Терморезисторы принцип работы

Терморезисторы. Виды и устройство. Работа и параметры

Полупроводниковые резисторы, сопротивление которых зависит от температуры называются терморезисторы. Они имеют свойство значительного температурного коэффициента сопротивления, величина которого больше, чем у металлов во много раз. Они широко применяются в электротехнике.

Устройство и работа

Они имеют простую конструкцию, выпускаются разных размеров и формы.

В полупроводниках есть свободные носители заряда двух видов: электроны и дырки. При неизменной температуре эти носители произвольно образуются и исчезают. Среднее количество свободных носителей находится в динамическом равновесии, то есть неизменно.

При изменении температуры равновесие нарушается. Если температура повышается, то число носителей заряда также увеличивается, а при снижении температуры концентрация носителей уменьшается. На удельное сопротивление полупроводника оказывает влияние температура.

Если температура подходит к абсолютному нулю, то полупроводник имеет свойство диэлектрика. При сильном нагревании он идеально проводит ток. Основной особенностью терморезистора является то, что его сопротивление наиболее заметно зависит от температуры в обычном интервале температур (-50 +100 градусов).

Популярные терморезисторы производятся в виде стержня из полупроводника, который покрыт эмалью. К нему подведены электроды и колпачки для контакта. Такие резисторы применяются в сухих местах.

Некоторые терморезисторы располагают в металлическом герметичном корпусе. Поэтому они могут использоваться во влажных местах с агрессивной внешней средой.

Герметичность корпуса создается при помощи олова и стекла. Стержни из полупроводника обернуты металлизированной фольгой. Для подключения тока применяется проволока из никеля. Величина номинального сопротивления составляет 1-200 кОм, температура работы -100 +129 градусов.

Принцип действия терморезистора основан на свойстве изменения сопротивления от температуры. Для изготовления используются чистые металлы: медь и платина.

На электрических схемах терморезисторы обозначаются:

Основные параметры

  • ТКС – термический коэффициент сопротивления, равен изменению сопротивления участка цепи при изменении температуры на 1 градус. Если ТКС положительный, то терморезисторы называют позисторами (РТС-термисторы). А если ТКС отрицательный, то термисторами (NТС-термисторы). У позисторов при повышении температуры повышается и сопротивление, а у термисторов все происходит наоборот.
  • Номинальное сопротивление – это величина сопротивления при 0 градусах.
  • Диапазон работы. Резисторы делят на низкотемпературные (менее 170К), среднетемпературные (от 170 до 510 К), высокотемпературные (более 570К).
  • Мощность рассеяния. Это величина мощности, в пределах которой терморезистор во время работы обеспечивает сохранение заданных параметров по техническим условиям.
Виды и особенности терморезисторов

Все датчики температуры на производстве работают по принципу преобразования температуры в сигнал электрического тока, который можно передавать с большой скоростью на дальние расстояния. Любые величины можно преобразовать в электрические сигналы, переведя их в цифровой код. Они передаются с высокой точностью, и обрабатываются вычислительной техникой.

Металлические терморезисторы

Материалом для терморезисторов можно использовать далеко не любые проводники тока, так как к терморезисторам предъявляются некоторые требования. Материал для их изготовления должен иметь высокий ТКС, а сопротивление должно зависеть от температуры по линейному графику в большом интервале температур.

Также проводник из металла должен обладать инертностью к агрессивным действиям внешней среды и качественно воспроизводить характеристики, что дает возможность менять датчики без особых настроек и измерительных приборов.

Для таких требований хорошо подходят медь и платина, не считая их высокой стоимости. Терморезисторы на их основе называют платиновыми и медными. ТСП (платиновые) термосопротивления работают при температурах -260 — 1100 градусов. Если температура в пределах от 0 до 650 градусов, то такие датчики применяют в качестве образцов и эталонов, так как в этом интервале нестабильность составляет не более 0,001 градусов.

Из недостатков платиновых терморезисторов можно назвать нелинейность преобразования и высокую стоимость. Поэтому точные замеры параметров возможны только в рабочем диапазоне.

Практически широко применяются недорогие медные образцы терморезисторов ТСМ, у которых линейность зависимости сопротивления от температуры намного выше. Их недостатком является малое удельное сопротивление и неустойчивость к повышенным температурам, быстрая окисляемость. В связи с этим термосопротивления на основе меди имеют ограниченное использование, не более 180 градусов.

Для монтажа платиновых и медных датчиков применяют 2-проводную линию при расстоянии до прибора до 200 метров. Если удаление больше, то применяют трехжильный кабель, в котором третий проводник служит для компенсирования сопротивления проводов.

Из недостатков платиновых и медных терморезисторов можно отметить их малую скорость работы. Их тепловая инерция достигает нескольких минут. Существуют терморезисторы с малой инерционностью, время срабатывания которых не выше нескольких десятых секунды. Это достигается небольшими размерами датчиков. Такие термосопротивления производят из микропровода в стеклянной оболочке. Эти датчики имеют небольшую инерцию, герметичны и обладают высокой стабильностью. При небольших размерах они обладают сопротивлением в несколько кОм.

Полупроводниковые

Такие сопротивления имеют название термисторов. Если их сравнить с платиновыми и медными образцами, то они обладают повышенной чувствительностью и ТКС отрицательного значения. Это значит, что при возрастании температуры сопротивление резистора снижается. У термисторов ТКС намного больше, чем у платиновых и медных датчиков. При небольших размерах их сопротивление доходит до 1 мегома, что не позволяет оказывать влияние на измерение сопротивлению проводников.

Для осуществления замеров температуры большую популярность приобрели терморезисторы на полупроводниках КМТ, состоящих из оксидов кобальта и марганца, а также термосопротивления ММТ на основе оксидов меди и марганца. Зависимость сопротивления от температуры на графике имеет хорошую линейность в интервале температур -100 +200 градусов. Надежность терморезисторов на полупроводниках довольно высока, свойства имеют достаточную стабильность в течение длительного времени.

Основным их недостатком является такой факт, что при массовом изготовлении таких терморезисторов не получается обеспечить необходимую точность их характеристик. Поэтому один отдельно взятый резистор будет отличаться от другого образца, подобно транзисторам, которые из одной партии могут иметь различные коэффициенты усиления, трудно найти два одинаковых образца. Этот отрицательный момент создает необходимость дополнительной настройки аппаратуры при замене терморезистора.

Для подключения термисторов обычно применяют мостовую схему, в которой мост уравновешивается потенциометром. Во время изменения сопротивления резистора от действия температуры мост можно привести в равновесие путем регулировки потенциометра.

Такой метод ручной настройки используется в учебных лабораториях для демонстрации работы. Регулятор потенциометра оснащен шкалой, которая имеет градуировку в градусах. На практике в сложных схемах измерения эта регулировка происходит в автоматическом режиме.

Применение терморезисторов

В работе термодатчиков существует два режима действия. При первом режиме температура датчика определяется лишь температурой внешней среды. Протекающий по резистору ток маленький и не способен его нагреть.

При 2-м режиме термистор нагревается протекающим током, а его температура определяется условиями отдачи тепла, например, скоростью обдува, плотностью газа и т.д.

На схемах термисторы (NТС) и резисторы (РТС) имеют соответственно отрицательный и положительный коэффициенты сопротивления, и обозначаются следующим образом:

Что такое терморезисторы, их конструкция, виды, технические параметры

Соблюдение теплового режима в современных электронных устройствах не менее важно, чем обеспечение параметров электрического тока. Перегрев для полупроводниковых приборов так же губителен, как и резкое увеличение напряжения. Поэтому для контроля температуры термочувствительных электронных приборов применяются электрические схемы с использованием температурных датчиков, таких как терморезистор. Другие названия: термистор, термосопротивление.

Что такое терморезистор?

Обычный резистор обладает относительно стабильным сопротивлением. Разумеется, электрическое сопротивление обычного резистора может меняться при значительном его нагревании (в пределах допусков). Но в штатном режиме показания этих устройств стабильны, чего, собственно, добиваются разработчики.

При изготовлении терморезисторов умышленно подбирают такие материалы, сопротивление которых зависит от температуры. То есть, терморезистор – это полупроводниковый прибор, обладающий зависимостью его сопротивления от температуры. Можно сказать, что путем нагревания или охлаждения таких полупроводниковых устройств можно управлять их сопротивлениями.

Рис. 1. Терморезистор и его изображение на схемах

Температурные зависимости полупроводниковых резисторов широко применяются на практике, о чем речь пойдёт ниже. Заметим только, что термисторы являются, по сути, переменными резисторами, сопротивление которых изменяется не механическим способом, а зависит от степени нагрева и температурных характеристик применяемых полупроводниковых материалов. Причем не важно, прямым или косвенным нагревом произошло изменение температурных показателей.

Конструкция

Самый простой термистор состоит из термочувствительного элемента, платиновых электродов и никелевых выводов. Вся эта конструкция заключена в герметичный корпус (Схема строения показана на рисунке 2).

В качестве термочувствительного материала используют оксиды металлов. Для защиты конструкции используют стеклянный, пластиковый или металлический корпус.

Рис. 2. Конструкция простого термистора

В некоторых случаях в качестве резистивного материала используют медь или платину. Эти материалы обладают высокими показателями ТКС металлов в рабочем диапазоне температур. Однако их применение ограничено по причине дороговизны платины и ее нелинейности преобразования.

Использование медных терморезисторов ограничивается низкой коррозионной сопротивляемостью меди. Благодаря высокой теплопроводности этого металла резистивные элементы на основе меди встречаются в моделях с косвенным нагревом. Применяются для температур не выше 180 ºC.

Еще одним недостатком металлических термосопротивлений является их инерционность, достигающая нескольких минут. Такие конструкции мало пригодны для поддержания теплового режима электроприборов, но они идеально подходят в качестве датчиков для измерения температуры.

С целью уменьшения тепловой инерционности терморезисторы изготавливают из микропроводов, которые заключают в стеклянную колбочку (см. рис. 3). Такие датчики хорошо герметизированы, отличаются стабильностью, а их инерционность не превышает долей секунд.

Рисунок 3. Конструкция термистора в стеклянной колбе

Широкое распространение получили типы датчиков на базе полупроводниковых материалов. При нагревании полупроводников происходит насыщение этих материалов электронами и дырками, что приводит к уменьшению сопротивления.

Существуют конструкции плоских терморезисторов (рис. 4), а также полупроводниковые термисторы со сложной структурой резистивного элемента.

Рис. 4. Конструкция плоского терморезистора

Сегодня все чаще можно встретить платы, на которых применен способ SMT монтажа. Для этих целей промышленность выпускает SMD-терморезисторы разных номиналов (см. рис. 5).

Рис. 5. Терморезисторы для микроэлектроники

В большинстве конструкций терморезистивный элемент изготовляют методом порошковой металлургии. В этих целях используют материалы:

  • халькогениды;
  • оксиды металлов;
  • галогениды и другие.

Очертание резистивных элементов может иметь форму бусинок, стержней, трубочек, пластинок и т. п.

Какую конструкцию вы бы не выбрали, принцип работы остается неизменным – зависимость сопротивления от температуры. Отличаются изделия только параметрами.

Режим работы терморезисторов

В зависимости от конструкторских замыслов, термисторы могут работать в системах с разными температурными режимами. Однако для каждой модели существует своя номинальная шкала температур.

По этому признаку их можно классифицировать следующим образом:

  • терморезисторы низкотемпературного класса (до 170 К);
  • изделия среднетемпературного класса (применяются в диапазоне температур 170 – 510 К);
  • модели высокотемпературного класса (в пределах от 570 К и выше).

В отдельный класс выделены терморезисторы, способные работать при нагревах от 900 до 1300 К. Эти модели используют в качестве датчиков температуры различных нагревательных элементов.

Все термисторы выдерживают существенные токовые нагрузки. Правда, при работе в жестких термоцикличных режимах, их термоэлектрические характеристики, могут изменяться. Со временем изменения коснутся номинального сопротивления и коэффициента сопротивления.

Разновидности

Все терморезисторы классифицируют по типу нагрева: прямой и косвенный. Для прямого подогрева используется ток цепи, в которую включен терморезистор. Косвенный подогрев создают сторонние участки схемы или тепловые элементы.

Пример терморезистора прямого подогрева показан на рис. 6.

Рис. 6. Терморезисторы прямого подогрева

Также, в зависимости от того – повышается или понижается сопротивление при нагревании резистивного элемента, различают термисторы двух видов:с отрицательным ТКС и терморезисторы с положительным коэффициентом сопротивления.

NTC.

Полупроводниковые модели (термисторы) обладают отрицательным коэффициентом температурного сопротивления. Это значит, что они уменьшают номинальное сопротивление (показания при 25 ºC), в результате нагрева. Температурный коэффициент показывает, на сколько процентов уменьшается сопротивление резистивного элемента при повышении температуры нагрева на 1 ºC.

Термисторы NTC с отрицательным коэффициентом обычно применяются в диапазоне рабочих температур от 25 ºC до 200 ºC. Для температур свыше 600 ºC применяют термопары.

PTC.

Терморезисторы типа PTC обладают положительными температурными коэффициентами. Эти PTC-термисторы часто именуют позисторами, чтобы подчеркнуть положительность температурного коэффициента. Под этим термином мы понимаем терморезистор, сопротивление которого возрастает с ростом температуры.

Технические параметры

Большое разнообразие моделей термосопротивлений продиктовано потребностями современной электронной промышленности. Технические параметры изделий полупроводникового типа позволяют полностью удовлетворить спрос производителей радиоэлектронных и электротехнических устройств.

К основным параметрам относятся:

  • номинальное сопротивление терморезистора, измеренное при температуре 25 ºC;
  • мощность рассеяния (то есть максимальный ток, при котором обеспечиваются стабильность параметров терморезистора);
  • диапазон рабочих температур, для которых предназначен терморезистор;
  • ТКС.

Полупроводниковые термисторы обладают высокой чувствительностью в сочетании с отрицательными значениями ТКС. Они просты в изготовлении, имеют крохотные размеры, легко встраиваются в микросхемы. Все эти свойства делают термисторы незаменимыми в микроэлектронике.

Полупроводниковые термисторы подключаются через мостовую схему. Такое подключение позволяет в автоматическом режиме регулировать требуемые параметры электрических цепей. Иногда для этих целей приходится применять довольно сложные схемы автоматики.

Параметры металлических терморезисторов больше подходят для электротехнических устройств, в частности, они используются в качестве датчиков температуры. Их можно увидеть в водонагревательных установках, или в термометрах сопротивления. Такие типы датчиков (рис. 7) очень надежны в работе, имеют довольно широкий диапазон измерения.

Рис. 7. Датчик температуры

Датчики этого типа подключаются по простой схеме. Если требуется провести калибровку или выставить температуру, это обычно делается вручную, с помощью потенциометра. Простая схема подключения датчика температуры показана на рис. 8. Изменяя потенциометром напряжение можно влиять на величину ТКС. Визуально контролировать температуру можно с помощью амперметра, шкала которого проградуирована в градусах.

Рис. 8. Простая схема подключения терморезистора

Обозначение на схемах

На принципиальной схеме значки терморезисторов почти такие же, как и символы обычных резисторов, но с косой линией, перечеркивающей прямоугольник. (см. рис. 9). Для различения типа терморезистора внизу этой косой линии проставляют букву t со значком градуса и знаком «+» или «–», в зависимости от типа изделия. Например, +tº или –tº.

Рис. 9. Обозначение на схемах

Иногда проставляется номинал терморезистора и его температурный диапазон.

Маркировка

Существует два способа маркировки – буквенно-цифровая и цветовая, в виде колец и полосок. Единых требований для буквенной маркировки не существует – разные производители применяют свои варианты обозначений. Например, на дисковом термисторе могут стоять символы «15D-30», что расшифровывается так: номинальное сопротивление 15 Ом, диаметр изделия 30 мм. Здесь значение диаметра прямо связано с рассеиваемой мощностью – чем больше диаметр, тем больше рассеиваемая мощность термистора.

Заметим, что у другого производителя эти же параметры могут маркироваться совсем другим способом. Поэтому лучше пользоваться технической документацией изготовителя изделия.

Применение

В основном терморезисторы используют для защиты оборудования и различных устройств от перегрева и от возможных перегрузок. Реже зависимостью сопротивления стабилизируют работу нагревательного элемента.

Примеры использования:

  • защита электромоторов от перегрева;
  • тепловая защита обмоток трансформаторов;
  • в системах размагничивания кинескопов и старых моделей мониторов;
  • в электронных схемах современных автомобилей.

В большинстве схем используется способность термисторов преобразовывать внутреннюю энергию в электрический сигнал, который считывается автоматикой.

В нагревательных приборах терморезистор довольно часто используется в качестве самовосстанавливающегося предохранителя. Его сопротивление возрастает при достижении критической температуры и в результате этого электрическая цепь размыкается.

После остывания прибор восстанавливает работоспособность.
Сферы применения можно перечислять очень долго, но и эти примеры показывают, насколько востребованными оказались термисторы и термисторы.

Видео по теме

Что такое термистор, их разновидности, принцип работы и способы проверки на работоспособность

Сопротивление любого проводника в общем случае зависит от температуры. Сопротивление металлов с нагревом увеличивается. С точки зрения физики это объясняется увеличением амплитуды тепловых колебаний элементов кристаллической решетки и возрастанием сопротивления движения направленному потоку электронов. Сопротивление электролитов и полупроводников при нагреве уменьшается – это объясняют другими процессами.

Принцип работы термистора

Во многих случаях явление зависимости сопротивления от температуры вредное. Так, низкое сопротивление нити лампы накаливания в холодном состоянии служит причиной перегорания в момент включения. Изменение значения сопротивления постоянных резисторов при нагреве или охлаждении ведет к изменению параметров схемы.

С этим явлением борются разработчики, выпускаются резисторы с уменьшенным ТКС — температурным коэффициентом сопротивления. Стоят такие элементы дороже обычных. Но существуют такие электронные компоненты, у которых зависимость сопротивления от температуры ярко выражена и нормирована. Эти элементы называются терморезисторами (термосопротивлениями) или термисторами.

Виды и устройство терморезисторов

Терморезисторы можно разделить на две большие группы по реакции на изменение температуры:

  • если при нагреве сопротивление падает, такие терморезисторы называются NTC-термисторами (с отрицательным температурным коэффициентом сопротивления);
  • если при нагреве сопротивление увеличивается, то термистор имеет положительный ТКС (PTC-характеристику) – такие элементы называют ещё позисторами.

Тип термистора определяется свойствами материалов, из которых изготовлены терморезисторы. Металлы при нагреве увеличивают сопротивление, поэтому на их основе (точнее, на базе оксидов металлов) выпускают термосопротивления с положительным ТКС. У полупроводников зависимость обратная, поэтому из них делают NTC-элементы. Термозависимые элементы с отрицательным ТКС теоретически можно делать и на основе электролитов, но этот вариант на практике крайне неудобен. Его ниша – лабораторные исследования.

Конструктив термисторов может быть различным. Их выпускают в виде цилиндров, бусин, шайб и т.п. с двумя выводами (как у обычного резистора). Можно подобрать наиболее удобную форму для установки на рабочем месте.

Основные характеристики

Самая главная характеристика любого терморезистора – его температурный коэффициент сопротивления (ТКС). Он показывает, насколько меняется сопротивление при нагреве или охлаждении на 1 градус Кельвина.

Хотя изменение температуры, выраженное в градусах Кельвина, равно изменению в градусах Цельсия, в характеристиках термосопротивлений пользуются все же Кельвинами. Это связано с широким применением в расчетах уравнения Стейнхарта-Харта, а в него входит температура в К.

ТКС отрицателен у термисторов типа NTC и положителен у позисторов.

Другая важная характеристика – номинальное сопротивление. Это значение сопротивления при 25 °С. Зная эти параметры, легко определить применимость термосопротивления для конкретной схемы.

Также для использования термисторов важны такие характеристики, как номинальное и максимальное рабочее напряжение. Первый параметр определяет напряжение, при котором элемент может работать длительное время, а второй – напряжение, выше которого работоспособность термосопротивления не гарантируется.

Для позисторов важным параметром является опорная температура – точка на графике зависимости сопротивления от нагрева, при которой происходит перелом характеристики. Она определяет рабочий участок PTC-сопротивления.

При выборе терморезистора надо обратить внимание и на его температурный диапазон. Вне заданного производителем участка, его характеристика не нормируется (это может привести к ошибкам в работе оборудования) или термистор там вообще неработоспособен.

Условно-графическое обозначение

На схемах УГО термистора могут незначительно отличаться, но главный признак термосопротивления – символ t рядом с прямоугольником, символизирующим резистор. Без этого символа не определить, от чего зависит сопротивление – схожее УГО имеют, например, варисторы (сопротивление определяется приложенным напряжением) и другие элементы.

Иногда на УГО наносят дополнительное обозначение, определяющее категорию терморезистора:

  • NTC для элементов с отрицательным ТКС;
  • PTC для позисторов.

Эту характеристику иногда обозначают стрелками:

  • однонаправленными для PTC;
  • разнонаправленными для NTC.

Литерное обозначение может быть различным – R, RK, TH и т.п.

Как проверить термистор на работоспособность

Первая проверка исправности термистора – измерение номинального сопротивления обычным мультиметром. Если замер ведется при комнатной температуре, которая не очень отличается от +25 °С, то и измеренное сопротивление не должно существенно отличаться от указанного на корпусе или в документации.

Если температура окружающего воздуха выше или ниже указанного значения, надо взять небольшую поправку.

Можно попытаться снять температурную характеристику термистора – чтобы сравнить её с заданной в документации или чтобы восстановить её для элемента неизвестного происхождения.

Есть три температуры, доступные для создания с достаточной точностью без измерительных приборов:

  • тающий лед (можно взять в холодильнике) – около 0 °С;
  • человеческое тело – около 36 °С;
  • кипящая вода – около 100 °С.

По этим точкам можно нарисовать приблизительную зависимость сопротивления от температуры, но для позисторов это может не сработать – на графике их ТКС, есть участки, где R температурой не определяется (ниже опорной температуры). Если термометр имеется, можно снять характеристику по нескольким точкам – опустив терморезистор в воду и нагревая её. Через каждые 15…20 градусов надо замерять сопротивление и наносить значение на график. Если надо снять параметры выше 100 градусов, вместо воды можно использовать масло (например, автомобильное – моторное или трансмиссионное).

На рисунке изображены типовые зависимости сопротивлений от температуры – сплошной линией для PTC, штриховой – для NTC.

Где применяются

Самое очевидное применение терморезисторов – в качестве датчиков для измерения температуры. Для этой цели пригодны как термисторы с характеристикой NTC, так и PTC. Надо лишь выбрать элемент по рабочему участку и учесть характеристику термистора в измерительном приборе.

Можно построить термореле – когда сопротивление (точнее, падение напряжения на нём) сравнивается с заданным значением, и при превышении порога происходит переключение выхода. Такой прибор можно применять в качестве устройства теплового контроля или пожарного датчика. Создание измерителей температуры основано на явлении косвенного нагрева – когда терморезистор нагревается от внешнего источника.

Также в сфере использования термосопротивлений используется прямой нагрев – термистор нагревается током, проходящим через него. NTC-резисторы таким способом можно применить для ограничения тока – например, при зарядке конденсаторов большой ёмкости при включении, а также для ограничения тока пуска электродвигателей и т.п. В холодном состоянии термозависимые элементы имеют большое сопротивление. Когда конденсатор частично зарядится (или электродвигатель выйдет на номинальные обороты), термистор успеет нагреться протекающим током, его сопротивление упадет, и он перестанет оказывать влияние на работу схемы.

Таким же способом можно продлить срок службы лампы накаливания, включив последовательно с ней терморезистор. Он ограничит ток в самый сложный момент – при включении напряжения (именно в это время большинство ламп выходит из строя). После прогрева он перестанет оказывать влияние на лампу.

Для защиты электродвигателей во время работы служат, наоборот, термисторы с положительной характеристикой. Если ток в цепи обмотки будет повышаться из-за заклинивания двигателя или превышения нагрузки на валу, PTC-резистор нагреется и ограничит этот ток.

Термисторы с отрицательным ТКС, также можно использовать в качестве компенсаторов нагрева других компонентов. Так, если параллельно резистору, задающему режим транзистора и имеющему положительный ТКС, установить NTC-термистор, то изменение температуры подействует на каждый элемент противоположным образом. В результате действие температуры компенсируется, и рабочая точка транзистора не сместится.

Существуют комбинированные приборы, называемые терморезисторами с косвенным нагревом. В одном корпусе такого элемента расположены термозависимый элемент и нагреватель. Между ними существует тепловой контакт, но гальванически они развязаны. Изменяя ток через нагреватель, можно управлять сопротивлением.

Терморезисторы с различными характеристиками широко используются в технике. Наряду со стандартными применениями, их сферу работы можно расширять. Все ограничивается только фантазией и квалификацией разработчика.

Что такое резистор и для чего он нужен?

Что такое триггер, для чего он нужен, их классификация и принцип работы

Принцип работы и основные характеристики стабилитрона

Что такое диодный мост, принцип его работы и схема подключения

Что такое датчик Холла: принцип работы, устройство и способы проверки на работоспособность

Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Терморезистор

Большинство промышленных сфер требует измерения множества параметров на производстве. Чем сложнее технологические процессы, тем точнее должны быть показания. Один из самых требовательных к точности параметров – температура. Для ее точных замеров используют специальный прибор – терморезистор.

Простой принцип работы позволяет создавать термопреобразователи сопротивления (научное название устройства) различных габаритов и форм. В зависимости от области применения и материала, датчики могут иметь различную форму и соответствующий тип: стержневой, трубчатый, дисковой или бусинковый. Особых ограничений нет, поэтому на каждой отрасли существуют свои стандарты датчиков.

Принцип действия

Терморезисторы – это датчики, работа которых зависит от двух показателей: температуры и сопротивления. Второй параметр меняется в зависимости от значений первого, при достижении необходимой отметки происходит срабатывание. Существует четыре разновидности терморезисторов:

  • низкотемпературные – для работы при значениях менее 170 К;
  • для средних температур – от 170 до 510 К;
  • для высоких – работают в диапазоне от 510 до 900 К;
  • особый класс – до 1300 К.

Обратите внимание! Для обозначения температуры в рабочем диапазоне терморезистора используют Кельвин, а не градус Цельсия. Это связано с уравнением Стейнхарта-Харта, где в расчетах по формуле учитываются абсолютная температура и сопротивление.

Наиболее точные терморезисторы могут использоваться в качестве эталонов – точность реагирования у них доходит до долей градуса. Помимо температурного режима, приборы отличаются по способу нагрева.

Прямой и косвенный нагрев

Существует два типа устройств:

  1. Прямого нагрева – реагируют на температуру окружающей среды либо на проходящий через деталь ток. Их большинство, применяются они повсеместно.
  2. Косвенного нагрева – комбинированные приборы. Представляют собой терморезистор, температуру которого задает отдельный изолированный нагревательный элемент. Ток в этом случае проходит через него, а не через сам датчик.

Дальнейшее разделение основано на различиях в конструкции и материалах изготовления.

Особенности конструкций

Классификация основывается на ключевом параметре – температурном коэффициенте сопротивления (ТКС), который есть у любого проводника или полупроводника. Он указывает, на какую величину изменяется Ом за каждый градус. В зависимости от материала изготовления ТКС может быть положительным или отрицательным.

Позисторы

Позистор – что это такое, объясняет параметр ТКС. Резистор с положительным значением называется позистором (PTC). Основой для изготовления служит металл. Самыми высокими показателями термосопротивления при инертности к внешним воздействиям обладают медь и платина.

Особенности:

  1. Медные терморезисторы стоят дешевле, но применяются только при работе с температурами до 180 градусов. У них низкая устойчивость к агрессивной среде и быстрая окисляемость.
  2. Платиновые – работают до 1100 градусов, однако наиболее точные результаты показывают при верхней границе в 650. Недостаток – дороговизна.

Часто можно встретить вопрос: что такое позисторы ТСМ и ТСП. Ответом служит последняя буква, указывающая на основу: медь либо платину.

Основное назначение позистора – предохранитель для защиты элементов цепи. Используется последовательное подключение. Область их применения ограничена из-за малой скорости быстродействия.

Термисторы

Гораздо чаще применят более чувствительные и недорогие приборы – термисторы. У терморезистора NTC отрицательный ТКС (с ростом температуры сопротивление уменьшается). При создании применяют полупроводниковые составы на основе окислов марганца, меди и кобальта. По сравнению с позисторами, такие устройства более долговечны, надежны, имеют стабильную линейность при работе до 200 градусов.

Недостаток – невозможность массового изготовления терморезисторов с идентичными характеристиками. Параметры могут отличаться даже у приборов из одной партии, из-за чего приходится повторно регулировать оборудование. Схема монтажа термисторов – мостовая.

Технические характеристики

Каждое устройство обладает набором параметров, на которые нужно обращать внимание при выборе:

  1. Номинальное сопротивление. Это значение, полученное при фиксированной температуре (стандарт – 20 градусов).
  2. ТКС – обратимое изменение сопротивления на каждый градус.
  3. Максимальная мощность рассеяния. Иногда называют просто мощностью резистора. Показывает предельное значение, которое рассеивает ТР без необратимых последствий. Показатель актуален только в условиях соблюдения температурного режима.
  4. Температурная чувствительность. Определяется в определенном диапазоне и зависит от свойств полупроводникового материала.

Эти значения нужно учитывать для приборов с отрицательным температурным коэффициентом сопротивления.

Отрицательный коэффициент ТКС

Дело в том, что зависимость сопротивления от температуры у термисторов экспоненциальная. При этом номинальное сопротивление отдельного ТР может изменяться в больших пределах. Расчеты параметров полупроводниковых приборов сложнее – у позисторов принцип работы основан на линейной зависимости.

Область применения

Использование устройств зависит от их стоимости и точности измерений. Более дорогие позисторы применяют в сложных производствах, а также в качестве предохранителей. Например, их подключают к исполнительному реле, в случае нагрева схема отключается. Термисторы гораздо доступнее, что позволяет находить им широкое применение в быту.

Термодатчик воздуха

При правильной калибровке NTC резистор может использоваться для проверки нагрева окружающей воздушной среды. В этом случае точность измерений, как на производстве, не требуется – достаточно регулировки с шагом в 1 градус Цельсия.

Автомобильный термодатчик

Популярный способ применения – защита двигателя авто от перегрева. ТР соединяют с реле, которое отключает двигатель при угрозе перегрева. При достаточных знаниях можно подключить устройство к бортовому компьютеру для отображения температуры на дисплее.

Датчик пожара

Из терморезистора и биметаллических элементов пускателя можно создать конструкцию, аналогичную пожарной сигнализации. Для этого подойдут простые бусинковые ТР. Также датчик может работать, если нужно исключить срабатывания на дым, например, сигаретный.

Термистор как регулятор пускового тока

Есть ряд приборов, которые подвержены чрезмерным токам при первом запуске: лампы, двигатели и трансформаторы. Для их ограничения в цепь встраивается термистор. Вместо резких скачков осуществляется регулировка тока по нагрузке, по мере нагревания термистора и уменьшения сопротивления.

Алмаз и родственные материалы – особые терморезисторы

На рынке терморезисторов есть особый класс устройств – на основе монокристаллов алмаза, композитов и углеродных пленок. Они обладают сразу несколькими преимуществами:

  • работоспособность при температурах до 1000 градусов;
  • чрезвычайно высокая устойчивость к агрессивным воздействиям;
  • высокая твердость при низкой инерционности.

У таких приборов есть особая маркировка – ТРА. Выпускают их без корпуса либо в стеклянной оболочке.

Чем можно заменить

Менять терморезистор лучше всего на аналогичный, сверяясь со справочником или технической документацией. Однако при наличии опыта и знаний об устройстве того или иного аппарата можно заменить ТР на обычный проволочный резистор. Следует проверить:

  • условия срабатывания реле – по времени или напряжению;
  • изменение времени выхода на рабочий режим;
  • необходимость последовательного соединения сразу нескольких резисторов.

Важно понимать, какие функции выполнял ТР. В некоторых случаях замена окажется нецелесообразной либо невозможной.

Терморезисторы – необходимый элемент для функционирования современной электротехники. Это точный и эффективный датчик, позволяющий контролировать работу устройств во многих сферах. Его применяют уже более 90 лет, заменить его в ближайшее время удастся с малой вероятностью.

Видео

Терморезисторы

Обозначение на схеме, разновидности, применение

В электронике всегда приходится что-то измерять или оценивать. Например, температуру. С этой задачей успешно справляются терморезисторы – электронные компоненты на основе полупроводников, сопротивление которых изменяется в зависимости от температуры.

Здесь я не буду расписывать теорию физических процессов, которые происходят в терморезисторах, а перейду ближе к практике – познакомлю читателя с обозначением терморезистора на схеме, его внешним видом, некоторыми разновидностями и их особенностями.

На принципиальных схемах терморезистор обозначается вот так.

В зависимости от сферы применения и типа терморезистора обозначение его на схеме может быть с небольшими отличиями. Но вы всегда его определите по характерной надписи t или .

Основная характеристика терморезистора – это его ТКС. ТКС – это температурный коэффициент сопротивления. Он показывает, на какую величину изменяется сопротивление терморезистора при изменении температуры на 1°С (1 градус Цельсия) или 1 градус по Кельвину.

У терморезисторов несколько важных параметров. Приводить я их не буду, это отдельный рассказ.

На фото показан терморезистор ММТ-4В (4,7 кОм). Если подключить его к мультиметру и нагреть, например, термофеном или жалом паяльника, то можно убедиться в том, что с ростом температуры его сопротивление падает.

Терморезисторы есть практически везде. Порой удивляешься тому, что раньше их не замечал, не обращал внимания. Давайте взглянем на плату от зарядного устройства ИКАР-506 и попробуем найти их.

Вот первый терморезистор. