СЕ генераторы последние данные

СЕ для чайников на примере Капанадзе

СЕ для чайников на примере Капанадзе

автор kapa007 Вт 08 Май 2012, 07:17

Первое сообщение в теме :

Добрый день. Я в теме чайник, и физикой владею на уровне школы. Но не дурак, способен самостоятельно мыслить логически. Во всех темах разговор всегда скатывается на уровни, которым обыватель типа меня может только удивляться какие профи у нас еще бывают. И мне жалко что они бессмысленно ругаются. Хочу помочь массе таких же как я, от которых мог бы быть толк, но не на таком уровне постановки проблем. Зачем мне СЕ? Меня не интересует коммерческий эффект, мне есть где жить, что кушать, на чем ездить. Я не хочу продавать изобретенное не мной. И если у нас в магазинах я смогу купить генератор нужной мне мощности, меня бы это устроило. Я хочу чтобы эти открытия свершились и были доступны всем, и мне плевать кто на этом заработает. Если открытие свершилось, его можно повторить. Если всё обман, то хотя бы кучка чайников будет чуть лучше знать физику

Вокруг куча схем и отсебятины, я темы читал как детектив. В итоге все хотят ссылок на достоверную инфу, часть народа говорит, что ее нет, часть что вы искать не умеете, но тоже ничего не дает. Результат один.
Еще все жалуются что мало народу собирает схемы. Может Профи могут упростить схемы, давая возможность собрать их некую часть для проверки некого обсуждаемого эффекта? И чайники будут втягиваться, и статистики будет больше.

Как чайнику из всего прочитанного мне показалось наиболее логичным следующий обзор некого Magic:
http://halerman.narod.ru/TTCG/Kapanadze.htm

Профи, что вы думаете? Человек начал с разбора патента Капанадзе, разбора ошибок и т.п.
Прав он в оценке ситуации(естественно IMHO)? Со своей колокольни ошибок не вижу

Кстати что за программа симулятора использовалась? Есть где взять?
>Проверку в симуляторе, что трансформатор в импульсном режиме работает, как генератор тока провел GTK5:

  • Сообщение 201

Re: СЕ для чайников на примере Капанадзе

автор Johnlis Сб 07 Июл 2012, 22:46

Всем привет! Ну что надо закрывать все тёмные пятна с работой установки.
юрий61, а какой нам смысл задействовать это поле от нагрузки, если мощность установки мы можем поднять увеличив реактивную мощность в резонансной цепи. Экранировать можно, чтобы силовые линии замыкались на экран, но смысла пока не вижу. Я же предупредил об осторожности, как говорится кто предупреждён, тот вооружён.
wukowar, вопрос конечно интересный, хотелось бы спросить его у самого СР, ведь заявив об этом 28 марта 2010 года, когда он понятия не имел о принципе работы, через сутки уже заявляет о раскрытии этого принципа. Может сон какой приснился как Менделееву, не знаю свечку не держал ))). Дело в том, что при таком включении трансформаторов, при искровом разряде на выходную обмотку второго трансформатора, лампочка действительно начинает светиться ярче, но ровно та ту величину мощности, которую дополнительно подвели от высоковольтного источника питания, ничего сверх там быть просто не может. И многие это связали с принципом работы, надолго увязнув в ненужных исследованиях по перевороту доменов. Тут вывод напрашивается один, он просто не до конца разобрался с принципом работы, поспешив вынести всё в свет, преподав, что энергия высвобождается из ферромагнитного материала.

Freeng1, не переживайте ветка не будет закрыта, всё будет в открытом доступе, только без возможности продолжать писать в эту ветку, так как она более теоретической направленности. А будет открыта уже другая ветка практической направленности на сборку конкретного девайса. Хотя этот вопрос оставим на усмотрение администрации.

Ну, что переходим к последней теме: Назначение в установке ферритов, двух выходных силовых транзисторов и второй обмотки, расположенной под спиральным резонатором.
Итак основным условием возникновения стоячей волны является равенство частот, то таковое всегда реализуется, когда имеют место падающая и отражённая волны. Наблюдатель, поместив в узел тока индикатор (измерительную рамку), констатирует, что ток энергии в продольном направлении отсутствует. Для нас это означает, что скорость тока энергии и относительно наблюдателя, и относительно волновой среды (эфира), равна нулю. Но как можно заметить, это первый процесс, который запускает создание стоячей волны с максимальной энергетикой вдоль кабеля заземления (первый тумблер в установке Капанадзе). Но при стационарном положении этих узлов и пучностей, как вы уже поняли, снять энергию окружающего пространства невозможно. Вот для этого нам и нужен второй процесс – организация движения этих узлов и пучностей в продольном направлении вдоль кабеля заземления (анимация с вороной) с любой нужной нам частотой (второй тумблер в установке Капанадзе), что возможно применить только в пространственных резонаторах (линиях с распределёнными параметрами). Чтобы организовать этот процесс разберём один пример. Процесс движения стоячей волны хорошо проиллюстрирован в ритмодинамике Иванова Ю.Н. (кстати очень грамотный специалист, на форумах его можно встретить под ником mirit), наверное приведу пример:
Рассмотрим поведение стоячей волны от пространственно разнесённых и покоящихся в среде источников. В промежутке между когерентными источниками образовался пакет стоячих волн. Сдвиг фаз между источниками отсутствует. В этой ситуации интерференционная картина будет симметричной. Отметим положение центральной пучности.
Создадим сдвиг фаз между колебаниями. Очевидно, что положение узлов и пучностей сместится относительно первоначального положения. По мере увеличения сдвига фаз, узлы и пучности стоячей волны всё далее смещаются от своего первоначального положения, а при сдвиге фаз в 180° они сместятся на половину длины стоячей волны. Дальнейшее увеличение сдвига фаз приведёт и к дальнейшему смещению стоячей волны.

Если по определению стоячая волна характеризуется отсутствием в пространстве переноса энергии, то мы, изменяя сдвиг фаз, такой перенос организовали: изменение сдвига фаз между источниками привело к переносу энергии в пространственном промежутке между этими источниками.
Но постоянно изменяющийся во времени сдвиг фаз между источниками, есть разность частот. Это значит, что наличие у источников разности частот приводит к переносу заключённой в стоячей волне энергии в направлении от источника большей частоты к источнику меньшей частоты. Происходит перенос (ток) энергии.

