Стробоскоп своими руками для дискотеки на светодиодах
Стробоскоп на мощных светодиодах
Человеческий организм — очень интересное, и одновременно ещё не до конца изученное творение природы. Многие люди утверждают, что инфразвук очень пагубно влияет на их самочувствие и здоровье. Есть целые статьи, посвящённые тому, как колебания воздуха на низких частотах влияют на мозг и могут буквально свести человека с ума. Верить в пагубное влияние инфразвука, или не верить — каждый решает сам, а вот с тем фактом, что резкие вспышки света с небольшой частотой в несколько герц могут полностью дезориентировать человека — факт. Ведь не зря же многие фонарики полицейских имеют функцию стробоскопа — такие вспышки, особенно когда вокруг темнота и зрачок глаза максимально расширен, могут полностью обезоружить человека. Конечно, стробоскоп в качестве средства самообороны — не самый лучший вариант, однако это не единственное его применение. Мощный стробоскоп может выступать в роли световой установки на дискотеках и концертах, создавая непередаваемую атмосферу. Также с помощью мощного стробоскопа можно наблюдать интересные оптические иллюзии — например, если освещать стробоскопом маятник, частота колебаний которого примерно равна частоте вспышек стробоскопа, то визуально частота колебаний маятника будет совершенно другой. Происходит это из-за этого, что человеческий глаз будет «видеть» маятник только в те моменты, когда он освещён вспышкой. Для того, чтобы стробоскоп был не просто детской моргалкой, а именно стробоскопом, для его построения нужно использовать мощные светодиодные матрицы, рассчитанные на напряжение 220В. Для того, чтобы заставить матрицы не просто светится, а мигать, необходимо собрать схему, представленную ниже.
В левой части схемы видны контакты, обозначенные как «220» — сюда будем подавать переменное напряжение прямо из розетки. Далее по схеме можно увидеть, что к сети 220В подключаются диодный мост (выпрямитель напряжения из переменного в постоянное) и импульсный блок питания, на выходе которого 12В постоянного напряжения. Блок питания нужен для питания логической части схемы, которая собрана на микросхеме-таймере NE555. Эта микросхема потребляет небольшой ток, а потому к импульсному блоку питания не предъявляется больших требований — напряжение в пределах 10-14В, максимальный ток должен быть как минимум 100 мА. Здесь можно использовать, например, вот такие миниатюрные импульсные блоки питания, они не отнимут много места в корпусе будущего стробоскопа. Как правило, они имеют два контакта для подключения к сети 220 и два контакта для вывода готовых 12В. Основное место в таких блоках питания занимают трансформатор и конденсаторы. Более простой, но несколько менее надёжный вариант — использовать блок питания на гасящем конденсаторе, рассчитанный на то же самое напряжение.
По схеме видно, что к сети 220В, параллельно с блоком питания подключается диодный мост, который служит для превращения переменного напряжения в постоянное. После диодного моста подключаются матрицы таким образом, что аноды (плюсы) матриц соединяются непосредственно с плюсовым выходом диодного моста, а катоды (минусы) матриц подключаются через полевой транзистор, который управляется от логической части. При этом минус диодного моста соединяется с минусом импульсного блока питания. На фотографии ниже показано фото диодного моста. Важно хорошо изолировать все электрические части схемы, ведь замыкание сети 220В может привести к печальным последствиям.
Здесь можно использовать любой готовый диодный мост на напряжение как минимум 500В и ток 1А, либо можно собрать диодный мост самому, в соответствии со схемой. Подойдут для этого распространённые диоды 1N4007, рассчитанные на максимальный ток в 1А и напряжение 1000В. Для стробоскопа можно использовать как всего одну матрицу, так и несколько, соединённых параллельно, в этом случае эффект стробоскопа значительно усиливается.
Вся конструкция монтируется в просторном прямоугольном корпусе, при этом три большие светодиодные матрицы располагаются снаружи. Важно хорошо заизолировать контакты, через которые подводится питание к матрицам, иначе будет легко получить удар током при использовании стробоскопа. В обычном режиме работы, когда матрицы светят непрерывно, они довольно сильно нагреваются и требуют радиаторов для охлаждения, но в режиме стробосокопа они питаются импульсами напряжения, а потому и нагреваться будут в несколько раз меньше и даже не требуют радиатора. Допустим нагрев при длительной работе до 40-50°C без вреда для самих светодиодов. Также наружу корпуса выводится переменный резистор R3, который служит для регулировки частоты мерцаний стробоскопа. Здесь можно использовать любой потенциометр сопротивлением 1 МОм, характеристика линейная. На его ручки для красоты и удобства надевается пластиковая ручка. Сама схема генерации импульсов собирается на макетной плате и располагается внутри корпуса, вместе с диодным мостом и миниатюрным блоком питания. Сетевой шнур выводится из корпуса, при желании можно установить выключатель питания и установить разъём. Также не лишним в такой конструкции будет плавкий предохранитель в цепи 220В.
2350 › Блог › Неудачи случаются… Студийный стробоскоп
Читая мой блог, можно подумать, что у меня всегда всё складывается хорошо, что удача сопутствует мне, и живу я без печали и забот…
Реально в жизни – наверное, как у всех: то удача, то не удача, то взлёт, то падение. И видимо, только огромный оптимизм и вера в успех позволяют идти по жизни легко и не унывать! Ведь, благодаря неудачам – мы многое узнаём, учимся и обретаем опыт.
Обычно, когда ко мне приносят неисправные электронные вещи, они вдруг неожиданно начинают работать. «Ничего не делал, только включил!» Все удивляются, а я уже привык – боятся они меня. Но тут произошёл сбой – в январе электроника мне преподала урок.
Я уже писал, что примерно 25 лет назад (в середине 80-х), активно занимался светом для дискотек, в том числе и стробоскопами. Делал – от миниатюрных домашних, на лампе ИФК-120, до студийных на ИФК-2000. Схемы были отработаны – до сих пор в голове (окончательная схема в конце). Ну и кое-какие дефицитные детали остались с той поры. А из дефицитных были, собственно, импульсные лампы ИФК-2000, импульсные (К50-3Ф) конденсаторы 1000 мкФ 300 В и мощные проволочные резисторы, через которые эти конденсаторы заряжаются от сети.
Вот один такой комплект я и приберёг с тех времён.
И подвернулся мне тут заказчик, который попросил сделать студийный стробоскоп. Да не вопрос! Договорились, зная, что основные элементы у меня для этого имеются.
Конденсаторы 1977 года выпуска, лежали долго без напряжения. Решил проверить их ёмкость: всё отлично, практически 1000 мкФ. Ну поехали!
Приобрёл я корпус для блока питания, корпус для самой лампы-вспышки (чтобы её можно было подвесить над сценой), 15 м высоковольтного провода в негорючей силиконовой оболочке для соединения их между собой. Ну и ещё немного «рассыпухи», которая, в основном, нашлась дома.
Изготовил панели корпуса, вырезав необходимые отверстия.
Вырезал по размерам корпуса плату из фольгированного стеклотекстолита. Просверлил.
Плата очень простая, на ней собран только стабилизатор напряжения для питания внутреннего вентилятора (для охлаждения балластных резисторов), поэтому, по старой привычке, решил нарисовать её от руки. Достал лак, рейсфедер… Только приступил, дочка из-за спины:
— Ну как у меня в раскраске! Я тоже так могу…
— Да пожалуйста! Рисуй.
Минут через 20 зовёт:
— Неплохо для первого раза! Ровненько. Давай травить.
Дальше всё обычно: стеклянная посудина, хлорное железо, горячая вода… Дочка с любопытством наблюдает, как с не закрашенных участков растворяется медь. Готово! Поласкаем, смываем лак.
Примерно так будут располагаться компоненты.
На следующий день дочка помогает запаять плату. После произвожу монтаж силовых цепей: ответственность большая – на импульсную лампу подаётся напряжение 620 В! Оно получается удвоением напряжения сети. Поэтому, вся схема гальванически соединена с сетью! Импульс разряда хоть и очень короткий, но ток в цепи в это время достигает нескольких сотен ампер!
Несмотря на то, что сам корпус пластиковый, передняя и задняя металлические панели соединяются с защитным заземлением сетевой вилки. А внутри весь высоковольтный монтаж защищается термоусадочными трубками: «ну если какой дурак внутрь полезет голыми руками»… (Понимая, что этим «дураком» могу случайно оказаться сам!)
Первое включение
И тут началась череда неудач…
Проверив правильность монтажа, подсоединяю тестер и включаю в сеть. Напряжение на выходе поднимается до 320 В и дальше практически не растёт! Первая мысль – неисправный диод удвоителя. Нет: диоды нормальные, напряжение на конденсаторах примерно по 160 В. Почему. Непонятно.
Пробую снова. Балластные резисторы раскаляются, напряжение немного растёт, и начинают разогреваться конденсаторы! Стоп, только взрыва мне не хватало!
Выпаиваю конденсаторы, начинаю их заряжать от блока питания: до 30 В заряжаются прекрасно. Но выше – резко возрастает ток утечки: при напряжении 100 В практически 1 А! Так вот вы какие «высоковольтные электролиты».
Вердикт – конденсаторы умерли! Всё откладывается до выходных. В субботу еду на радиорынок: весь рынок завален импортными конденсаторами, но импульсных нет! В каталогах такие имеются, с пометкой «Photo Flash», но в Россию их не привозят, только на заказ. Обычные (1000 на 400 В) не выдержат многократный разряд таким током – после сотни вспышек у них отгорают внутри контакты.
Полез «по старью». И у одного нашёл К50-17 (импульсные!) 1000 мкФ на 400 В. Всего 4 шт. Да и те, 94 года выпуска. Поэтому, забрал все за 1200 руб.
Привожу домой, начинаю заряжать от блока питания. Заряжаются, но ток утечки 10 мА (а у одного ещё выше). Начинаю тренировать их напряжением 100 В как аккумуляторы. После нескольких циклов заряд-разряд ток утечки падает до 1 мА (кроме одного). По норме должен быть не выше 3 мА.
Отбираю два лучших, измеряю ёмкость: 1100 и 1200 мкФ. Отлично! Затягиваю их в термоусадку. Ставлю. Включаю. Ура: практически сразу же 633 В! Выдерживаю их под напряжением полчаса – холодные.
Окультуриваю удвоитель напряжения.
Генератор импульсов
Генератор импульсов для поджига лампы (а ей требуется не менее 6 кВ для ионизации ксенона в трубке!), собираю опять же по старой проверенной и очень простой схеме: на динисторе КН102 (который приобрёл на радиорынке заранее). В качестве «катушки зажигания» использую строчный трансформатор от старого ч/б лампового телевизора: 18 кВ гарантировано!
Что бы уточнить номиналы резисторов, быстренько спаиваю схемку навесу… Не работает… Всего 4 детали! Прозваниваю динистор – «звонится» как обычный диод.
И тут я вспоминаю 90-е, тогда многие увлекались «электроудочками» (а там генератор высокого напряжения был именно на динисторе!) и динисторы по этому, были в страшном дефиците! Так вот, кто-то предприимчивый в начале 90-х как-то заполонил ими весь радиорынок. Их начали скупать, а на поверку они оказались перемаркированными диодами Д226. Вот, один у меня в руках… Снова ждать выходных.
Работу высоковольтного поджига я проверил без динистора – искра прошивает миллиметров 20! Потом, даже подсоединил лампу (без подачи на неё основного напряжения) и посмотрел как внутри неё «бегают молнии». Завораживающее зрелище – дочке очень понравилось. А как озоном пахнет…
Смешно было на рынке. Приехал, спрашиваю:
— Динисторы КН102 Е, Ж, И. Есть?
— Что, на рыбалку собрался?
Поржали вместе! В итоге из пяти точек, только в одной я нашёл пару «настоящих» динисторов (прозванивал тестером) – у всех остальных были перемаркированные диоды, причём, мешками! (Сейчас спроса на них практически нет, поэтому все мешки полетели в помойку).
Генератор заработал с ходу! Закончил монтаж и задающей части.
Ну, наконец-то блок питания приобретает законченный вид.
Как самостоятельно изготовить стробоскоп?
Стробоскоп – аппарат, создающий луч света, который быстро загорается и потухает. Имеет несложный принцип действия. Его используют в ночных клубах и других увеселительных заведениях. Кроме этого, его используют автолюбители для выставления угла опережения зажигания, или УОЗ. Регулировка позволяет отладить работу топливного, мощностного и силового элементов автомобиля. Руководствуясь инструкцией, можно сделать стробоскоп своими руками.
Принцип работы стробоскопа
Принцип работы прибора заключается в том, что короткие вспышки света возникают с частотой, запрограммированной пользователем, и лучи фиксируют предметы на короткий промежуток времени, создавая эффект их неподвижности. В переводе с греческого название аппарата означает «смотреть на беспорядочное кружение». Стробоскоп была разработан для создания повторяющихся ярких световых вспышек. Кроме этого, используя аппарат, можно передавать быстро движущиеся картинки.
Музыкальный стробоскоп представляет собой разновидность светодинамической установки, он генерирует вспышки с запрограммированной частотой импульсной лампы. Автомобильная разновидность аппарата работает по тому же принципу.
