Прозвонка цепей защит
Прозвонка цепей защит
Эта операция для отдельных пультов и щитов или проводов небольшой длины может выполняться одним работником. Если провода имеют большую длину, то целесообразнее работать вдвоем. Для прозвонки проводов вдвоем удобно пользоваться двумя телефонными трубками с батарейкой.
Прозвонка цепей осуществляется в два этапа. Первый этап прозвонки можно осуществлять до полного окончания монтажа, проверяя качество коммутации пультов, щитов и оборудования, изготовляемого вне монтажной площадки. При прозвонке цепей на панели или коротких отрезков кабелей, не выходящих за пределы одного помещения, можно пользоваться также понижающим трансформатором ( 220 / 12 в) с лампой или мегомметром. Большинство приборов комплектуется звуковым пробником для прозвонки цепей схем. Никогда не забывайте, что при прозвонке цепи, в нормальном состоянии подключенной к фазе, в качестве опорной точки необходимо выбирать нулевой провод. С другой стороны, при прозвонке нулевой точки или цепи в качестве опорной точки нужно брать фазу. Нередко бывает, что пользоваться обычным стрелочным или цифровым измерительным прибором для прозвонки цепей монтажа неудобно. На помощь придет пробник со звуковой сигнализацией.
Внедрение в измерительную технику микромодулей, интегральных схем исключает в ряде случаев использование для прозвонки цепей серийных ампервольтомметров ( тестеров), так как при работе с ними в испытьшаемых цепях протекает относительно большой ток ( 100 мкА и более), что приводит к выходу из строя микросхем.
При работах в цепях, присоединенных к трансформатору напряжения с подачей напряжения от постороннего источника ( например, прозвонка цепей, проверка срабатывания реле и др.), необходимо снять предохранители со стороны обеих обмоток и отключить автоматический выключатель от вторичных обмоток. Нарушение этого правила вызывает появление высокого напряжения за счет обратной трансформации.
Исходя из этого, наладка электрических схем автоматизации включает: осмотр схемы и проверку надежности контактных соединений; прозвонку цепей; измерение сопротивления изоляции; испытание изоляции повышенным напряжением; проверку отдельных элементов схемы; испытание отдельных цепей и схемы полностью. Наладка КИП и автоматики включает: проверку правильности установки и соответствия проекту всех приборов и аппаратуры и их регулировку, прозвонку цепей управления и силовых цепей, проверку чистоты и давления сжатого воздуха, очистку гильз для термометров и заполнение их чистым маслом, проверку работы паровых и электромагнитных регулирующих клапанов, отладку узлов регулирования температуры и установку задания регулирующему устройству манометрических термометров.
Монтаж вторичной коммутации заключается в разделке концов контрольных кабелей и раскладке жил кабелей в пакеты, прокладке проводов вторичных цепей, прозвонке цепей, оконцевании жил и их соединении с зажимами приборов и аппаратов.
Прозвонка цепей путем подачи напряжения от сети запрещается. Допускается при протяженных цепях вторичной коммутации производить прозвонку этих цепей мегаомметром. Перед прозвонкой цепей мегаомметром проводники вторичной коммутации отключаются от выводов измерительных трансформаторов тока и напряжения. У отсоединенных концов проводов вывешивается плакат Стой — высокое напряжение. Прозвонка производится двумя лицами. Измеритель заземлений МС-08 применяют при измерениях сопротивления растеканию тока анодных и защитных заземлений, а также различных сооружений, контактирующих с землей, и сопротивлений электрических цепей СКЗ при отключенном напряжении. МС-08 используют также при измерениях удельного электрического сопротивления грунта и для прозвонки цепей СКЗ. В измерителе МС-08 используется метод амперметра — вольтметра, объединенных в магнитоэлектрическом логометре — приборе, на подвижной оси которого имеются две рамки, расположенные под углом одна к другой. В обмотке первой рамки ( токовой) протекает ток, пропорциональный току в измеряемом сопротивлении, а в обмотке второй рамки ( потенциальной) — ток, пропорциональный разности потенциалов или напряжению на измеряемом сопротивлении. Стрелка прибора закреплена на оси логометра. Вращающий момент тока потенциальной рамки стремится повернуть рамку по часовой стрелке, а вращающий момент токовой рамки с добавочными резисторами — в противоположную сторону. Угол поворота стрелки прибора зависит от сопротивления измеряемой электрической цепи.
Знание внешних соединений значительно ускоряет проверку схемы под напряжением. Опыт наладки показывает, что в тех случаях, когда проверка схемы производится без предварительной прозвонки цепи, только под напряжением, на обнаружение и ликвидацию причин отказа в работе схем управления при первых пробных пусках и эксплуатации оборудования затрачивается времени значительно больше, чем на прозвонку всех цепей схемы и тщательную предварительную проверку цепей. Отпаять от одного из входных лепестков измерительного механизма соответствующие элементы или проводники. При наличии защитных диодов их также следует отпаять с одной стороны. Эти меры позволят избежать повреждений измерительного механизма при прозвонке цепей прибора омметром, ток в измерительной цепи которого, как правило, значительно превышает ток полного отклонения измерительного механизма. Кроме того, исключается взаимное шунтирующее влияние элементов.
Крепление жгутов к корпусу прибора. Электрический контроль жгута очень трудоемок. Целостность цепей и их коммутацию проверяют прозвонкой. Для прозвонки используют электрические пробники. Прозвонку цепей, имеющих большое число промежуточных соединений, осуществляют путем измерения сопротивлений. В правильно смонтированной схеме отдельные участки, выведенные на зажимы или наконечники, имеют определенные сопротивления, значения которых наносят на калибровочные карты. На этих картах указывается точка замера и какие электрические данные эти точки должны иметь. Прозвонка проводников вторичных цепей от измерительных трансформаторов тока и напряжения к счетчикам должна производиться при помощи батарейки и лампочки от карманного фонаря.
