метод амперметра-вольтметра.

Общий порядок проведения испытаний с помощью измерительных приборов указанных марок:

  • Контролируемое оборудование отключают от сети.
  • Организуется питание проверяемой петли от понижающего трансформатора.
  • Нужно умышленно замкнуть фазу на корпус электрического приемника, а затем измерить значение Zпет, получившееся в результате КЗ.

При измерениях по способу амперметра-вольтметра после подачи напряжения в контролируемую цепочку и организации замыкания определяются величины тока I и потенциала U. Первое из этих значений не должно превышать 10-20 Ампер.

Расчеты и оформление результатов

Сопротивление проверяемой петли вычисляется по формуле: Zпет=U/I. Полученное по результатам расчета значение складывается с импедансом одной из 3-х обмоток станционного трансформатора, равным Rтр./3.

По завершении линейных измерений согласно действующим нормативам их следует зафиксировать документально. Для этого по установленной форме подготавливаются протоколы испытаний, в которых обязательно регистрируются следующие данные:

  • Тип линии, ее основные характеристики.
  • Используемое при проверке измерительное оборудование.
  • Величины собственного переходного сопротивления и обмоток станционного трансформатора.
  • Их сумма, являющаяся итогом проведенных измерений.

В соответствии с основными положениями ПУЭ периодичность проводимых на силовых цепях проверок составляет один раз в 6 лет. Для взрывоопасных объектов – раз в два года.

Расчеты по таблицам

Полное значение искомой величины зависит от следующих факторов:

  • Параметры трансформатора силовой подстанции.
  • Выбранные при проектировании электрической сети сечения фазных и нулевых жил.
  • Сопротивление переходных соединений, всегда имеющихся в любой цепи.

Проводимость используемых проводов может задаваться еще на стадии проектирования энергосистемы, что при условии правильного ее выбора позволит избежать многих неприятностей.

Согласно ПУЭ этот показатель должен соответствовать хотя бы половине аналогичного значения для фазных проводников. По необходимости ее допускается увеличивать до той же величины. В требованиях главы 1.7 ПУЭ оговариваются эти значения, а ознакомиться с ними можно в Таблице 1.7.5, приводимой в Приложении Правил. Согласно ей производится выбор наименьшего сечения проводников защиты (в миллиметрах квадратных).

По завершении табличного этапа обсчета петли фаза-ноль переходят к ее проверке путем вычисления тока короткого замыкания по формулам. Его расчетное значение сравнивается затем с практическими результатами, полученными ранее путем непосредственных измерений. При последующем выборе приборов защиты от КЗ (линейных автоматов, в частности) время их срабатывания привязывается к этому параметру.

В каких случаях проводят измерения

Замер сопротивления участка цепи фаза-ноль обязательно организуется в следующих ситуациях:

  • при вводе в постоянную эксплуатацию новых, еще не работающих силовых электроустановок,
  • когда со стороны контролирующих энергетических служб поступило указание на их проведение,
  • согласно заявке предприятий и организаций, подключенных к обслуживаемой электрической сети.

При вводе энергетической системы в эксплуатацию тестовые замеры сопротивления петли является частью комплекса мероприятий, проводимых с целью проверки ее рабочих характеристик. Второй случай связан с аварийными ситуациями, нередко случающимися при эксплуатации силовых цепей. Заявка от тех или иных потребителей, представленных предприятием или организацией, может поступить при неудовлетворительной защите оборудования (по жалобам конкретных пользователей, например).

Примеры проведения вычислений

В качестве примеров таких измерений рассматриваются два способа.

Эффект от падения напряжения на контролируемом участке силовой цепи

При описании этого способа важно обратить внимание на трудности его практической реализации. Это объясняется тем, что для получения конечного результата потребуется несколько этапов. Сначала придется измерить параметры сети в двух режимах: с отключенной и подключенной нагрузкой. В каждом из этих случаев сопротивление измеряется путем снятия показаний по току и напряжению. Далее оно рассчитывается по классическим формулам, вытекающим из закона Ома (Zп=U/I).

В числителе этой формулы U представляет собой разницу двух напряжений – при включенной и при выключенной нагрузке (U1 и U2). Ток учитывается только для первого случая. Для получения корректных результатов разница между U1 и U2 должна быть достаточно большой.

Полное сопротивление учитывает импеданс катушки трансформатора (он суммируется с полученным результатом).