Разобравшись с тем, как работает стробоскоп, можно изготовить его самостоятельно в домашних условиях. Умельцы делают мигалку на светодиодах, что удешевляет стоимость аппарата и увеличивает срок его службы. Для конструкции потребуется схема, источники света и питания.
Схема стробоскопа
Чтобы собрать светодиодный стробоскоп, понадобится схема, распечатанная на бумаге в нужном формате и перенесенная на плату. Кроме этого, потребуется таймер LM555 – механизм, создающий вспышки, которые регулируются потенциометром или переменным резистором. Составляющие части можно приобрести в магазинах радиотехники, при этом дорогостоящие запчасти не потребуются.
Если раньше стробоскопы делали из ламп накаливания, то сейчас отдают предпочтение светодиодной лампе. Для мерцающей платы можно использовать любое количество светодиодов (4, 8, 16, 32 и т.д.), свет при этом может быть как теплым, так и холодным. Плата для небольшой дискотечной мигалки достигает габаритов 87 на 57 мм.
Сборка стробоскопа
После того как схема стробоскопа спаяна, приступают к конечному этапу сборки. Для этого готовят корпус и органическое стекло, в котором предварительно делают несколько отверстий. Выключатель соединяют с держателем батареи. Чтобы мигалка работала и в выключенном состоянии, в разъем можно подключить DC-адаптер.
Необходимые инструменты и компоненты
Для монтажных работ понадобятся такие канцтовары, как маркер и линейка. Из инструментов подготавливают:
- плоскогубцы;
- отвертку;
- нож;
- сверла (1, 3, 6 и 7 мм);
- сверлильный станок;
- дрель;
- паяльник.
Кроме этого, на разных этапах работы понадобятся наждачная бумага, припой и флюс.
Самодельный стробоскоп собирают из:
- пластикового корпуса;
- диодов;
- проводов;
- микросхемы;
- оргстекла;
- блока питания;
- резистора.
Для крепления деталей между собой понадобятся:
- винты 8xM3;
- 2 маленьких винта для установки переключателя;
- металлические держатели 4×10 мм и 4×22 мм.
Дискотечный «карманный» стробоскоп можно использовать и для отлаживания момента УОЗ. Принцип сборки автомобильного прибора немного отличается от аппарата для вечеринок, но работает так же.
Сборка электроники
После пайки элементов микросхемы происходит установка электроники. Подключается выключатель и регулируется частота возникновения импульсов. Отрегулировать этот момент можно будет и в уже собранном приборе, покрутив ручку переменного резистора R3 или другой его разновидности.
Подготовка корпуса
Чтобы прикрепить необходимые детали к корпусу, его нужно подготовить. В пластике сверлятся 4 отверстия и делаются необходимые разъемы, а сама панель окрашивается в нужный цвет. Внутри корпуса закрепляются микросхема, блок питания и элементы переключателя.
Для закрепления светодиодов и оргстекла используются 10-миллиметровые держатели, а 22-миллиметровыми скрепляются все остальные элементы прибора. Чтобы к скрытым элементам мигалки был удобный доступ, в корпусе предусматривают замок, простой для открывания, но надежный, чтобы предотвратить выпадение электронных элементов.
В качестве источника энергии можно использовать блок питания 12 В, но подойдет и 6-вольтовый. В помещении используют более мощный, а на открытой местности – с меньшей силой создаваемых вспышек.
Завершение работ
Пользоваться самостоятельно собранным аппаратом можно как на улице, так и дома. При этом запитываться он может от всех предусмотренных систем снабжения. Некоторые умельцы создают универсальные стробоскопы, то есть такие, которые работают и от батареек, и от электросети.
Для питания аппарата от сети 220 В нужно предусмотреть гальваническую развязку для напряжения, чтобы пользователя не ударило током. Если она не предусмотрена, к прибору во время работы лучше не подходить и не прикасаться к нему.
Настройка
Стробоскоп для дискотеки можно настроить при помощи таймера LM555, используя ручку для регулировки частоты вспышек. Яркость лучей зависит от ламп, установленных в приборе. Если аппарат запрограммирован на мерцание, то теплоотводы на него не ставятся.
Чтобы при помощи стробоскопа установить момент зажигания (УОЗ), автомобиль нужно завести и оставить работать на холостых оборотах. Нужно учесть, что вспышки должны попадать во все нужные места и освещать их. Например, за точку П (подвижную) принимают отметку на коленвале, а за точку Н (неподвижную) – на двигателе.
Клеммы стробоскопа подключаются к двигателю, а «микромолнию» аппарат испускает тогда, когда происходит искрообразование в запальной свече цилиндра. Чтобы мигалка не вышла из строя и показывала правильные данные, ее нужно периодически отключать, продолжительность таких перерывов должна равняться времени, в течение которого аппарат работал.
Светодиодный стробоскоп (светодиодный маяк) на TL494
Ещё в детстве я собирал стробоскоп на импульсной газоразрядной лампе ИФК-120.
Когда схема заработала, радости было немерено. С тех пор прошло уже лет 10, и вот решил я, так сказать, вспомнить былое, но уже «в современном стиле». В современном стиле — это на светодиодах. Преимущества светодиодов налицо — не боятся вибрации, долговечны, безопасны, и т.д. При непрерывном свечении срок службы светодиода составляет в среднем 50 тысяч часов. Ну а в режиме кратковременного свечения срок службы многократно увеличивается, ведь у светодиодов есть ещё одно неоспоримое преимущество — абсолютно не боятся включений-выключений.
Схема стробоскопа простая «как три рубля», собирается на деталях «с помойки».
Для сборки схемы стробоскопа достаточно найти нерабочий ATX блок питания от компьютера. В большинстве таких блоков питания «сердцем» является микросхема TL494, широко распространенный ШИМ-драйвер. Также стоит отметить, что данная микросхема продается практически в любом радиомагазине за бесценок, на ней и собран девайс. Резисторы и конденсаторы можно взять с того же блока питания. Полевой транзистор я использовал с нерабочей материнской платы, там их имеется около 10 штук, подходит любой N-канальный мощный полевик, например, AP15N03GH или IRLZ44NS. Подстроечными резисторами настраивается частота вспышек (VR2) и длительность вспышек (VR1). Светодиод VD1 (зеленого цвета) индицирует наличие питания, светодиод VD2 (красного цвета) показывает напряжение на выходе схемы. Резистор R6 ограничивает ток через мощный светодиод, сопротивление этого резистора подбирается опытным путём, до достижения оптимального тока через светодиод, также этот резистор должен быть мощностью 2. 5 ватт. Питание схемы может быть любым в диапазоне от 10 до 20 вольт, но при изменении питающего напряжения необходимо изменить сопротивление резистора R6, ограничивающего ток через мощный светодиод. Кроме светодиодов, можно подключать к схеме светодиодные ленты. При подключении к стробоскопу светодиодных лент, рассчитанных на питание напрямую от 12 вольт, вместо резистора R6 нужно установить перемычку, так как в составе лент уже имеются ограничительные резисторы, а также нужно запитать схему строго от 12 вольт. Если не хватает диапазона регулировки частоты вспышек, то нужно изменить номинал конденсатора C1. Увеличение ёмкости уменьшает частоту (вспышки происходят реже), уменьшение ёмкости увеличивает частоту (вспышки происходят чаще). При правильной сборке схема начинает работать сразу. Для проверки схемы нужно установить подстроечные резисторы VR1 и VR2 в среднее положение, и подать питание на схему. Я запитал схему от 12 вольт.
На печатной плате практически все SMD резисторы и конденсаторы типоразмера 1206, светодиоды типоразмера 0805, полевой транзистор в корпусе DPAK, подстроечные резисторы VR1 и VR2 должны быть многооборотные. Конденсаторы C2, C4 — керамические. Конденсаторы C1, C3 — любого типа.
Так как светодиод должен работать в режиме стробоскопа (давать короткие вспышки), то длительность вспышек должна быть установлена почти на минимальную (подстроечным резистором VR1). Подстроечным резистором VR2 настраивается частота вспышек «по вкусу».
Я использовал светодиод OSRAM OSTAR SMT RTDUW S2W, установленный на процессорный радиатор от старого компьютера.
Данный светодиод содержит 4 кристалла, по 700 мА (2,5 Вт) каждый. Все кристаллы разных цветов: Красный, Зелёный, Синий, Белый.
Если задействовать сразу все 4 кристалла (соединить их последовательно), то получится белый свет. Именно так я и сделал. Сопротивление резистора R6 при питании 12 вольт у меня получилось 5 Ом. Резистор R6 ограничивает ток через светодиод, так как светодиод нужно питать стабильным током. Вместо токоограничивающего резистора R6 можно использовать микросхему LM317, включенную по схеме стабилизации тока (микросхема + внешний резистор). В режиме стробоскопа LM317 может эксплуатироваться без радиатора, так как основную часть времени светодиод не светится. При использовании устройства в режиме маяка необходимо установить LM317 на радиатор.
Привожу несколько примеров подключения различных светодиодов к плате стробоскопа:
Фото платы стробоскопа:
Вид со стороны дорожек. Плата получилась не очень, но сойдёт:
Стробоскоп для дискотеки
Если в вашем распоряжении оказались детали от старой фотовспышки, то совсем несложно собрать автомат световых эффектов, который называют стробоскопом. Работа его в затемненном помещении создает эффект «застывших» или неестественно «дергающихся» людей, который, я думаю, наблюдали многие.
Основная деталь устройства – импульсная лампа ИФК-120. Это импульсный газоразрядный прибор, который состоит из баллона со впаянными в него тугоплавкими электродами – анодом и катодом. Сам баллон заполнен инертным газом. Третий электрод – металлизированное покрытие, которое в виде полоски нанесено на наружный слой баллона.
Если подать на электроды рабочее напряжение (для ИФК-120 – 300 В), а на поджигающий электрод импульс высокого (10 кВ) напряжения, то произойдет разряд, сопровождающийся яркой вспышкой света, который, если его не прекратить, перейдет в дуговой. Управляет импульсной лампой генератор, собранный на тиратроне тлеющего разряда МТХ90, а теперь разберем работу схемы.
В момент включения питания начинается зарядка конденсатора С1 напряжением, поступающим через предохранитель F1, токоограничивающий резистор R1 и выпрямительный диод VD1. Одновременно с ним начинается зарядка конденсатора С2, но через дополнительную цепочку R2, R3. Как только напряжение на нем достигнет напряжения 90 В тиратрон EL2 откроется и конденсатор разрядится через обмотку I импульсного трансформатора Т1.
На вторичной обмотке трансформатора появится импульс высокого напряжения, который поступит на поджигающий электрод импульсной лампы EL1. За счет энергии, запасенной конденсатором С1 произойдет электрический разряд, сопровождающийся яркой вспышкой, энергия конденсатора иссякнет и разряд прекратится, поскольку благодаря резистору R1 относительно большого номинала рабочее напряжение на лампе поддерживаться не сможет. После этого процесс повторится. Поскольку R3 переменный, то скорость зарядки конденсатора С2 можно регулировать в определенных пределах в процессе работы для получения максимального стробоскопического эффекта.
Длительность разряда-вспышки зависит от емкости конденсатора – чем больше емкость, тем больше длительность и визуальная яркость, но злоупотреблять этим не нужно – при чрезмерно большой емкости ресурс работы лампы сильно сократится. Для небольших залов я бы даже рекомендовал уменьшить емкость С1 до 20 и даже 10 мкФ. Рабочее напряжение конденсатора, конечно, не должно быть ниже 400 В, тип конденсатора – электролитический. При сборке стробоскопа не перепутайте полярность подключения диода VD1 и конденсатора С1, иначе последний может взорваться.
Трансформатор можно выполнить на обрезке ферритового стержня от магнитной антенны карманного приемника длиной 5-10 см. Подойдет и круглый, и плоский стержень, и даже обломок кольца или ферритового сердечника трансформатора импульсного блока питания, скажем, телевизора. При изготовлении трансформатора первой наматывается обмотка II, которая содержит 400 – 500 витков любого обмоточного провода диаметром 0.2 – 0.5 мм. Мотать нужно слоями, стараясь укладывать виток к витку, между слоями обязательно проложите слой изоленты или конденсаторной бумаги. В противном случае трансформатор может пробить высоким напряжением.
Поверх вторичной обмотки после очередного слоя изоляции нужно намотать еще 5 – 6 витков провода диаметром 0.5 – 0.8 мм. Это будет первичная обмотка. Обратите внимание на токоограничивающий резистор R1. Его рассеиваемая мощность – не менее 20 Вт. Если не удастся найти готового или составить его из нескольких меньшей мощности, то вместо резистора можно использовать спираль для электроплитки мощностью 500 Вт, намотанную на любой подходящий каркас – нагреваться спираль практически не будет.
Собранная из исправных деталей схема в наладке не нуждается, настройка сводится к регулировке частоты генератора резистором R3 для достижения эффекта «прерывистого движения».
Внимание! Прибор имеет бестрансформаторное питание и во время работы все его элементы находятся под опасным для жизни напряжением. Перед тем, как внести какие-либо изменения в схему, обязательно отключите конструкцию от сети и разрядите конденсатор С1.