Теперь возвращаясь к установке Капанадзе, мы видим, что источник (спиральный резонатор) у нас один и отражённая волна от заземления, встречаясь с бегущей волной от источника в результате даёт стоячую волну. Но здесь можно заметить, что отражёная волна приходит обратно с задержкой во времени и в течение этого времени у нас есть возможность изменить длину бегущей волны. И здесь можно вспомнить отрывок из изотерики Крайона про смещение расстояния во временных контурах. Так как встречаясь две волны с разной длиной, то результат такого сложения будет в виде смещения расстояния стоячей волны, а это как раз то, что нам и нужно. И как несложно догадаться, нам для этого придётся изменять во времени один из параметров спирального резонатора либо ёмкость, либо индуктивность. Но ёмкость не представляю возможности как это сделать электрическим путём, механическим можно, но думаю городить такую конструкцию это никому не понравится, а вот индуктивность менять электрическим способом можно без проблем. Вот для этого у нас и помещена ферритовая колбаса под спиральный резонатор. Как мы знаем, у ферромагнитного материала есть такой параметр как относительная магнитная проницаемость, которая может изменяться под воздействием внешнего магнитного поля, так называемым подмагничиванием. И вот у нас напрашивается в установке следующая обмотка, подмагничивающая, которая изменяет резонансную частоту спирального резонатора, назовём эту обмотку модуляционной. И в зависимости от той частоты, которую подаём на эту обмотку, на выходной обмотке наводится ЭДС с той же частотой, равной частоте модуляции, которая можт быть к примеру равной 400Гц, мощность на выходе от этого не изменится. Смотрим на конечный конструктив.

Обмотку модуляции снова показал одним слоем. В реальности она будет зависеть от марки феррита, тока протекающего по обмотке, и размера самих ферритовых колец. Но пару десятков витков по всей длине ферритовой колбасы можно намотать смело. Далее эта обмотка подключается к выходному двухполупериодному синусоидальному (если хотите на выходе получить синус, какой формой модулируете, такую получаете на выходе) каскаду генератора тока, этот генератор можно собрать как угодно, схем в интернете и в любой литературе полно, что нет никакого смысла её приводить. Генератор тока достаточно собрать на величину тока 2-3 ампера. Выходные транзисторы будут греться, поэтому их садим на радиаторы охлаждения. И ещё очень важно. поскольку обмотка модуляции находится в одной плоскости со спиральным резонатором, то в ней будет также наводится ЭДС высокой частоты и чтобы не шунтировать эти высокочастотные свободные колебания резонансной системы через силовые элементы генератора 50 Гц, необходимо обеспечить развязку по высокой частоте, например установкой в цепь обмотки модуляции дросселя номиналом пару-тройку сотен микрогенри (на схеме указан как ВЧ дроссель), а лучше по дросселю в каждый провод. Теперь мы сможем спокойно управлять индуктивностью спирального резонатора при помощи низкой частоты 50Гц без шунтирования высокочастотных колебаний. Ну а вопрос самозапитки решается классическим способом, о нём говорить смысла не вижу, всё зависит ваших пожеланий по управлению и контролю.

Ну вот такой короткий рассказ о принципе получился )). В личку скидывать данные кошельков не буду, желающие отблагодарить, кто не сочли всё, что здесь написано за ересь (а то уже «весёлые» сообщения начали поступать), могут это сделать на кошельки Web Money, рублёвый R303424744886, долларовый Z747198010780, буду благодарен. Теперь обращусь к администрации, будем создавать новую ветку или будем эту продолжать?

СЕ генераторы последние данные

«Наш мир погружен в огромный океан энергии, мы летим в бесконечном пространстве с непостижимой скоростью. Всё вокруг вращается, движется — всё энергия. Перед нами грандиозная задача — найти способы добычи этой энергии. Тогда, извлекая её из этого неисчерпаемого источника, человечество будет продвигаться вперёд гигантскими шагами» Никола Тесла (1891)

воскресенье, 9 августа 2015 г.

Двухчастотные генераторы СЕ

Автор dorohov.alex

Долго ждал объяснения принципа работы фонариков от Акулы, но его все нет. Не пойму почему так упорно не хочет рассказывать Поэтому я сам постараюсь раскрыть секрет, думаю он на меня не обидеться.
начнем по порядку. Давно проводил вот такой опыт: Два генератора (70-100kHz),(рис. 1) с ключей идет выход на две разные обмотки одного трансформатора. Разность частот подбирается примерно 50-100 Hz. С выходной обмотки, которая имеет соотношение витков межу первичными и выходной 7:1 поступает на фильтр низких частот с частотой пропускания примерно 0- 500Hz. При определенном подборе частот нагрузка (проволочные резисторы) не влияла на потребляемый ток и резонансные процессы в трансформаторе.

Вот что получается, в трансформаторе происходит биения частот и образуется множество частот. Основные частоты f1, f2 и f3. Где f3 частота разности f2-f1 которая снимается с вторичной обмотки трансформатора и отфильтровывается фильтром НЧ.
Для создания колебаний в обмотках 1 и 2 мы затратили энергию Е1 и Е2, (Е1+Е2) но получили прибавку в виде дополнительной энергии которая снимается с обмотки 3 — Е3. По моим проведенным опытам нагрузка и даже короткое замыкание не влияла на общий потребляемый ток.

Идем дальше, почему идет прибавка.
магнитные волны в ферритовом сердечнике

В ферритовом сердечнике трансформатора при подаче тока на первичную обмотку происходит магнитная волна. Магнитная волна обусловлена инерцией переворота доменов феррита и направленна в две стороны от полюсов катушки. Скорость распространения магнитной волны зависит от проницаемости феррита, то есть от времени переворачивания доменов феррита. При гармонических колебаниях в объеме сердечника появляются рефракционные зоны.
При использовании двух частот происходит накладка магнитных волн, причем в случайном порядке (зависит от частот и периметра сердечника), при этом образуются области с «нулевым» насыщением и области с перенасыщением сердечника. Именно эти области создают новую магнитную волну (разносную). Энергия разносной волны будет зависеть от объема сердечника, то есть от объема перевернутых доменов феррита. Чем больше сердечник, тем больше энергии он даст.

Фонарики от «Акула» Мой вышеописанный опыт не дал прибавки выше 1 по причине неправильной конструкции. А именно частоты f1 и f2 имеют не большое отличие и бывают моменты когда сердечник уже насыщен и открывается другой ключ, это вызывает большие токи через ключи и соответственно низкий КПД. Немного другим путем пошел Акула — он создал два генератора один из них более низкочастотный, но кратный первому. Таким образом не происходит спонтанных лавинных токов через ключи как было в моем случае.

Главное условие частоты генераторов должны быть кратны — 3,7. Питание для работы генераторов поступает через диод D1 — снимается обратная эдс с низкочастотной катушки. Питание силовых ключей и светодиодов реализованно непосредственно через диодный мост с вторичной обмотки трансформатора.Еще более качественный вариант можно получить при согласовании фаз обоих генераторов. Как вариант можно использовать частотные делители на цифровых микросхемах или микроконтроллеры.

Информация взята от сюда http://realstrannik.ru/forum/48-temy-freeenergylt-antanasa/134845-akuly0083-fonariki.html?start=90

Итог Фонарик №3 от Романа оригинальное видео и т.д. далее описание других исследователь и т.д.

Фонарик от Деда

Верхний генератор на ТЛ494 — «трансформаторный». Нижний генератор — «феррорезонансный». Я бы иначе их поименовал. Нижний настраивает магнитострикционный резонанс в сердечнике. А верхний поддерживает амплитуду напряжения на выходе.

В течении видео верхний генератор не трогается вовсе. Все регулировки осуществляются только нижним. Причём частота нижнего гена почти ни на что не влияет в определённых пределах — от ультразвука до частоты порядка 3-5КГц. А вот крутилка по напряжению сильно влияет.
«Защиты по току» в этой схеме нет, т.к. с сопротивления, стоящего последовательно со светодиодами, нет никакой «сопли» на ТЛ494.
Странно только, что в предыдущем видео с этой платкой выход +5В был подключен туда же куда и «Крона». Но ТЛ494 от 5В по идее не должна работать.

mikmur, спасибо. А то мне лень было на компутере рисовать. Я по схеме собрал, но пока безрезультатно. Ориентируюсь при настройке на ток потребления 30-40 мА от 9В. По отдельности каждый генератор так и потребляет. А вот вместе, без подключенной выходной обмотки, потребление пока не могу получить ниже 200 мА от 9В. Что-то тут не так в схеме. Бум ещё ковыряться.

здравствуйте дед — а как вы находили частоту феррорезонанса? Пока ещё не находил. думаю. Схема ещё сырая и неправильная. Неправильность в двух диодах, которые я нарисовал, идущими от стоков полевиков на плюс питания. Я их пока впаял на живушку. Скорее всего полярность диодов придётся сменить, т.к. на одном из них собран повышающий преобразователь из +5В в +12В. Второй диод похоже связан с запуском. У акулы плата от видео к видео немного видоизменяется, поэтому я пока ориентируюсь на предыдущую версию, там где по 4 светодиода последовательно. А здесь выложил уже следующую — где по 2 светодиода последовательно. Вот есть вариант от Константина. Так что пока не спешим.

Вроде чуток прояснилось. Один диод, который к стоку якобы был подключен в ВЧ генераторе, оказывается в воздухе висит, поэтому из схемы я его выкинул. Второй диод, как и следовало ожидать, остался на месте, но поменял своё назначение. Теперь он неотъемлемый элемент повышающего преобразователя на 12 вольт, собранного на НЧ генераторе. Только так я могу объяснить работу схемы от +5В БП.

Atmel
я вклинился в тему на середине . надо прослушать начало .. но поприсутсвовав на второй половине конфы я не понял как конкретно настраивать фонарик 30ватный . Что я понял так это то что надо узнать частоту резонанса феррита подавая меандр с генератора на первичку транса , а со вторички брать сигнал на ослик. Когда ослик вместо меандра покажет синус — ото и будет резонанс.

Далее нужно посмотреть сигнал осликом в первичке и вычислить длительность импульса.
следующим шагом нужно создать ситуацию когда генератор на ТL494 будет выдавать пачки импульсов со скважностью около двух (грубо говоря почти меандр), но длительность выдачи этих пачек будет равна длительности импульса резонанса. Вот тут про длительность выдачи пачек я не уверен что верно все понял.
Как этого добиться я до конца не понял. Услышал о изменении зазора в феррите, об подгонке емкости (если верно понял то емкости что между диодами). но это только догадки. Как резюме пока что нет понимания, что конкретно физически нужно изменять в схеме что бы оно заработало.

kapagen

Создание бестопливного генератора энергии

репликация генератор Тариэля Капанадзе

Entries by tag: СЭ

Так как подходящего куска феррита у меня не нашлось, собрал дома всё что было, сердечники дросселей из блоков старых телевизоров, фильтры блоков питания, в общем всё, что не ушло вовремя на на помойку (и как оказалось слава богу что не ушло) далее:

Взял лист плотного картона (подошел один из рекламных буклетов в почтовом ящике, спасибо спамерам), свернул в трубку 10мм диаметр, длинной 220мм. Феррит с помощью молотка и массивной латунной пепельницы получилось превратить в порошок (на превращение с перекурами ушло дня три), который был просеян через кухонное сито для муки, максимальный размер фракций получился не более 0.5 мм. Одним словом, всё это добро было засыпано в трубку, ровно по центру протянул толстый провод, вдоль всей трубки, сам провод на всякий случай дополнительно поместил в термоусадку, трубка после тщательного простукивания и утрамбовки феррита была закрыта прокладками и залита парафином с двух сторон. Намотал две катушки, мотал бифилярным способом, последовательно, соотношение первички и вторички на вскидку взял 1:20 и сверху всего этого добра высоковольтный автомобильный провод 7 витков который соединён с центральным (сквозь феррит) на землю.

На первичку подавал переменку 12В ток 1,5А (понижающий трансформатор 220/12 после которого два транзистора два конденсатора две пары сопротивлений по схеме электронного ключа открываются около пика фазы питания, номиналы подбирал экспериментально, пришлось таким образом заменить генератор прямоугольных импульсов), на выхлопе вторички получил около 190-230В (тестер к сожалению цифровой стабильно не показывал) при нагрузке напряжение просаживало до 130-170В (нагрузка лампа накаливания 220В/75Вт) ток вторички 0,1 — 0,15А нить лампы едва краснела, и то заметно только в потёмках.

Далее искрил куда только можно и как возможно, опишу лишь положительный результат.

Высокое добывается ТВС 110ПЦ15 с первичкой 10 витков проводом сечения около 1.5-2 квадрата лакированный (марку провода не знаю) блокинг-генератор одно-плечевой (один транзистор один конденсатор два резистора 5 витков вокруг первички обратная связь, думаю кто в теме поймёт что это за схема)

Сразу скажу, тупо искрение непрерывной искрой ВВ ВЧ на всевозможные выводы ни к чему не приводят(эффект незначительный), результат наблюдался лишь в случаях когда питание блокинг-генератора было подключено через автомобильное реле, управление которого в свою очередь было подключено к переменке 12В, что питало первичную катушку генератора (надеюсь понимаете о чём я, на всякий случай поясню: пик фазы переменного тока в первичке включал реле, питая блокинг-генератор и вырабатывая высокое высокочастотное напряжение. Далее спад фазы отключает питание высокого, при следующем нарастании тока цикл повторяется)

Самый яркий эффект наблюдался при подаче высокого на внешнюю катушку из высоковольтного провода(7 витков), которая далее подключена через центр феррита на землю(холодный провод ТВС тоже прямо в землю)

Что происходило: отмечалось падение тока на первичке(незначительно), и в разы увеличивался на вторичке,(у меня перегорела лампа, пришлось подключать нагрузку в виде спирального обогревателя мощностью 1,8 КВт для дальнейших замеров) ток вторички значительно подлетал, прирост энергии порядка 400-700% (такие цифры исходя из тока питания первички и что получал на вторичке)игрался пока из-за перегрева не коротнулавторичка.

Для себя убедился экспериментально, что установка нашего грузинского коллеги не развод, и не фокус (как я думал изначально), по непонятным для меня пока причинам эффект прироста энергии имеет место быть , теперь главное всё отточить и довести до ума.

Собрать генератор прямоугольных импульсов, за основу возьму схему преобразователя 12/220 автомобильного с переделанным трансформатором 12/12 вместо 12/220. Далее вместо реле питания цепи генерации высокого напряжения планирую поставить ключ на транзисторе с регулируемой задержкой, экспериментально подобрать момент срабатывания. Питать генератор прямоугольных импульсов планирую через понижающий трансформатор, который в свою очередь будет питаться от вторички. Таким образом цепь питания замкнется.

Да чуть не забыл: очень важен зазор разрядника, у меня максимальный эффект наблюдался примерно при 0.5 — 1мм. поверхностью для разряда я использовал контакты из автомоб. реле припаянные на концах болтиков. Обычный провод быстро обгорает, меняя характеристики разряда, что в целом очень негативно сказывается на работе установки.

За основу я не брал ни чьих схем, всё рождалось экспериментально. Чего и Всем советую.

У меня к сожалению без феррита эффект получался незначительный (но всё же он был, что не исключает работу генератора без сердечников).

Генератор с самозапиткой

Устройства выработки электрической энергии можно разделить на несколько категорий, в зависимости от того, какой тип энергии используется для преобразования:

  • тепловые;
  • гидравлические;
  • ветровые;
  • солнечные.

Все эти устройства в настоящее время являются основными поставщиками электроэнергии. Недостатком здесь является зависимость от преобразуемых источников.

Усиливающий трансмиттер СЕ Тесла

Недостатки источников энергии

В тепловых электрогенераторах используется энергия сгорания угля или нефтепродуктов, запасы которых в земных недрах подходят к концу. К этому же типу относятся и атомные электростанции. Запасы радиоактивных элементов еще достаточно велики, но тоже не бесконечны. Тепловые электростанции приносят наибольший вред окружающей среде. Это выбросы в атмосферу не полностью сгоревших углеводородов и углекислого газа, а также большая вероятность радиоактивного заражения (для устройств на атомной энергии).

Гидравлические устройства включают в себя гидроэлектростанции, в которых используется энергия запасенной в водохранилищах воды рек и приливные электростанции, использующие энергию приливов и отливов. Нормальная работа гидроэлектростанций зависит от уровня воды в водохранилище и, при существенном его понижении, исключается. К тому же плотины гидроэлектростанций крайне негативно влияют на существующие экосистемы рек и прибрежных районов. Меньшее отрицательное влияние на окружающую среду имеют приливные электростанции.

Ветро-генераторы зависят от движения воздуха и могут быть построены только в местности с устойчивыми ветрами. При изменении климата работоспособность ветро-генераторов может быть под вопросом.

Похожая ситуация и с устройствами преобразования солнечной энергии. Солнечные электростанции устанавливаются только в местности с большим количеством солнечных дней в году. Ночью и в облачную погоду такие электростанции не работают.

Перечисленные недостатки заставляют вести активные поиски альтернативных источников энергии.

Альтернативные источники энергии

Среди энтузиастов наиболее широкое внимание уделяется использованию свободной энергии и магнитного поля Земли. Поскольку научной базы для определения свободной энергии до сих пор нет, то возникают споры, что же такое свободная энергия. Большинство исследований проводится в области применения радиантной энергии, энергии вакуума и магнитного поля. Источником вдохновения для конструирования генераторов на свободной энергии своими руками служат работы сербского ученого Николы Тесла.

Все устройства, которые используют в работе принцип свободной энергии делятся на:

  • радиантные генераторы;
  • блокинг-генераторы на постоянных магнитах без движущихся частей;
  • блокинг-генераторы на постоянных магнитах;
  • трансгенератор;
  • механические нагреватели с коэффициентом полезного действия больше единицы;
  • имплозионные (вихревые генераторы Потапова);
  • электролиз воды без источников внешней энергии;
  • тепловые насосы;
  • холодный ядерный синтез.

Из всех перечисленных устройств только тепловые насосы имеют строгое научное обоснование. Говоря точнее, они не являются генераторами на свободной энергии, поскольку используют в своей работе разницу температур в различных слоях земли.