В процессе эксплуатации необходимо предусматривать меры предосторожности, исключающие случаи механических повреждений и резкого изменения параметров коммутируемой нагрузки и источников питания. Не рекомендуется включать напряжение обмотки реле на длительный период времени, особенно при максимально допустимом токе или напряжении. Перед использованием реле в рабочем режиме целесообразно предусматривать возможность проверки их работоспособности путем двух -, трехкратного включения и выключения. Качество работы эксплуатируемых реле может быть проверено путем прозвонки цепей контактов и обмотки или же косвенно — по качеству выполнения заданных функций. Эти устройства поступают к месту монтажа в собранном виде, отдельно упаковываются и транспортируются только стрелочные измерительные приборы. Для выпрямителей и зарядных устройств доставляются отдельно к месту монтажа трансформаторы, дроссели и блоки с вентилями. После установки шкафа или стойки на раме ( или непосредственно на полу) монтируют все приборы и элементы, транспортировавшиеся отдельно. Затем осуществляются разделка и подключение внешних и межшкафных кабелей и проводов. При этом предварительно сопоставляются проектные монтажные таблицы ( или кабельные журналы, выданные проектным институтом) с заводскими таблицами внешних соединений щитов, входящими в состав документации завода — изготовителя. Правильность подключений тех или иных кабелей и проводов проверяется прозвонкой цепей в соответствии с чертежами.
Что такое прозвонка, и как проверить цепь на обрыв мультиметром
В современном быту нередки ситуации, когда необходимо прозвонить тестером определённую цепь или электротехнический прибор. Чаще всего они возникают, когда перестаёт работать розетка или клавишный выключатель, а также при пропадании контакта или обрыве в цепях питания отдельных устройств. Если хозяин привык всё делать самостоятельно, ему необходимо обзавестись очень практичным и удобным в эксплуатации прибором, называемым мультиметром.
С его помощью можно проверить исправность любого электротехнического устройства, включая обычную лампочку, участок проводки или входящий в неё проводник. Но для того чтобы грамотно прозвонить цепь мультиметром, сначала следует ознакомиться с основными приёмами работы с ним.
В следующих разделах статьи каждый из возможных вариантов применения мультиметра будет рассмотрен более подробно.
Проверка на целостность (поиск нужного проводника)
Для проверки целостности электропроводки или поиска одной жилы в составе многожильного кабеля вполне достаточно цифрового тестера, включённого в режиме измерения сопротивления. При проведении такой операции необходимо создать замкнутую цепочку, состоящую из непосредственно из мультиметра (тестера), пары измерительных «концов» и самого проверяемого проводника.
При этом по тестируемому участку пропускается небольшой по величине электрический ток, а мультиметр определяет величину его внутреннего сопротивления. Это еще не прозвонка, но довольно удобный способ.
В процессе такой проверки по показаниям дисплея мультиметра можно будет судить о целостности или обрыве в проверяемом участке цепи или проводнике. Нулевые или близкие к нескольким Омам показания означают, что проводка не имеет обрыва; при этом выдаваемый прибором электрический ток свободно через неё протекать.
Также возможен вариант, когда при проверке обнаруживается, что прибор индицирует показания в районе мегаом, а при контрольной прозвонке не выдаёт звукового сигнала. Это означает, что на участке проводки имеется не определяемый визуально внутренний обрыв.
По сути позвонка – это определение мультиметром, есть контакт между проводами, или его нет. Мультиметр выдает небольшой ток, и если цепь целая, то фиксируется напряжение, в результате раздается звуковой сигнал – звонок, а на дисплее мультиметра высвечиваются нули. Прозвонкой проверяют предохранители, лампочки, провода, целостность схем.
Подобным образом с помощью прозвонки мультиметром фиксируется короткое замыкание проводников, которые в рабочем состоянии не должны иметь между собой контакта. В исправном кабеле каждая отдельная жила при проверке должна показывать небольшое сопротивление (от долей до нескольких Ом).
Значение сопротивления определяется общей длиной проверяемого мультиметром кабельного изделия. Одновременно с этим между всеми входящими в состав многожильного кабеля и расположенными рядом проводниками контакт должен отсутствовать, что и проверяет прозвонка.
Проверка проводки
Прозвонка проводников с помощью мультиметра функционально предусмотрена в большинстве цифровых приборов этого класса. Для выставления режима прозвонки достаточно установить переключатель в положение, помеченное значком «Зуммер» и подготовить измерительную цепочку, приведённую на рисунке.
В случае протекания тока через проверяемый кусок провода мультиметр будет выдавать звуковой сигнал (зуммер). Естественно, что для прозвонки участка цепи длиной в несколько метров потребуется дополнительный провод, используемый для наращивания измерительной схемы.
Другой вариант тестирования фазного и нулевого линейных проводников значительной длины предполагает их скрутку на удалённом конце электропроводки.
В этом случае для проверки цепи на обрыв достаточно подключить измерительные щупы мультиметра к свободным контактам тех концов электрической линии, которые располагаются ближе к прибору.
Последний из предложенных вариантов обладает следующими преимуществами:
- этим способом удаётся прозвонить мультиметром сразу обе жилы электропроводки, соединённые в последовательную цепочку;
- проверить провод таким способом намного проще, чем первым, поскольку можно обойтись без дополнительного отрезка, обеспечивающего наращивание измерительной схемы.
Перед проверкой скрытой в толще стен электропроводки в первую очередь следует внимательно ознакомиться со схемой её прокладки. Кроме того, необходимо снять с неё рабочее напряжение, отключив соответствующий этой линии автомат.
С помощью подручных средств
Прозвонка проводов мультиметром не является единственно возможным вариантом их тестирования на целостность или обрыв. Убедиться в исправности любого линейного проводника можно и без помощи этого универсального прибора.
Для проведения такой проверки потребуются:
- обычная батарейка питания (лучше всего квадратная на 4,5 Вольта);
- электрическая лампочка на 3,5 Вольта, посредством которой проверяется (контролируется) исследуемый линейный участок провода;
- пара соединительных проводов и коннектор захватывающего типа (так называемый «крокодил»).
После подготовки всех необходимых элементов на их основе собирается простейшая измерительная цепочка, состоящая из контрольной лампочки, батарейки и проверяемого проводника. При правильно собранной схеме и в случае исправности тестируемого участка контрольная лампочка будет загораться. Отсутствие свечения при всех исправных элементах схемы свидетельствует об обрыве в самом проводнике.
При испытаниях указанным способом используется тот же принцип, что и при проверке с помощью мультиметра, включенного в режим прозвонки.
Особенности проверки проводов, входящих в состав различных устройств
Сначала рассмотрим особенности работы в условиях, когда посредством прозвонки мультиметром проверяется бортовая проводка современного автомобиля.
Автомобильная проводка
Специфика этой ситуации заключается в том, что разводка в рассматриваемом случае состоит из одного линейного проводника с питающим напряжением 12 Вольт. При этом в качестве второй (общей или «земляной») жилы используется металлический корпус автомобиля, где, как правило, обрываться нечему.
Для подготовки бортовой сети к обследованию в первую очередь необходимо отключить плюсовую клемму от аккумулятора, после чего можно смело приступать к работам. Тестирование бортовой проводки организуется по уже описанной ранее схеме прозвонки линейных цепей.
При проверке «массы» автомобиля основное внимание уделяется качеству контакта подводящих клемм с корпусом.
Электрический ТЭН
Ориентируясь на показания индикатора на мультиметре, удаётся сделать прозвонку такого элемента, как водонагревательный ТЭН. В процессе проверки контрольными щупами прибора прикасаются к двум контактным пластинам нагревателя и оценивают его внутреннее сопротивление по индикатору.
Если дисплей показывает порядка нескольких Омов, то без сомнения, элемент исправен. При больших значениях на экране, соответствующих обрыву проверяемой линии, сразу можно сказать, что ТЭН повреждён и должен быть заменён.
Помимо самого нагревательного элемента, при проверке бойлеров и подобных им приборов очень важно прозвонить подводящий кабель на предмет его нежелательного контакта с корпусом устройства. С этой целью один из щупов мультиметра поочерёдно подсоединяется к входным контактам; при этом второй конец постоянно держится на корпусе нагревателя.
В случае, когда цифровой мультиметр при измерении показывает какое-то сопротивление – это значит, что повреждена защитная оболочка подводящего кабеля. Для предотвращения поражения пользователя электрическим током, его следует заменить новым.
Другие бытовые приборы и детали
При помощи мультиметра можно протестировать и цепь питания любого осветительного прибора путём прозвонки проводки и вспомогательных элементов (переключателей, в частности) на короткое замыкание или обрыв. Для этого, прежде всего, следует прозвонить две линейные цепочки, заканчивающиеся непосредственно на контактах электрической лампочки.
Дополнительная информация! Перед прозвонкой осветительного устройства в первую очередь убедитесь в исправности самой лампочки, переставив её в заведомо исправный прибор.
В процессе прозвонки линейных цепочек обязательно проверьте исправность стоящего в одной из них переключателя, а также надёжность подсоединения проводников с его контактами.
Также отметим, что указанным способом можно будет прозвонить обмотки линейного трансформатора или электродвигателя и убедиться в их целостности или в наличии обрыва (КЗ).
В заключение ещё раз напомним, что посредством мультиметра удаётся проверить не только отдельные провода или скрытую в толще стен проводку, но и любые другие электрические приборы и детали.
Проект РЗА
Особенность токовых цепей состоит в том, что в них нет событий (появления или исчезновения значимого сигнала). Измерения идут постоянно, вне зависимости от наличия повреждения в первичной сети. Большую часть времени в этих цепях присутствует периодический сигнал, который не дает вам значимую информация для диагностики обрыва. И даже если сигнал исчезает, то это не обязательно означает обрыв. Возможно просто нагрузка в сети упала до нуля.
Таким образом, проконтролировать единичную токовую цепь на обрыв практически невозможно. Вы, конечно, сейчас напишите мне 100500 относительно честных способов контроля таких цепей (типа, измеряй ток I2, сравнивай с I1), но на практике, для ступенчатых защит, контроль обрыва токовых цепей не применяют. Здесь Цифровая подстанция действительно может дать фору обычной.
Другое дело дифференциальные защиты, где, при отсутствии повреждения “в зоне”, ток в защите всегда примерно равен нулю. Если вы сможете выбрать уставку алгоритма диагностики токовых цепей ниже максимального тока небаланса, но выше начальной уставки срабатывания ДЗТ, то сможете фиксировать обрывы токовых цепей . Что и делается на практике, причем как в микропроцессорных РЗА, так и в схемах с электромеханикой.
Из книги «Дифференциальная защита шин 110-220 кВ». И.Р. Таубес. БЭ. 1984 г.
Например, в схемах ДЗШ уставка начала характеристики срабатывания выбирается выше, чем рабочий ток самого нагруженного присоединения. При обрыве любой токовой цепи срабатывает сигнализация и ДЗШ выводится из работы. Это делается для того, чтобы не было ложного отключения при внешнем КЗ. Дальше у вас есть какое-то время на поиск обрыва и восстановление нормальной схемы.
Кстати, с появлением терминалов РЗА со второй группой токовых входов, под керн 0,5, появилась возможность контроля токовых цепей по избыточной информации, аналогично дискретным.
Заодно уменьшится количество электронных устройств, которые выполняют практически одни и те же функции. Правда у релейщиков и асушников могут возникнуть вопросы по объединению функций в одном устройстве. А там и служба телемеханики подтянется)
Особенности прозвонки провода приборами: мультиметр, тестер, мегаомметр
Для проверки проводки также используют подручные средства – лампы накаливания, батареи и аккумуляторы. Применение таких средств возможно только при полностью обесточенном участке цепи и отключении приборов с емкостной и индуктивной нагрузкой (насосы, холодильники, электроинструменты, люминесцентные лампы).
Проверка проводки
Прозвонка проводников с помощью мультиметра функционально предусмотрена в большинстве цифровых приборов этого класса. Для выставления режима прозвонки достаточно установить переключатель в положение, помеченное значком «Зуммер» и подготовить измерительную цепочку, приведённую на рисунке.
В случае протекания тока через проверяемый кусок провода мультиметр будет выдавать звуковой сигнал (зуммер). Естественно, что для прозвонки участка цепи длиной в несколько метров потребуется дополнительный провод, используемый для наращивания измерительной схемы.
Другой вариант тестирования фазного и нулевого линейных проводников значительной длины предполагает их скрутку на удалённом конце электропроводки.
В этом случае для проверки цепи на обрыв достаточно подключить измерительные щупы мультиметра к свободным контактам тех концов электрической линии, которые располагаются ближе к прибору.
Последний из предложенных вариантов обладает следующими преимуществами:
- этим способом удаётся прозвонить мультиметром сразу обе жилы электропроводки, соединённые в последовательную цепочку;
- проверить провод таким способом намного проще, чем первым, поскольку можно обойтись без дополнительного отрезка, обеспечивающего наращивание измерительной схемы.
Перед проверкой скрытой в толще стен электропроводки в первую очередь следует внимательно ознакомиться со схемой её прокладки. Кроме того, необходимо снять с неё рабочее напряжение, отключив соответствующий этой линии автомат.
Поиск места короткого замыкания или обрыва провода
Итак, как прозванивать провода мультиметром мы уже знаем. Осталось научиться определять, обрыв провода или место короткого замыкания в стене. На данный момент существуют специальные приборы для определения места обрывов. Но их цена достаточно высока и, если вы не планируете этим зарабатывать такая покупка не целесообразна.
- Как мы уже сказали сейчас существует множество способов и приборов для определения места обрыва провода. Я приведу пример лишь одного, которым пользуюсь уже много лет и который не разу не подводил меня.
- Для него необходим только емкостной указатель напряжения. Я пользуюсь фирмы «FLUKE», но данный вопрос не принципиален. Главное, чтоб он срабатывал правильно, а не от малейшего движения. Такие тоже есть. Стоимость его не столь высока, а в хозяйстве вещь довольно нужная.
- Для определения места обрыва фазного провода вы от распределительной коробки, где напряжение имеется, просто ведете им вдоль стены по предполагаемому месту прокладки провода. Пока на проводе есть напряжение индикатор светится. На месте обрыва он погаснет.
- Для определения места обрыва нулевого провода его просто нужно кратковременно сделать фазным. Для этого в первую очередь снимаем напряжение. Затем отключаем фазный нулевой и защитный провод и подключаем нулевой провод к питающему фазному. После подачи напряжения действуем так же как при поиске обрыва фазного провода. Не забудьте после поиска восстановить схему.
- Если имеет место короткое замыкание с обрывом, то отключаем все провода кроме фазного, а затем подаем напряжение. Дальше действуем так же как при поиске места обрыва фазного провода.
Характеристика видов повреждений в электрических цепях
Наиболее распространенными неисправностями в электрических цепях являются короткие замыкания (к.з.) и обрывы, менее распространенными — соединение проводов между собой.
Короткие замыкания в электрической цепи представляют собой соединение токоведущих частей аппаратов и проводов с корпусом электровоза. Они могут проявляться в следующих видах:
- отсоединение провода низковольтной (силовой) цепи от зажима аппарата вследствие ослабления его крепления или выплавления провода силовой цепи из наконечника и соединение его с корпусом;
- пробой изоляции стойки аппарата, имеющей металлический стержень, на этот стержень. Пробой может быть у таких аппаратов, как электропневматические контакторы и контакторные элементы группового переключателя. Как правило, пробой происходит под одним из кронштейнов аппарата из-за повреждения поверхностного слоя изоляции при установке кронштейна на стойку, ее старения, а также из-за скопления пыли и ее последующего увлажнения;
- перекрытие по стойке аппарата из-за загрязнения или увлажнения ее поверхности и соединение вследствие этого кронштейна аппарата с элементами крепления стойки к каркасу или с его металлическим основанием. Перекрытие стоек происходит у таких аппаратов, как электромагнитные контакторы, электропневматические контакторы со стойками из стеклопласта, элементы кулачковых аппаратов ПкР, ПкТ, ПкС и ПкД, а также у изоляторов крышевого оборудования и полиэтиленовых шлангов токоприемников;
- падение забытого при техническом обслуживании электровоза инструмента с каркаса блока аппаратов или с каркаса самого аппарата и соединение его токоведущих элементов с одним из этих каркасов;
- пробой изоляции обмоток электрических машин из-за нарушений технологии изготовления или ремонта, старения изоляции, ее преждевременного высыхания из-за продолжительной работы с большими токами, а также увлажнения;
- круговой огонь, возникающий на коллекторах электрических машин.
Как правило, к.з. сопровождается отключением защитного аппарата силовой или низковольтной цепи. Если величина тока к.з. по каким-то причинам не достигает тока уставки защитного аппарата, происходит понижение напряжения в силовой или низковольтной цепи в момент ее подключения. Кроме того, к.з. в силовой цепи сопровождается хлопком дуги в дугогасительных устройствах аппаратов, размыкающих эту цепь; возможны дым, огонь или отсветы дуги.
Признаками к.з. являются запах горелой изоляции проводов или ее обугливание, копоть и обугливание изоляции стоек аппаратов, подгар или оплавление контактов. В электрических машинах видны следы кругового огня в коллекторно-щеточном узле.
Обрыв электрической цепи — это прекращение прохождения тока по электрической цепи. Они проявляются в виде отсоединений проводов от аппаратов без касания ими корпуса, нарушений контакта в кнопках, контактной системе реле, контакторных элементах контроллера машиниста из-за запыленности, слабого нажатия контактов или их подгара. Возможны также наволакивание грязи на медные сегменты блокировочных устройств силовых аппаратов, слабое нажатие блокировочных контактов, отгибание или их излом, выплавление наконечников проводов силовой цепи из-за недостаточного нажатия контактов аппаратов данной цепи. Возможны невключения аппаратов из-за механической неисправности привода, смещения подвижного контакта относительно неподвижного выше нормы, вызывающего трение первого о перегородки дугогасительной камеры, замерзания смазки, недостаточного давления сжатого воздуха или отсутствия последнего в приводе.
Признаком обрыва электрической цепи и ее последствием является является невозможность сбора одной из цепей. При этом иногда возникает звонковая работа одного из аппаратов. Защита при обрыве электрической цепи не срабатывает.
Соединение проводов между собой является наиболее редко встречающейся неисправностью электрических цепей, но ее обнаружение и, особенно, устранение являются весьма затруднительными.
Соединение проводов между собой происходит из-за перетирания их изоляции в пучках проводов в местах перегиба около реек зажимов, в пульте машиниста или контроллере машиниста. Кроме того, данная неисправность возникает из-за соединения наконечников проводов на зажимах аппаратов, соединения блокировочных пальцев из-за ослабления их крепления или соединения их посторонним предметом.
Соединение проводов выражается в том, что при сборе той или иной электрической цепи включается один или несколько аппаратов, что не предусмотрено схемой данной цепи.
Что значит прозвонить провода и когда это может быть необходимо
Достаточно часто можно услышать термин «прозвонка кабеля», но людям, не связанным с электротехникой он может быть непонятен. В общем смысле «прозвонка» означает проверку целостности электрических цепей и отсутствие коротких замыканий между проводниками. Определение целостности проводников осуществляют не только электрики, но и люди, связанные с ремонтом и диагностикой различного электрооборудования и электроники, а также связисты при прокладке линий связи.
При монтаже силовых и осветительных сетей в промышленных условиях или быту, по окончании всех работ (или каких-либо этапов) производят обязательную проверку каждой смонтированной линии. Это важно для корректной и долговечной работы всей смонтированной системы.
Как проверить целостность провода в режиме определения сопротивления
В мультиметрах, где отсутствует функция прозвонки, проверку целостности провода можно осуществлять в режим измерения сопротивления.
В данном случае щупы подключаются также, как и при прозвонке, а прибор выставляется в режим определения сопротивления (Ω).
Начинать измерения нужно на самом минимальном пороге шкалы прибора — например 200 Ом. Все действия такие же, как и при прозвонке. Нужно лишь следить за показаниями прибора. Если провод цел, то на дисплее отобразиться величина его сопротивления. Если есть обрыв, то сопротивление не отобразиться (OL — состояние перегрузки).
Прозвонка и подключение кабеля к оборудованию
Одним из наиболее ответственных этапов при монтаже оборудования является его подключение. От правильности выполненных работ по подключению зависит корректность работы монтируемого оборудования, реализация его функций в необходимом объеме и с требуемыми параметрами. В данной статье рассмотрим основные способы прозвонки кабеля, особенности подключения кабеля к оборудованию.
При проведении работ по монтажу нового оборудования одним из этапов проведения работ является прокладка цепей вторичной коммутации — кабельных и проводниковых электрических проводок, которые соединяют различные элементы оборудования. В данном случае цепи вторичной коммутации — это кабельные линии, которые соединяют элементы электрического оборудования с устройствами, осуществляющие управление этим оборудованием, его защиту и реализацию различных функций.
После того как все цепи проложены очередь подходит непосредственно к прозвонке и подключению кабеля между оборудованием.
Вообще понятие прозвонка подразумевает поиск соответствующих жил кабеля или провода с обоих концов. Например, проложенный контрольный кабель имеет 12 жил, каждая из жил должна выполнять свою функцию. Одна или несколько неправильно подключенных жил может привести к выходу из строя оборудования либо неправильную его работу в процессе эксплуатации, когда при необходимости реализации определенной функции, она не будет выполнена по причине неправильного подключения цепей.
Процесс прозвонки кабеля может отличаться в зависимости от местных условий и вида самого кабеля. Если кабельная линия одна, и все ее жилы имеют цветовую маркировку, то найти концы каждой жилы не составит труда — достаточно подключить кабель с обеих сторон по цвету жил. Если кабелей несколько, но они были промаркированы до начала монтажа, то во время подключения также не возникнет сложностей, так как кабеля промаркированы, а жилы имеют цветовую маркировку.
Ситуация усложняется, когда кабеля по той или иной причине не промаркированы, а жилы не имеют цветовой маркировки, либо несколько жил имеют одинаковую цветовую маркировку. В таком случае необходимо произвести прозвонку проложенных линий для идентификации всех жил с обоих концов.
Процесс прозвонки жил кабеля можно выполнять несколькими способами, в зависимости от расстояния между концами прозваниваемых жил. Если идет речь о прозвонке цепей внутри одного распределительного шкафа, панели защит, вторичных цепей оборудования, то прозвонку можно выполнить единолично, при помощи тестера.
В качестве тестера используется мультиметр в режиме прозвонки, а при отсутствии такого режима – в режиме измерения сопротивления. Также может использовать специально предназначенный для этого прибор для прозвонки проводов, низковольтный указатель напряжения с соответствующей функцией, а также самостоятельно изготовленный из батарейки, проводов со щупами требуемой длины, лампы или телефонных трубок.
Возможно также использование для прозвонки проводов мегомметра, но это достаточно опасно и не везде применимо, так как мегомметр работает на напряжении от 500 В.
Суть прозвонки заключается в контроле целостности. Например, мультиметр в режиме прозвонки одним щупом касается жилы кабеля с одной стороны кабеля, а другим щупом поочередно касаются жил с другой стороны кабеля.
Когда прибор показывает целостность жилы (соответствующие показания или звуковой сигнал), то значит, найдены оба конца одной жилы, их необходимо промаркировать.
Маркировка жил осуществляется путем вывешивания бирок, на которые маркером наносится маркировка. При монтаже большого количества цепей, для их маркировки при прозвонке могут использоваться специальные наборы с буквами и цифрами разного размера, которые одеваются на маркируемые жилы в различных комбинациях.
Обычно при проведении прозвонки, промаркированные жилы кабеля можно сразу подключать к оборудованию. Если это гибкий провод, то перед подключением концы жил необходимо оконцевать специальными наконечниками.
Если необходимо произвести прозвонку кабеля, проложенного на большие расстояния, в разных помещениях, то эту работу выполняют вдвоем. В данном случае для прозвонки жил кабеля используется металлическая оболочка кабеля либо металлические конструкции, которые электрически соединены между собой, или же одна из жил кабеля, концы которой с обоих концов уже найдены, например, промаркированная жила другого кабеля.
При прозвонке первый работник находится с одной стороны кабеля, он присоединяет один щуп прибора (мультиметра или тестера) к металлической оболочке кабеля, металлической конструкции или к уже промаркированной жиле, к этим элементам с другой стороны кабеля второй работник присоединяет одну из жил, которую требуется прозвонить. Первый работник вторым щупом прибора поочередно касается до жил кабеля, когда прибор покажет целостность, жила с обоих концов маркируется. Таким образом, производится прозвонка всех остальных жил.
Существует еще один способ прозвонки кабелей – при помощи специального трансформатора. Для этой цели используется трансформатор с несколькими значениями напряжения на выходе.
Общий вывод трансформатора подсоединяется к заведомо промаркированной жиле или к другим элементам, которые имеют электрическую связь, остальные выводы подключаются к нескольким жилам, которые необходимо промаркировать.
На другом конце кабеля берется вольтметр, и поочередно измеряются значения напряжения между жилами и общим проводом.
Например, с одной стороны жилы подключены к выводам трансформатора с напряжением 5, 10, 15, 20 В, значит с другой стороны кабеля на других концах этих же жил должны быть соответствующие значения напряжения.
Перед подключением трехфазного высоковольтного или низковольтного кабеля к оборудованию необходимо соблюдать правильное чередование фаз. Например, если секция шин питается от нескольких кабельных линий, то при подключении всех кабелей необходимо обеспечить правильное расположение фаз на выходе, чтобы не было короткого замыкания. Или же после проведения ремонта кабельной линии (установки кабельной муфты), на другом конце кабеля фазы могут оказаться в другом порядке.
Перед подачей напряжения по данному кабелю необходимо его «прозвонить», то есть убедиться в правильности чередования фаз. Данный процесс называется фазировкой.
Фазировка концов высоковольтного кабеля с оборудованием, к которому он должен подключаться, осуществляется при помощи специальных указателей напряжения для фазировки. Они представляют собой два указателя напряжения, соединенных между собой.
При проведении фазировки кабель остается не подключенным, его концы разводятся таким образом, чтобы было безопасно проводить фазировку, затем по кабелю и на участок оборудования, к которому его следует подключить, подается напряжение.
Далее поочередно прикасаются указателями между жилами и местами их подключения. Если указатель показывает наличие напряжения, то значит это разные фазы. Если указатель не показывает напряжения, то это значит, что фазировка данной жилы совпадает, и ее можно подключать к оборудованию.
Для фазировки кабелей напряжением до 1000 В применяют обычные двухполюсные указатели напряжения или вольтметра, рассчитанного на данное напряжение, и также подают напряжение на кабель и оборудование, к которому необходимо данный кабель подключить.
Поочередно прикасаясь к жилам и выводам оборудования, наблюдаем за показаниями указателя напряжения или вольтметра, наличие линейного напряжения свидетельствует о том, что это две разные фазы. Если показания отсутствуют, то это свидетельствует о том, что это точки с одинаковым потенциалом, то есть одинаковые фазы, значит, их можно соединять.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Прозвонка кабеля, зачем и как она выполняется
Есть работа, без которой не обходится строительство или эксплуатация электрических осветительных или силовых сетей. Она возникает до начала прокладки линии. Может появиться на любом этапе монтажа, когда необходимо точно знать проводник, подключаемый к нужному контакту или точке схемы. Обязательна перед первым включением электроэнергии. Выполняют ее, когда приходится ремонтировать проводку давно работающих сетей.
Статья рассказывает, как делается прозвонка кабеля, проводов, когда она делается, для чего.
Понятие, цель работы
Слово «прозвонка» подразумевает проверку соответствия жил обоих концов провода или кабеля, одновременно тестируется исправность. Она отличается от измерения технических параметров проводки тем, что не нужны точные значения. Достаточно установить фактическое отсутствие обрывов, замыканий между собой и на землю, выполнить идентификацию концов.
Особенно важно это проверить, когда организуются цепи вторичной коммутации. Кабели, часто состоящие из большого количества проводников, соединяют устройства управления, защиты с элементами электрического оборудования. В этом случае включенный не туда без предварительной проверки, проводник может вызвать беду.
Необходимость тестирования возникает, когда нужно сделать:
- Входной контроль кабеля перед началом монтажных работ. Купленный провод может быть неисправным, особенно если он изготовлен с нарушениями технических условий, не проверялся изготовителем перед продажей. Обидно будет проложить линию, а после этого начинать искать поиск места неисправности;
- Проверку после окончания прокладки сети. Сейчас проверяется не только целостность, но также маркируются, обозначаются концы. Представьте ситуацию, когда в распределительный щиток заведены полтора десятка линий, которые нужно подключить к разным автоматам защиты. Назначение цепей различно, поэтому каждой из них соответствует свой автоматический выключатель;
- Тестирование цепи для локализации места повреждения электрической цепи при поиске возникшей неисправности.
Способы зависят от наличия измерительных приборов или устройств, типа, назначения тестируемой линии.
Методика проверки
Основной принцип прозвонки заключается в организации цепи протекания тока по проверяемому проводнику. Исправность покажет звуковой или световой индикатор, подключенный через проверяемый кабель к источнику электроэнергии. Приведенные схемы иллюстрируют конструкцию элементарного тестера, который легко изготовить самостоятельно из доступных компонентов:
- Использовать лампочку карманного фонаря с батарейкой. Лампа подключенного устройства засветится, когда на противоположном конце сделать создать короткое замыкание цепи. Рабочее напряжение лампы должно соответствовать источнику;
- Более экономичный по расходу энергии вариант даст применение вместо лампы с нитью накаливания, полупроводникового светодиода. Светодиод не боится тряски, не разобьется при случайном ударе. Резистор защищает индикатор от перегрузки по току;
- Удобнее пользоваться звуковой индикацией. Можно использовать любой звуковой индикатор, например, указатель поворотов велосипеда или мопеда.
Легкость изготовления, простота схемы этих прозвонок позволяют эффективно тестировать провод. Методика поверки выглядит так:
- Соединить выводы схемы с оголенными концами провода одной стороны. Отсутствие индикации говорит о том, что короткого замыкания нет;
- Замкнуть жилы на другом конце. Свет или звук индицируют исправность, подтверждают, что это именно та линия, которая нужна;
- Если нужно, проверяется изоляция. Для этого удаляем перемычку, соединяем один вывод прозвонки с, например, металлической трубой в которой лежит кабель. Поочередно соединяем второй вывод с каждой из жил. Отсутствие реакции покажет, что оболочка не была повреждена при затягивании в трубу или металлический гофрированный шланг.
Описанные схемы упрощают входной контроль исправности проводников перед началом монтажных работ.
Прозвонка измерительными приборами
Подобную проверку легче выполнять, если есть измерительный прибор — тестер. Конструкция тестера, имеющего режим измерения сопротивления, позволяет удобно определить замыкание цепи. Наличие режима звуковой индикации, делает процесс более быстрым. Не нужно переносить взгляд с концов проверяемого кабеля на индикатор.
Осуществляя прозвонку изоляции проложенного провода или кабеля, используют специальный прибор – мегомметр. Он подает на линию измерительное напряжение свыше 500 вольт. Такие измерения делают специалисты, в быту такие измерения не выполняют.
Найти место повреждения помогает искатель проводки, использующие физическое явление электромагнитной индукции. Вокруг проводника с переменным током, возникает магнитное поле, которое легко регистрируется.
Схема, иллюстрирующая принцип работы индукционного искателя приведена ниже:
- Проводимость канала полевого транзистора между стоком и истоком (верхний и нижний по схеме электроды) меняется от незначительного изменения напряжения затвора (электрод со стрелочкой влево). Электромагнитное поле вокруг находящегося под нагрузкой провода улавливается антенной, напряжение поступает на затвор – индикатор регистрирует близость проводки. Напряженность поля падает в геометрической прогрессии от расстояния, поэтому возле кабеля поле будет индицироваться лучше всего. В месте обрыва или замыкания жил напряженность поля резко падает, позволяя с высокой точностью определить место повреждения;
- Измерительный прибор по схеме обозначает тестер, включенный в режиме омметра. Схема практически работоспособна в том виде, как нарисована, но обладает невысокой чувствительностью. Профессиональные искатели устроены по этому принципу, но имеют более сложную схему с усилителями, более совершенной индикацией. Прозвонка кабеля делается при включенном напряжении переменного тока и нагрузке.
Для прозвонки трассы отключенных от питания сетей существуют похожие схемы, состоящие из двух блоков. Один из них искатель проводки, второй – генератор подающегося в линию сигнала. Такая система, регистрируя сигнал своей частоты, формы, более помехозащищенная, чем простая индикация электромагнитного поля частотой 50 герц.
Другие способы
При проверке многопроводных кабелей приходится использовать другие методы маркировки концов:
- Система из батареи питания и телефонных трубок. Такая проверка выполняется вдвоем, но очень точна, эффективна;
- Способ, позволяющий делать прозвонку одному, предусматривает применение специально изготовленного трансформатора, вторичная обмотка которого имеет отводы через определенное количество витков. Измерительная жила включается в нижний вывод трансформатора, остальные подключаются к выводам трансформатора в порядке возрастания нумерации. Вольтметром замеряется напряжение на проводниках другого конца относительно сигнального. Жила с самым маленьким напряжением будет первой. Самое большое напряжение у последнего номера;
- Можно обойтись без помощника используя магазин сопротивлений. Между жилами первого конца включаются резисторы выбранного номинала, начиная с сигнального провода. Проводники второй стороны отбираются омметром по порядку возрастания сопротивления.
Существуют промышленные и самодельные приборы, автоматизирующие прозвонку. На первом конце жилы подключаются к соответствующим клеммам передающей части, приемник на втором конце получает номер провода при касании щупом.
Конспект Проверка правильности монтажа электрических цепей
Проверка правильности монтажа электрических цепей
Краткие теоретические сведения
Правильным считают такой монтаж электрических цепей, при котором все соединения и маркировка элементов и кабелей выполнены в точном соответствии со схемами и обеспечивают правильную работу электроустановки. Известно много способов и приемов для проверки правильности монтажа электрических цепей, из которых наиболее распространены способы непосредственного прослеживания (визуальный) и прозвонка. Непосредственное прослеживание и прозвонка являются наиболее простыми и достаточно надежными средствами проверки электрических цепей.
При непосредственном прослеживании электрических цепей определяют не только соответствие фактически выполненного монтажа проектным схемам, но и внешнее состояние всех контактных соединений, расстояние между токоведущими частями, взаимное расположение отдельных элементов электрической цепи, маркировку цепей и др. Однако этот способ неприменим для проверки скрытых элементов электрических цепей (скрытые проводки, провода в жгутах, многослойные проводки, жилы кабелей) и при больших расстояниях между отдельными элементами электрической цепи (от панели управления до панели защит или до распредустройства). В этих случаях применяют прозвонку .
При прозвонке образуют электрическую цепь, в которую входят источник тока, индикатор тока, например электрический звонок и проверяемый участок электрической цепи. Если проверяемый участок исправен, цепь замкнута и индикатор указывает на протекание тока в образованной цепи (звонок даст сигнал). При прозвонке коротких участков цепей (в пределах очной панели щита управления или одной ячейки РУ) индикатором тока могут кроме звонка служить лампочка блиннкер с поворотным якорем электроизмерительный прибор, например вольтметр Эти простейшие приспособления для прозвонки называют пробниками.
Рис. 1 Прозвонка электрических цепей:
а — звонком, б — сигнальной лампой, в — блинкером, г — вольтметром, д — телефонными трубками; I—5 — жилы; / и 11— проводники
При прозвонке длинных участков электрических цепей, например контрольных кабелей, связывающих отдельные элементы электроустановки, размещенные в разных помещениях, удобно пользоваться телефонными трубками. Прозвонку телефонными трубками (рис. 149) выполняют два работника. Первый (старший по должности) дает указание второму, к какой жиле кабеля он должен подсоединить один провод телефонной трубки (второй провод трубки подсоединяют к земле), а сам с другого конца кабеля поочередно подключает незаземленный провод телефонной трубки к жилам кабеля, пока не образуется замкнутая цепь, по которой можно вести телефонный разговор с напарником.
Во избежание ошибок необходимо убедиться, что связь возможна только по одной жиле, к которой подключился напарник. Для этого, подключая трубку к каждой из оставшихся жил, выясняют, что связи по ним нет, а также проверяют, чтобы найденная жила имела одинаковую маркировку с обоих концов и была подведена к требуемому по монтажной схеме зажиму аппарата или сборке зажимов. Затем первый работник по телефону дает указание второму работнику о переключении телефонной трубки к следующей жиле кабеля, назвав ее марку по схеме.
Телефонные трубки следует брать низкоомные, а источником тока может служить батарейка от карманного фонаря.
Проверка цепей методом прозвонки может быть выполнена успешно, если будет исключена возможность образования
обходных цепей, помимо той, которая в данный момент проверяется. Для этого следует отсоединить проверяемые цепи от других частей электроустановки. Кроме того, необходимо убедиться в исправности изоляции между прозваниваемыми проводами и жилами контрольных кабелей.
Разобрав отдельные участки электроустановки для проверки электрических цепей методом прозвонки и убедившись, что монтаж был выполнен правильно, наладчик может неправильно восстановить эти цепи. Поэтому прозвонка электрических цепей является очень ответственной операцией и должна выполняться под руководством опытного наладчика по тщательно проверенным схемам. Полезно при прозвонке пользоваться специально составленными таблицами, особенно на контрольные кабели, с указанием маркировки жил и номеров зажимов, к которым эти жилы должны подходить, а также всех резервных жил.
Прозванивать нужно не только использованные жилы кабелей, но и все резервные жилы. Измерение сопротивления изоляции жил контрольных кабелей (желательно мегомметром 2500 В) должно предшествовать прозвонке, причем результаты измерений могут быть записаны против номеров соответствующих жил в вышеуказанных таблицах.
Следует отметить, что прозвонка и осмотр цепей — это основные способы проверки правильности монтажа, позволяющие установить точное соответствие монтажа монтажным схемам и правильность маркировки на всех проверяемых участках. Другие способы, которые позволяют выявить ошибки, допущенные при прозвонке или сборке схем после прозвонки, проверить правильность монтажа, если невозможно воспользоваться методами прозвонки по каким-либо причинам, являются дополнительными способами проверки правильности монтажа.
Проверка целостности проводника
Проверку целостности проводника выполняем так:
Отсоединяем проводник от источников тока. Если проводник представляет собой многожильный кабель – то делаем это для всех входящих в него проводов.
Включаем мультиметр либо в режим прозвонки, либо – в режим измерения сопротивления на самом грубом пределе.
Соединяем щупы мультиметра: на дисплее должны появиться нули, а в режиме прозвона со звуковым сопровождением прибор издаст писк.
Разомкнутые щупы мультиметра присоединяем к проводнику. Целый проводник показывает нулевое сопротивление.
Для многожильного кабеля процедура проверки та же, но предварительно необходимо промаркировать соответствующие жилы (если они не отличаются цветом изоляции).
Если после проверки нарушений целостности кабеля не выявлено – значит, неисправность следует искать в другом месте.
Испытания электрических проводок. Измерение сопротивления изоляции
Сопротивление изоляции измеряют мегомметрами (100-2500В) со значениями измеренных показателей в Ом, кОм и МОм.
К средствам измерения изоляции относятся мегомметры: ЭСО 202, Ф4100, М4100/1-М4100/5, М4107/1, М4107/2, Ф4101. Ф4102/1, Ф4102/2, BM200/G и другие, выпускаемые отечественными и зарубежными фирмами.
4.3 Требования к квалификации
К выполнению измерений сопротивления изоляции допускается обученный электротехнический персонал, имеющий удостоверение о проверке знаний и квалификационную группу по электробезопасности не ниже 3-й, при выполнении измерений в установках до 1000 В, и не ниже 4-й, при измерении в установках выше 1000 В.
К обработке результатов измерений могут быть допущены лица из электротехнического персонала со средним или высшим специальным образованием.
Анализ результатов измерений должен проводить персонал, занимающийся вопросами изоляции электрооборудования, кабелей и проводов.
5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
При выполнении измерений сопротивления изоляции должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019.80, ГОСТ 12.2.007-75, Правилами эксплуатации электроустановок потребителей и Правилами техники безопасности при эксплуатации электроустановок потребителей.
Помещения, используемые для измерения изоляции, должны удовлетворять требованиям взрыво- и пожарной безопасности по ГОСТ 12.01.004-91.
Средства измерений должны удовлетворять требованиям безопасности по ГОСТ 2226182.
Измерения мегомметром разрешается выполнять обученным лицам из электротехнического персонала. В установках напряжением выше 1000 В измерения производят по наряду два лица, одно из которых должно иметь по электробезопасности не ниже IV группы. Проведение измерений в процессе монтажа или ремонта оговаривается в наряде в строке «Поручается». В установках напряжением до 1000 В измерения выполняют по распоряжению два лица, одно из которых должно иметь группу не ниже III.
Измерение сопротивления изоляции
Сопротивление изоляции постоянному току является основным показателем состояния изоляции, и его измерение является неотъемлемой частью испытаний всех видов электрооборудования и электрических цепей.
Нормы проверок и испытаний изоляции электрооборудования, определяются ГОСТ, ПУЭ и другими директивными материалами.
Сопротивление изоляции практически во всех случаях измеряется мегомметром — прибором, состоящим из источника напряжения — генератора постоянного тока чаще всего с ручным приводом, магнитоэлектрического логометра и добавочных сопротивлений.
Поскольку в мегомметрах есть источник постоянного тока, то сопротивление изоляции можно измерять при значительном напряжении (2500 В в мегомметрах типов МС-05, М4100/5 и Ф4100) и для некоторых видов электроаппаратуры одновременно испытывать изоляцию повышенным напряжением. Однако следует иметь в виду, что при подключении мегомметра к аппарату с пониженным сопротивлением изоляции напряжение на выводах мегомметра также понижается.
Измерение сопротивления изоляции с помощью мегомметра
Перед началом измерений необходимо убедиться, что на испытываемом объекте нет напряжения, тщательно очистить изоляцию от пыли и грязи и на 2 — 3 мин заземлить объект для снятия с него возможных остаточных зарядов. Измерения следует производить при устойчивом положении стрелки прибора. Для этого нужно быстро, но равномерно вращать ручку генератора. Сопротивление изоляции определяется показанием стрелки прибора мегомметра. После окончания измерений испытываемый объект необходимо разрядить. Для присоединения мегомметра к испытываемому аппарату или линии следует применять раздельные провода с большим со противлением изоляции (обычно не меньше 100 МОм).
Перед пользованием мегомметр следует подвергнуть контрольной проверке, которая заключается в проверке показания по шкале при разомкнутых и короткозамкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы «бесконечность», во втором — у нуля.
Для того чтобы на показания мегомметра не оказывали влияния токи утечки по поверхности изоляции, особенно при проведении измерений в сырую погоду, мегомметр подключают к измеряемому объекту с использованием зажима Э (экран) мегомметра. При такой схеме измерений токи утечки по поверхности изоляции отводятся в землю, минуя обмотку логометра.
Значение сопротивления изоляции в большой степени зависит от температуры. Сопротивление изоляции следует измерять при температуре изоляции не ниже + 5°С, кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции.
В некоторых установках постоянного тока (аккумуляторных батареях, генераторах постоянного тока и т. п.) можно контролировать изоляцию с помощью вольтметра с большим внутренним сопротивлением (30 000 — 50 000 Ом). При этом измеряют три напряжения — между полюсами (U) и между каждым из полюсов и землей.