Применение независимого источника электрического питания

Данный подход предполагает определение интересующего специалистов параметра с помощью независимого источника питающего напряжения. При его проведении потребуется учесть следующие важные моменты:

  • В процессе измерений первичная обмотка питающего станционного трансформатора замыкается накоротко.
  • С независимого источника напряжение питания подается непосредственно в зону КЗ.
  • Сопротивление фаза-ноль рассчитывается по уже знакомой формуле Zп=U/I, где: Zп – это значение искомого параметра в Омах, U – измеренное испытательное напряжение в Вольтах, I – величина измерительного тока в Амперах.

Все рассмотренные методы не претендуют на абсолютную точность полученных по их итогам результатов. Они дают лишь приблизительную оценку величины полного сопротивления петли фаза-ноль. Такой ее характер объясняется невозможностью в рамках предложенных методик измерять индуктивные и емкостные потери, которые всегда присутствуют в силовых цепях с распределенными параметрами. При необходимости учета векторной природы измеряемых величин (фазовых сдвигов, в частности) придется вводить специальные поправки.

В реальных условиях эксплуатации мощных потребителей величины распределенных реактивных сопротивлений настолько незначительны, что в определенных условиях они не учитываются.

Измерение петли фаза-ноль

  1. Петля Ф-Н — это измерение в электроустановках до 1000 В. Представляет из себя контур, соединяющий фазу и ноль.
  2. Необходимо для проверки качества монтажа и соответствия защитной автоматики сечению проводов.
  3. Периодичность — не реже 1 раза в 3 года.
  4. Обычно проводится без снятия напряжения.
  5. При помощи прибора ИФН или аналогичного измеряется ток короткого замыкания (КЗ) в самой отдаленной точке от распределительного щита.
  6. Ток КЗ должен быть больше номинала защитного устройства не менее чем в 3 раза.
  7. Протокол содержит номинал автомата, соответствующие измеренные значения и другие данные установленной формы.

1. Что такое петля фаза-ноль

В электрических установках напряжением до 1000 вольт с глухозаземленной нейтралью обязательна металлическая связь частей, подлежащих заземлению, с заземленной нейтралью электроустановки. Для таких установок должно быть измерено сопротивление петли, образованной при коротком замыкании фазы на корпус аппарата. Это сопротивление равно сумме полных сопротивлений фазового провода, фазы силового трансформатора и нулевого провода.

Цепь (петля) фаза-ноль в электроустановках с глухозаземленной нейтралью образуется при замыкании фазного провода с нулевым или корпусом электрооборудования. Обычно это происходит при повреждении изоляции электропроводки. В случае такой аварии устройства защиты (автоматические выключатели, предохранители) должны отключить электроустановку в кратчайшее время, обеспечивающее условия электробезопасности.

Петля фаза-ноль — это контур, состоящий из соединения фазного и нулевого проводника. Сопротивление петли фаза-ноль зависит от сечения жил кабеля, его протяженности, переходных сопротивлений в соединительных коробках данной линии. Измерения проводят на самом удаленном от аппарата защиты участке линии.

2. Зачем необходимо измерение

При повреждении электрооборудования или электропроводки от короткого замыкания, перегрузки, аппараты защиты должны мгновенно отключать поврежденный участок цепи.

Данное испытание необходимо для проверки соответствия уставки токовой отсечки автоматических выключателей, УЗО, дифавтоматов, реле и т.д. току короткого замыкания. То есть необходимо знать, отключит ли аппарат защиты поврежденную линию и за какое время. Это позволит проверить качество монтажа, подбор защитной автоматики и сечения проводов.

2.1. Периодичность проведения измерений

Замеры проводятся после выполнения монтажных и ремонтных работ. В дальнейшем профилактическая проверка производится не реже чем раз в 3 года.

По усмотрению ответственного за электрохозяйство испытания проводятся чаще.

3. Какие приборы используют?

  • М-417 — выпускался до 1985 года. Аналоговый прибор, время измерения устанавливается вручную. Измеряет сопротивление петли, ток короткого замыкания необходимо рассчитывать.
  • Щ 41160 – выпускался на замену М-417. Цифровой прибор, измеряет ток короткого замыкания. Время протекания измерительного тока не более 10 мс., перерыв до повторного включения не менее 15 минут.
  • MZC-300 – измеряет полное сопротивление петли фаза-ноль, автоматически вычисляет ток короткого замыкания. Время протекания тока 30 мс. Достоверность показаний гарантируется только при применении фирменных соединительных проводов.
  • ИФН-200 – имеет характеристики, аналогичные МZС-300. Дополнительно позволяет измерять переходное сопротивление контактных соединений. Можно применять провода произвольной длины. Встроенная память на 35 измерений.
  • ИФН-300 – выпускается на замену ИФН-200. Дополнительно измеряет сопротивление петли фаза-фаза. Встроенная память на 10 000 измерений.

4. Порядок измерения петли фаза-ноль

Измерение сопротивления цепи фаза-ноль может проводиться со снятием и без снятия напряжения. В большинстве случаев выполняются без снятия напряжения.

Измерения без снятия напряжения могут выполняться:

  • В режиме дополнительной нагрузки. Замыкание цепи фаза-ноль происходит через дополнительную нагрузку. При этом измеряются падение напряжение и ток, проходящий через нагрузку и вычисляется сопротивление петли.
  • В режиме кратковременного замыкания цепи. Время замыкания составляет несколько миллисекунд. Этот способ реализован в большинстве современных приборов.

4.1. Методика измерения

Измерение характеристик петли зависит от выбранной методики и используемого прибора. Наиболее часто применяются приборы, измеряющие непосредственно сопротивление петли фаза-ноль с дальнейшим вычислением прогнозируемого тока короткого замыкания. Например, с помощью ИФН-200.

Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. При отсутствии возможности определить самую дальнюю точку линии, измерения выполняются по всем или нескольким точкам данной линии. Далее по полученным значениям производится сравнение тока возможного короткого замыкания с характеристиками аппарата защиты.

4.2. Выводы о результатах

Результаты измерений сопротивления петли фаза-ноль заносятся в протокол. Это позволяет сохранить результаты и использовать их для сравнения в будущем.

Согласно п. 28.4. прил. 3.1 ПТЭЭП ток короткого замыкания должен превышать не менее чем:

  • в 3 раза плавкую вставку ближайшего предохранителя;
  • в 3 раза номинальный ток нерегулируемого расцепителя или уставку тока регулируемого расцепителя автоматического выключателя, имеющего обратно зависимую характеристику.

4.3 Форма протокола

В отчете отражается:

  1. Участок цепи (группа в распределительном щите).
  2. Тип автомата защиты и номинальные токи ( в амперах) теплового и электромагнитного расцепителей.
  3. Измеренное значение сопротивления петли (если прибор его измеряет) на линиях A (L1), B (L2), C (L3).
  4. Измеренное значение тока короткого замыкания (если прибор его измеряет) на линиях A (L1), B (L2), C (L3).
  5. Допустимые коэффициенты срабатывания защиты для теплового и электромагнитного расцепителя. Для автомата с характеристикой С это 3 и 10.
  6. Фактический коэффициент срабатывания защиты. Отношение измеренного тока к номинальному току автомата.
  7. Соответствие фактического коэффициента допустимым. Если рассчитанное в п. 6 значение больше 10 то автомат отключится меньше чем за 0,1 секунды. Если меньше 10 но больше 3, время отключения сложно определить. Оно будет в интервале 0,1 — 30 секунд.

Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или возможно возгорание проводов.

В конце составленной формы подводятся итоги испытания. При отсутствии замечаний в заключении указывается возможность дальнейшей эксплуатации сети без принятия дополнительных мер, а при наличии — список необходимых действий.

Своевременный поиск проблемных участков линий электропитания позволяет принимать профилактические меры. Это не только делает работу электроустановки более безопасной, но и увеличивает срок эксплуатации сети.

Замер полного сопротивления цепи «фаза-нуль»

В ПТЭЭП нет прямого указания на периодичность проверки петли «фаза-ноль». В соответствии с прил. 3, п. 28.4, эти работы выполняют как после капитального или текущего ремонта электроустановки, так и при межремонтных, т.е. эксплуатационных испытаниях. На практике, как правило, ответственный за электрохозяйство принимает решение о периодичности эксплуатационных испытаний, исходя из требований по проверки сопротивления изоляции, например, 1 раз в 3 года. С этой периодичностью проводятся весь комплекс межремонтных испытаний: и проверка сопротивления цепи «фаза-ноль», и проверка металлосвязи, и испытания УЗО.

Исключения составляют электроустановки, расположенные во взрывоопасных зонах — для них установлена периодичность не реже, чем 1 раз в 2 года.

На рис. 1 схематично изображен путь, который проходит электрический ток от трансформатора до нагрузки. Каждый участок цепи защищает свой автоматический выключатель: автомат на подстанции защищает питающую сеть на участке до ВРУ; автомат в ВРУ защищает распределительную сеть до групповых щитов; автоматы в групповых щитах защищают групповую сеть до нагрузки. Полное сопротивление цепи «фаза-нуль» складывается из сопротивлений жил кабеля, а также переходных сопротивлений в местах соединений, подключения к коммутационным аппаратам. Поэтому, двигаясь от ТП в сторону конечных потребителей, сопротивление цепей «Ф-0» должно увеличиваться.

На величину сопротивления петли «фаза-нуль» влияют следующие факторы:

  • удаленность точки измерения от ТП;
  • длина и сечение отрезков кабелей, входящих в проверяемую цепь;
  • количество и качество соединений и коммутаций в цепи.

Измерить сопротивление петли, как правило, можно в разных точках, но рекомендуется проводить замер в наиболее удаленной от проверяемого аппарата защиты, поскольку сопротивление в этой точке будет максимальным, а ток КЗ, наоборот, минимальным.

В системе TN время автоматического отключения питания не должно превышать значений, указанных в табл.1.7.1.

Таблица 1.7.1 Наибольшее допустимое время защитного автоматического отключения для системы TN
Номинальное фазное напряжение 127В — Время отключения, 0,8 с
Номинальное фазное напряжение 220В — Время отключения, 0,4 с
Номинальное фазное напряжение 380В — Время отключения, 0,2 с
Номинальное фазное напряжение >380В — Время отключения, 0,1 с

Приведенные значения времени отключения считаются достаточными для обеспечения электробезопасности, в том числе в групповых цепях, питающих передвижные и переносные электроприемники и ручной электроинструмент класса 1.

В цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с.

Таким образом для питающей и распределительной сетей время автоматического отключения должно быть не более 5 сек., а в групповых сетях — не более 0,4 сек.

Для обеспечения этих условий наименьший ток КЗ в конце линии, защищенной автоматом с электромагнитным расцепителем, должен составлять не менее 1,1 верхнего значения тока срабатывания расцепителя.

Для модульных автоматов с характеристиками «B», «C» и «D» это будут соответственно: 5,5Iн для «B», 11Iн для «C» и 22Iн для «D». При таких токах автомат гарантированно отключит цепь за 0,02 сек.

Если ток КЗ не превышает 1,1 верхнего значения тока срабатывания выключателя, то необходимо определять время срабатывания расцепителя с использованием время-токовой характеристики.

Важно! Для того, чтобы сравнить измеренное значение Iкз с номинальным значением Iн и проверить кратность, необходимо знать Iн. Но если в щите нет однолинейной схемы или какой-либо другой формы адресации, т.е. если непонятно, с каких автоматов на какие потребители уходят кабельные линии, то проводить замеры бесполезно. Интерпретировать результаты замеров и сделать выводы будет невозможно.

Иногда полученные значения сопротивления и тока КЗ не укладываются в рамки ПУЭ и ПТЭЭП. Причины две:

  • проектировщик получил неправильное расчетное значение сопротивления цепи «фаза-нуль», неправильно рассчитал ток КЗ и, как следствие, ошибся с выбором номинала автомата;
  • за время эксплуатации объекта переходные сопротивления в контактных соединениях возросли и сопротивление петли «Ф-0» увеличилось настолько, что перестало удовлетворять требованиям нормативных документов.

Если в результате электроизмерений выяснилось, что автомат своевременно не обесточит кабельную линию, то начать следует с поиска плохих контактов: почистить и протянуть контакты автоматов и шин, пропаять скрутки (если уж такие имеются), проверить клеммники, убрать пыль и грязь в местах соединений. Если эти меры не помогли уменьшить сопротивление петли, значит, пора задуматься о внесении изменений в проект и установке автомата меньшего номинала или прокладке кабеля большего сечения.

Подробнее о допустимых значениях сопротивления петли вы можете прочитать в этой статье. Там же, в конце статьи, вы найдете калькулятор расчета допустимых значений сопротивлений и токов КЗ для автоматических выключателей.

Измерение сопротивления петли “фаза – нуль”

Что это такое

Петля фаза ноль — параметр, который по техническим нормативам должен проверяться в силовых установках, имеющих глухозаземленную нейтраль и напряжение до тысячи вольт. Это величина, которая нужна, чтобы предотвратить появление тока в электроцепи нейтрали из-за естественного фазного перекоса. Она образуется при подключении фазного провода к проводнику защитного или нулевого типа. В конечно итоге, образуется контур, имеющий собственное сопротивление с перемещающимся по нему электрическому току. Этот контур может состоять из защитного автомата, клеммов и других связующих.

Петля фаза ноль

Измерить самостоятельно петлю сложно из-за имеющихся недостатков. Так, сложно подсчитать все коммутационные элементы на выключателях, рубильниках, которые могли измениться при сетевой эксплуатации. Кроме того, нереально сделать расчет влияния аварии на значение сопротивления. Лучшим при этом методом будет замер поверенным аппаратом с учитыванием погрешностей.


Определение из пособия

Как проверить петлю

Проверка петли нужна для профилактики, а также для того, чтобы обеспечить корректную работу защитного оборудования с автоматическими выключателями, УЗО и диффавтоматами. Самой распространенной проблемой подключения чайника или другого электроприбора является отключение нагрузки автомата.

Обратите внимание! Ложное срабатывание защиты с нагревом кабелей и пожаром является большой показатель сопротивления.

Проверка делается для того, чтобы успешно работали удаленные и более массивные электрические приемники, но не больше 10% от всего числа. Проверка создается с помощью формулы Zпет = Zп + Zт / 3 где Zп является полным сопротивлением проводов петли фазы-ноль, а Zт считается показателем полного сопротивления трансформаторного питания.


Формула для проверки

Испытуемое электрооборудование отключается от сети. Потом создается на трансформаторной установке искусственный вид замыкания первого фазного провода на электроприемный корпус. После того, как будет подано напряжение, измеряется сила тока и напряжения вольтметром.

Вам это будет интересно Устройство и принцип работы лампы накаливания

Обратите внимание! Сопротивление петли будет равно делению показателя напряжения на силу тока. Приобретенный результат должен быть арифметически сложен с полным сопротивлением трансформатора, поделенного на цифру 3.

Периодичность и назначение замеров

Для надежной работы электросети необходимо периодически проводить проверку силового кабеля и оборудования. Перед сдачей объекта в эксплуатацию, после капитального и текущего ремонта электросетей, после проведения пуско-наладочных работ, а также по графику, установленном руководителем предприятия проводят эти испытания. Измерения делают по следующим основным параметрам:

  • сопротивление изоляции;
  • сопротивление петли фаза-ноль;
  • параметры заземления;
  • параметры автоматических выключателей.

Основной задачей измерения параметра петли фаза-ноль является защита электрооборудования и кабелей от перегрузок, возникающих в процессе эксплуатации. Повышенное сопротивление может привести к перегреву линии, и как следствие, к пожару. Большое влияние на качество кабеля, воздушной линии оказывает окружающая среда. Температура, влажность, агрессивная среда, время суток – все это оказывает влияние на состояние сети.

В цепь для проведения замеров включают контакты автоматической защиты, рубильники, контакторы, а также проводники подачи напряжения к электроустановкам. Этими проводниками могут быть силовые кабели, подающие фазу и ноль, или воздушные линии, выполняющие эту же функцию. При наличии защитного заземления — фазный проводник и провод заземления. Такая цепь имеет определенное сопротивление.

Полное сопротивление петли фаза-ноль можно рассчитать с помощью формул, которые будут учитывать сечение проводников, их материал, протяженность линии, хотя точность расчетов будет небольшой. Более точный результат можно получить, измерив физическую цепь с имеющимися устройствами.

В случае использование в сети устройства защитного отключения (УЗО), его при измерении необходимо отключить. Параметры УЗО рассчитаны так, что при прохождении больших токов оно произведет отключение сети, что не даст достоверных результатов.

Приборы для замеров

Учитывая тот факт, что результаты измерений петли востребованы, в качестве измерительных приборов применяется обычно мультиметр. Из других приборов используются наиболее часто:

  • М-417 — стрелочное удобное и простое в эксплуатации устройство, которое основано на калибруемой схеме мостового типа. Работает без необходимости снятия напряжения величиной до 380 вольт.
  • МZC-300 — современный измерительный аппарат, имеющий цифровую обработку измеряемых параметров с отображением на дисплее. Чтобы измерять напряжение до 250 вольт, можно использовать контрольный вид сопротивления в 10 Ом.
  • ИФН-200 — прибор, работающий под напряжением до 250 вольт, который может быть применен в качестве тестера. Однако при петлевых замерах, диапазон значений сопротивления ниже 1000 Ом.

Стоит отметить, что параметровое петлевое измерение сопротивления петли фаза нуль простое. Все что нужно, это присоединить щупы к контактным местам, которые нужно предварительным образом почистить при помощи наждака или напильника, чтобы минимизировать контактное сопротивление. После этого включается оборудование и на табло появляется результат.


Проверка мультиметром

Какие приборы используют?

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:

О том, как измерить сопротивление петли фаза-ноль с помощью приборов, вы можете узнать, просмотрев данные видео примеры.

Одним из важных факторов в работе электрооборудования считается продолжительность его эксплуатации. Большое значение имеет надежная и устойчивая работа всех приборов и устройств. При различных повреждениях, коротких замыканиях и перегрузках, должно обеспечиваться моментальное срабатывание защитной аппаратуры и отключение опасного участка.

Поэтому, необходимо заранее предусмотреть исправность самого электрооборудования и средств защиты, где большое значение имеет петля фаза-ноль.

Рассчет петли фаза-ноль

Перед тем, как измерить петлю фаза-ноль, необходима проверка плотности проводного соединения к защитным аппаратам. Если не остаются протянутыми провода, то смысла в измерении нет, поскольку точные данные не будут получены.

Обратите внимание! Цель расчета в выяснении соответствия номинального тока защиты с проводным сечением электроцепи. Замер должен быть произведен на самой удаленной точки линии измерения.

Сделав замер полного сопротивления цепи фаза нуль по предложенной схеме, на приборном дисплее будет отражена величина тока короткого замыкания. Этот показатель нужно сравнить по характеристике времени и току с расцепительным током срабатывания выключателя иди с предохранительной вставкой.

Вам это будет интересно Назначение и функция устройства защитного отключения (УЗО)

По нормативным требованиям расчет петли должен быть произведен в электролаборатории. Чтобы произвести данные работы, нужно получить наряд-допуск. При этом испытания могут производить взрослые люди с необходимыми знаниями в месте, не отличающейся повышенной опасностью или высокой влажностью.


Подсчет фазы-ноль

Сопротивление в петли фаза-ноль

Для подсчета полного сетевого сопротивления электроустановки, нужно определить показатель электродвижущей силы, создающейся на трансформаторных обмотках. При этом замер напряжения должен быть под нагрузкой, в дополнение к теме проверка петля фаза ноль требования. Для этого следует подключить в розетки какой-либо расчетный прибор. Это может быть лампочкой. Делается замер напряжения и силы тока. Затем по закону Ома можно сделать определение полного сопротивления петли. Нужно учесть, что напряжение, которое замеряется в розетке, может отклоняться от номинального при нагрузке. Проверять оборудование следует, принимая во внимание этот факт.


Сопротивление

Обратите внимание! Показание полного сопротивления проводниковой защиты между шиной и корпусом должно быть удовлетворено требованию: ZPE=U0/Zф0≤50В

В целом, петля фаза ноль — это контур, образующийся в момент соединения фазного проводника и нулевого рабочего защитного проводника. Проверяется она при помощи специальной формулы или измерительного прибора. При этом для вычисления петли и возобновления работы электросистемы, необходимо знать величину ее сопротивления, которую также можно найти профессиональным оборудованием.

Как делаются измерения в петле

Наиболее распространенными являются три способа выполнения измерений:

  • получают данные для расчетов по падению напряжения. Вместо нагрузки, которую отключают, присоединяется специальное (эталонное) сопротивление с известными характеристиками.
  • Используются данные измерения силы тока с использованием шунта. Он устанавливается в определенном месте электросети соответственно заданным параметрам.
  • Вместо существующего напряжения, которое отключается, подается пониженное напряжение от трансформатора. Провод фазы замыкается на корпусе того элемента электросети, который выбран для создания петли. Используются данные амперметра и вольтметра, которыми выполняются измерения, которые затем обрабатываются.

Из трех перечисленных способов расчеты на основе падения напряжения наиболее распространены по причине того, что этот способ самый простой. Если при этом замере контрольное сопротивление присоединить максимально удаленно от точек фазы и нуля можно охватить наибольшее количество элементов электросети и получить их необходимые характеристики. Сначала делаются замеры напряжения с ненагруженной сетью. Затем сеть нагружают с присоединенным амперметром. Показания приборов используются в расчетах сопротивления петли, поскольку оно составляет доли Ома. Полученные результаты заносятся в протокол.

В настоящее время для обработки данных, содержащих результаты измерений петли фаза – ноль, можно использовать специализированные компьютерные программы. Например, СОНЭЛ, которая работает в среде Windows 2000 Service Pack 4 и выше. Программа также формирует протокол стандартной формы. Пример подобного протокола показан ниже.


Пример протокола, составленного на основании расчетов, выполненных по результатам измерений петли фаза – ноль