Радиантные СЕ генераторы

Радиантная энергия подобна электростатической, в связи с чем нередко возникает путаница. Радиантная энергия получается из окружающей среды или внешнего источника электроэнергии с последующей отдачей во внешнюю цепь ее излишков.

Наиболее известные устройства на радиантной энергии – это усиливающий трансмиттер Тесла, генератор СЕ с самозапиткой и генератор Т. Генри Моррея. Все новые схемы используют в работе их принципы действия.

Усиливающий трансмиттер Тесла

Усиливающий трансмиттер Тесла представляет собой резонансный трансформатор с особыми обмотками плоской формы, которые запитываются от внешнего источника электроэнергии посредством специальных конденсаторов и разрядников.

Особенностью трансмиттера является генерация в окружающей среде стоячих волн радиантной энергии, которая не ослабевала от расстояния. Областью применения усиливающего трансмиттера предполагалась дистанционная беспроводная передача электроэнергии. К сожалению, Тесла не успел в полной мере закончить эксперименты по передаче энергии, а чертежи и описания опытных установок оказались после его смерти засекреченными. Фото приемно-передающей вышки усиливающего трансмиттера Тесла приведено выше.

Собранные своими руками, новые установки если и работали, то выдавали крайне низкую эффективность. Единственное устройство, которое под силу собрать и испытать своими руками, это трансформатор Тесла, имеющий огромный коэффициент трансформации и способный выдавать на выходе напряжение в десятки и сотни тысяч вольт при ничтожных затратах входной электроэнергии.

Генератор Т. Генри Моррея

Генератор Т. Генри Моррея основан на преобразовании радиантной энергии посредством специально сконструированных конденсаторов и диодов. Конструктивно конденсаторы были схожи с электронными лампами, однако, в отличие от последних, не требовали дополнительного подогрева электродов (рис. ниже).

Конденсатор Т. Генри Моррея

Генератор СЕ с самозапиткой

Генератор СЕ с самозапиткой – это генератор автоколебаний, требующий подачи энергии от внешнего источника для запуска генерации. В дальнейшем питание производится от выходного напряжения генератора под действием магнитного поля Земли. Если запуск собранного своими руками генератора производится от аккумуляторной батареи, то при работе блокинг-генератора с самозапиткой избыток энергии можно пускать на подзаряд аккумулятора (рис. ниже). Работа генератора основана на взаимодействии магнитного поля трансформатора с энергией от различных источников.

Схема генератора СЕ с самозапиткой

Одним из вариантов генератора на свободной энергии с самозапиткой является трансгенератор (рис. ниже). Данный генератор использует действие магнитного поля Земли на обмотки трансформатора и весьма прост для сборки своими руками.

Схема трансгенератора – генератора на свободной энергии с самозапиткой

Генераторы свободной энергии

Путем объединения физических процессов генераторов СЕ с самозапиткой и генераторов на постоянных магнитах получается схема магнитного блокинг-генератора на постоянных магнитах (рис. ниже). Такой блокинг-генератор также требует импульс от входного источника для начала генерации. Для создания магнитного поля здесь используются мощные магниты.

Схема блокинг-генератора СЕ на постоянных магнитах

Имплозионные (вихревые) генераторы

Разговаривая о генераторах электроэнергии, нельзя не упомянуть источники тепла, которые позволяют вырабатывать тепло с коэффициентом полезного действия более 100%. Речь идет о вихревых генераторах конструкции Ю. С. Потапова. Работа теплогенератора основана на взаимодействии соосных вихревых потоков жидкости. Принцип работы вихревого генератора Потапова приведен на рисунке ниже.

Схема вихревого генератора Потапова

Подача воды осуществляется центробежным насосом через патрубок (2). Двигаясь по спирали вдоль внешней стенки корпуса (1), жидкость подходит к отражающему конусу (4), где разделяется на два потока. Внешний, подогретый поток возвращается к насосу, а внутренний, отразившись от поверхности конуса, образует вихрь меньшего диаметра, который проходит внутри первичного вихря и поступает на выходной патрубок (3), к которому подключается система отопления.

Нагрев жидкости происходит за счет теплообмена между завихрениями. Отсутствие подвижных частей в теплообменнике обеспечивает теплогенератору сверхвысокий КПД.

Собрать вихревой нагреватель Потапова своими руками сложно, поскольку требуется применение заводского оборудования для обработки металла.

Новые варианты теплогенераторов используют явление кавитации – образование в объеме жидкости микроскопических пузырьков пара и их схлопывание. Данный процесс сопровождается выделением большого количества тепловой энергии.

Электролиз воды

Очень перспективны новые направления исследований, которые занимаются проблемой электролиза воды без применения сторонних источников энергии. Вода является простейшим обратимым источником энергии. Все очень просто. Молекулы воды состоят из атомов кислорода и водорода. При электролизе образуются газы кислород и водород, которые можно использовать в качестве замены любого углеводородного топлива.

Взаимодействие кислорода и водорода происходит с образованием молекул воды и выделением большого количества тепла. Проблема электролиза заключается в необходимости подвода большого количества энергии для протекания реакции. Изменяя конфигурацию электродов и состав катализатора, а также энергию магнитного поля, можно добиться значительного снижения потребляемой мощности. Уже проведен ряд опытов, которые доказывают возможность разложить воду на составляющие элементы без подвода энергии и создать новые источники энергии.

Холодный ядерный синтез

Традиционные ядерные и термоядерные реакции, в ходе которых происходит превращение одних элементов в другие, требуют огромного количества энергии для инициирования процесса. Это связано с тем, что для превращения элементов требуется сблизить их ядра на очень малое расстояние, при котором силы взаимного отталкивания настолько велики, что требуют огромных затрат энергии.

Такие реакции происходят в атомных реакторах, атомных бомбах и ускорителях частиц в условиях большой напряженности магнитного поля.

Атомный реактор работает по тому же принципу, что и атомная бомба, за исключением того, что реакция может контролироваться. Реакторы требуют специфического топлива и чрезвычайно опасны в плане радиационного заражения и облучения.

Проблема холодного ядерного синтеза заключается в том, чтобы найти возможность проводить ядерные реакции без подвода внешней энергии и без выделения радиоактивного излучения. Как и в случае с электролизом воды, новые исследования уже дали положительные результаты.

Проблема генераторов на свободной энергии заключается в активном противодействии сторонников традиционных источников, поскольку вся мировая экономика основана на углеводородном топливе и радиоактивных материалах. Холодный ядерный синтез объявлен лженаукой, и всякое финансирование в этой области прекращено. Все работы проводятся только энтузиастами.

Видео. Генератор с самозапиткой

В Интернете можно найти множество ссылок на конструкции генераторов СЕ различных типов, таких как трансгенератор или блокинг-генератор СЕ. Приводятся описания и технические характеристики, методика расчетов и сборки своими руками. Однако нет ни одной ссылки, указывающей, где можно увидеть действующий прототип генератора на свободной энергии. Также многие собирали своими руками генераторы свободной энергии, блокинг-генераторы, однако их характеристики не соответствовали заявленным, или устройства не работали совсем.

Подробно о генераторах случайных и псевдослучайных чисел

Введение

Генераторы случайных чисел — ключевая часть веб-безопасности. Небольшой список применений:

  • Генераторы сессий (PHPSESSID)
  • Генерация текста для капчи
  • Шифрование
  • Генерация соли для хранения паролей в необратимом виде
  • Генератор паролей
  • Порядок раздачи карт в интернет казино

Как отличить случайную последовательность чисел от неслучайной?

Пусть есть последовательность чисел: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . Является ли она случайной? Есть строгое определение для случайной величины. Случайная величина — это величина, которая принимает в результате опыта одно из множества значений, причём появление того или иного значения этой величины до её измерения нельзя точно предсказать. Но оно не помогает ответить на наш вопрос, так как нам не хватает информации для ответа. Теперь скажем, что данные числа получились набором одной из верхних строк клавиатуры. «Конечно не случайная» — воскликните Вы и тут же назовете следующие число и будете абсолютно правы. Последовательность будет случайной только если между символами, нету зависимости. Например, если бы данные символы появились в результате вытягивания бочонков в лото, то последовательность была бы случайной.

Чуть более сложный пример или число Пи


Последовательность цифры в числе Пи считается случайной. Пусть генератор основывается на выводе бит представления числа Пи, начиная с какой-то неизвестной точки. Такой генератор, возможно и пройдет «тест на следующий бит», так как ПИ, видимо, является случайной последовательностью. Однако этот подход не является критографически надежным — если криптоаналитик определит, какой бит числа Пи используется в данный момент, он сможет вычислить и все предшествующие и последующие биты.
Данный пример накладывает ещё одно ограничение на генераторы случайных чисел. Криптоаналитик не должен иметь возможности предсказать работу генератора случайных чисел.

Отличие генератора псевдослучайных чисел (ГПСЧ) от генератора случайных чисел (ГСЧ)

Источники энтропии используются для накопления энтропии с последующим получением из неё начального значения (initial value, seed), необходимого генераторам случайных чисел (ГСЧ) для формирования случайных чисел. ГПСЧ использует единственное начальное значение, откуда и следует его псевдослучайность, а ГСЧ всегда формирует случайное число, имея в начале высококачественную случайную величину, предоставленную различными источниками энтропии.
Энтропия – это мера беспорядка. Информационная энтропия — мера неопределённости или непредсказуемости информации.
Можно сказать, что ГСЧ = ГПСЧ + источник энтропии.

Уязвимости ГПСЧ

  • Предсказуемая зависимость между числами.
  • Предсказуемое начальное значение генератора.
  • Малая длина периода генерируемой последовательности случайных чисел, после которой генератор зацикливается.

Линейный конгруэнтный ГПСЧ (LCPRNG)

Распространённый метод для генерации псевдослучайных чисел, не обладающий криптографической стойкостью. Линейный конгруэнтный метод заключается в вычислении членов линейной рекуррентной последовательности по модулю некоторого натурального числа m, задаваемой следующей формулой:

где a (multiplier), c (addend), m (mask) — некоторые целочисленные коэффициенты. Получаемая последовательность зависит от выбора стартового числа (seed) X0 и при разных его значениях получаются различные последовательности случайных чисел.

Для выбора коэффициентов имеются свойства позволяющие максимизировать длину периода(максимальная длина равна m), то есть момент, с которого генератор зациклится [1].

Пусть генератор выдал несколько случайных чисел X0, X1, X2, X3. Получается система уравнений

Решив эту систему, можно определить коэффициенты a, c, m. Как утверждает википедия [8], эта система имеет решение, но решить самостоятельно или найти решение не получилось. Буду очень признателен за любую помощь в этом направлении.

Предсказание результатов линейно-конгруэнтного метода

Основным алгоритмом предсказания чисел для линейно-конгруэнтного метода является Plumstead’s — алгоритм, реализацию, которого можно найти здесь [4](есть онлайн запуск) и здесь [5]. Описание алгоритма можно найти в [9].
Простая реализация конгруэнтного метода на Java.

Отправив 20 чисел на сайт [4], можно с большой вероятностью получить следующие. Чем больше чисел, тем больше вероятность.

Взлом встроенного генератора случайных чисел в Java

Многие языки программирования, например C(rand), C++(rand) и Java используют LСPRNG. Рассмотрим, как можно провести взлом на примере java.utils.Random. Зайдя в исходный код (jdk1.7) данного класса можно увидеть используемые константы

Метод java.utils.Randon.nextInt() выглядит следующим образом (здесь bits == 32)

Результатом является nextseed сдвинутый вправо на 48-32=16 бит. Данный метод называется truncated-bits, особенно неприятен при black-box, приходится добавлять ещё один цикл в brute-force. Взлом будет происходить методом грубой силы(brute-force).

Пусть мы знаем два подряд сгенерированных числа x1 и x2. Тогда необходимо перебрать 2^16 = 65536 вариантов oldseed и применять к x1 формулу:

до тех пор, пока она не станет равной x2. Код для brute-force может выглядеть так

Вывод данной программы будет примерно таким:

Несложно понять, что мы нашли не самый первый seed, а seed, используемый при генерации второго числа. Для нахождения первоначального seed необходимо провести несколько операций, которые Java использовала для преобразования seed, в обратном порядке.

И теперь в исходном коде заменим
crackingSeed.set(seed);
на
crackingSeed.set(getPreviousSeed(seed));

И всё, мы успешно взломали ГПСЧ в Java.

Взлом ГПСЧ Mersenne twister в PHP

Рассмотрим ещё один не криптостойкий алгоритм генерации псевдослучайных чисел Mersenne Twister. Основные преимущества алгоритма — это скорость генерации и огромный период 2^19937 − 1, На этот раз будем анализировать реализацию алгоритма mt_srand() и mt_rand() в исходном коде php версии 5.4.6.

Можно заметить, что php_mt_reload вызывается при инициализации и после вызова php_mt_rand 624 раза. Начнем взлом с конца, обратим трансформации в конце функции php_mt_rand(). Рассмотрим (s1 ^ (s1 >> 18)). В бинарном представление операция выглядит так:

10110111010111100111111001110010 s1
00000000000000000010110111010111100111111001110010 s1 >> 18
10110111010111100101001110100101 s1 ^ (s1 >> 18)
Видно, что первые 18 бит (выделены жирным) остались без изменений.
Напишем две функции для инвертирования битового сдвига и xor

Тогда код для инвертирования последних строк функции php_mt_rand() будет выглядеть так

Если у нас есть 624 последовательных числа сгенерированных Mersenne Twister, то применив этот алгоритм для этих последовательных чисел, мы получим полное состояние Mersenne Twister, и сможем легко определить каждое последующее значение, запустив php_mt_reload для известного набора значений.

Область для взлома

Если вы думаете, что уже нечего ломать, то Вы глубоко заблуждаетесь. Одним из интересных направлений является генератор случайных чисел Adobe Flash(Action Script 3.0). Его особенностью является закрытость исходного кода и отсутствие задания seed’а. Основной интерес к нему, это использование во многих онлайн-казино и онлайн-покере.
Есть много последовательностей чисел, начиная от курса доллара и заканчивая количеством времени проведенным в пробке каждый день. И найти закономерность в таких данных очень не простая задача.

Задание распределения для генератора псевдослучайных чисел

Для любой случайной величины можно задать распределение. Перенося на пример с картами, можно сделать так, чтобы тузы выпадали чаще, чем девятки. Далее представлены несколько примеров для треугольного распределения и экспоненциального распределения.

Треугольное распределение

Приведем пример генерации случайной величины с треугольным распределением [7] на языке C99.

В данном случае мы берем случайную величину rand() и задаем ей распределение, исходя из функции треугольного распределения. Для параметров a = -40, b = 100, c = 50 график 10000000 измерений будет выглядеть так

Экспоненциальное распределение

Пусть требуется получить датчик экспоненциально распределенных случайных величин. В этом случае F(x) = 1 – exp(-lambda * x). Тогда из решения уравнения y = 1 – exp(-lambda * x) получаем x = -log(1-y)/lambda.
Можно заметить, что выражение под знаком логарифма в последней формуле имеет равномерное распределение на отрезке [0,1), что позволяет получать другую, но так же распределённую последовательность по формуле: x = -log(y)/lambda, где y есть случайная величина(rand()).

Тесты ГПСЧ

Некоторые разработчики считают, что если они скроют используемый ими метод генерации или придумают свой, то этого достаточно для защиты. Это очень распространённое заблуждение. Следует помнить, что есть специальные методы и приемы для поиска зависимостей в последовательности чисел.

Одним из известных тестов является тест на следующий бит — тест, служащий для проверки генераторов псевдослучайных чисел на криптостойкость. Тест гласит, что не должно существовать полиномиального алгоритма, который, зная первые k битов случайной последовательности, сможет предсказать k+1 бит с вероятностью большей ½.

В теории криптографии отдельной проблемой является определение того, насколько последовательность чисел или бит, сгенерированных генератором, является случайной. Как правило, для этой цели используются различные статистические тесты, такие как DIEHARD или NIST. Эндрю Яо в 1982 году доказал, что генератор, прошедший «тест на следующий бит», пройдет и любые другие статистические тесты на случайность, выполнимые за полиномиальное время.
В интернете [10] можно пройти тесты DIEHARD и множество других, чтобы определить критостойкость алгоритма.

Новые генераторы энергии

Наиболее распространенные приемы получения электрической энергии характеризуются одним существенным недостатком, состоящим в их чрезмерной связи с вырабатывающим ЭДС источником. И даже известные под названием «альтернативные» способы ее добычи (из солнца, ветра или магнитного поля Земли), благодаря которым удается извлекать энергию прямо из окружающей среды, не лишены этого недостатка (фото ниже).

В определенный момент даже самые неэффективные способы получения электричества рано или поздно заканчиваются, что требует от исследователей совершенно новых подходов к поиску его источников. Именно поэтому особо пристальное внимание сегодня уделяется таким устройствам для ее получения, каким является генератор с самозапиткой (его описанию посвящен отдельный раздел).

Источники свободной энергии

К категории новейших типов генераторов (включая уже представленное выше устройство) можно отнести следующие оригинальные конструкции:

  • Изделия, известные под названием генератора свободной энергии Николы Тесла;
  • Приборы генерации электрической ЭДС, извлекаемой из вакуумного и магнитного полей (в них также может применяться самозапитка);
  • Мало изученные и перспективные «радиантные» генераторы.

Большинство энтузиастов новых схемных решений до сих пор увлечены идеями великого Николы Тесла, в частности, его нестандартным подходом к скрытым энергиям э/магнитного поля.

Целый ряд устройств, по общепринятой классификации имеющих отношение к источникам свободной энергии, подразделяется на следующие типы:

  • Относящиеся к радиантным источникам, а также схожие с ними приборы;
  • Системы, работающие по принципу блокинг-генератора с самозапиткой, укомплектованные специальными магнитами (так называемый «трансгенератор», внешний вид которого представлен на рисунке ниже);

  • Устройства, известные под названием «тепловые насосы», функционирующие за счет разницы в прогреве различных сред;
  • Приборы, работающие по принципу вихревого поля (генератор Потапова);
  • Агрегаты, действующие на основе электролиза водных растворов.

Из всех перечисленных выше вариантов наиболее перспективно и интересно для многих естествоиспытателей ознакомление с системой, функционирующей за счет использования радиантных полей.

Типы радиантных генераторов

Рассматриваемые здесь виды энергии, получаемой в электрогенераторах, относятся к категории классических проявлений свойств эфира, а используемые при этом приборы отличаются одной особенностью. Последняя заключается в том, что любая такая схема не полностью расходует всю поступающую энергию на внутренние нужды, а собирает (накапливает) ее и в той или иной мере, возвращает обратно.

К числу хорошо известных устройств, работающих по схожему принципу преобразования, относятся следующие агрегаты:

  • Трансмиттерный усилительный прибор Тесла;
  • Устройства, известные больше как генераторы се;
  • Устройство, названное по имени изобретателя Т. Генри Моррея;
  • Широко распространенные блокинг-генераторные системы типа «бтг».

Любой новый генератор энергии, появившийся в результате прорыва в инженерной мысли, каким бы необычным он ни казался, все равно будет отнесен к классу одного из перечисленных выше образцов. Рассмотрим их возможные модификации более подробно.

Трансмиттер-усилитель Тесла

Так называемый «трансмиттер-усилитель» представляет собой обычный трансформатор плоской формы. Для получения требуемого результата его подключают к внешнему источнику с помощью сборки, набранной из электролитических конденсаторов с системой разрядников.

Особенностью этого устройства является возможность генерировать стоячую волну, как разновидность электромагнитной энергии (её также относят к радиантной форме). А проявляется ее уникальность в том, что она может распространяться в эфире, ничуть не ослабевая с расстоянием.

Заветная мечта Тесла – использовать эту разновидность свободной энергии с целью эфирной передачи электрической энергии на очень далекие расстояния. Но большинству его проектов, к большому сожалению, не суждено было воплотиться в жизнь, поскольку после смерти изобретателя все его расчёты и документы где-то затерялис. Схема спроектированного им генераторного устройства, работающая не на магнитах, приводится на рисунке ниже.

Как оказалось, копирование этих проектов не всегда давало нужный эффект и приводило лишь к повторению еще сырых схемных решений. Большинство попыток экспериментаторов, пытавшихся своими руками изготовить устройство с большим усилением, не были удачными. В результате этих попыток на его выходе удавалось получить напряжения, достигающие сотен киловольт (при минимуме подкачки электроэнергии).

Генераторы СЕ

При работе особых видов генераторов, известных под обозначением се, используется тот же радиантный принцип получения энергии, генерируемой в результате автоматически поддерживаемых автоколебаний (то есть не требующий посторонней подкачки). После запуска устройства в работу поступление новых порций энергии происходит за счёт использования возможностей магнитного поля Земли.

Обратите внимание! На разных широтах этот генератор будет работать по-разному из-за различия в интенсивности этого поля.

У любого исполнителя, взявшегося изготовить это изделие своими руками с питанием от стандартного АКБ, появляется возможность направлять избыток энергии для подзарядки этого же аккумулятора (рисунок ниже).

Одной из разновидностей такого устройства является трансгенератор, большинство образцов которого при своей работе использует подпитку от магнитного поля Земли. Его линии с различной величиной напряженности пронизывают э/м поле трансформаторных обмоток и способствуют поддержанию незатухающих колебаний. Само это устройство достаточно просто в исполнении, так что практически каждый желающий сможет собрать его своими руками.

За счёт комбинированного использования возможностей специальных устройств на постоянных магнитах и генераторных систем типа се, удается сконструировать еще один класс приборов этого типа, а именно – блокинг-генераторы (рисунок ниже).

Одной из разновидностей рассмотренной выше системы является так называемый «ротовертер» (дословно с английского «RotoVerter»), в котором магниты заменены трёхфазными электродвигателями. В этих системах, кроме того, часть выходной электрической энергии может быть применена для повторного использования.

Эту схему уже удалось собрать нескольким независимым экспериментаторам, которые подтвердили с достоверностью, что она производит больше энергии, чем это требуется для работы.

Вихревые устройства и ХЯС

При рассмотрении свободных источников нельзя не коснуться систем особого типа, способных генерировать тепловую энергию с КПД, превышающим 100%. Под эту категорию подходит уже знакомый читателю генератор Потапова.

Принцип действия этого прибора основан на взаимодействии параллельно движущихся потоков какой-либо жидкости (воды, например) и может быть проиллюстрирован расположенным ниже рисунком, на котором представлена схема генератора.

Из схемы видно, что требуемый напор водного потока создается посредством центробежного насоса, который под давлением направляет её в патрубок (2). По мере своего спиралевидного продвижения вдоль стенок прибора (1) поток попадает в район отражающего конуса (4) и разделяется в нем на две ветви.

Одновременно с этим нагретая наружная область потока вновь возвращается в сторону насоса, а его внутренняя часть сталкивается с конусообразным препятствием и, отражаясь от него, образует завихрения меньшего размера. Оно направляется прямо во внутреннюю полость исходного вихревого образования, после чего отводится в выходное отверстие (3) с подсоединенной отопительной камерой.

Вследствие всех описанных выше явлений наблюдается эффект теплопередачи, происходящей за счет энергетического обмена завихрений.

Дополнительная информация. По причине отсутствия в системе каких-либо механических и трущихся узлов ее КПД может достигать значительной величины.

Для того чтобы попытаться собрать такой преобразователь своими руками, потребуется специальное фрезерное оборудование, так что сделать это в домашних условиях не представляется возможным.

Известен еще один подход к получению несвязанных энергий, предполагающий привлечение для этих целей ядерной энергетики и так называемого холодного синтеза. Понятно, что этот вариант реализуем лишь в рамках санкционированных правительством государственных программ.

Для проведения таких экспериментов потребуются огромные материальные затраты, связанные с арендой действующих реакторов и ускорителей, создающих оптимальные условия с высокой концентрацией магнитного поля. Основная сложность, с которой сталкиваются ученые при проведении холодного синтеза ядер (ХЯС), заключается в проблеме поддержания реакций деления без подвода энергии от сторонних источников.

В заключение отметим, всем кто хоть раз пытался собрать такие генераторы своими руками должно быть известно, что сделать это не совсем просто. Основным условием успешной сборки этих агрегатов является точное следование всем приводимым в технической документации требованиям и рекомендациям.

Видео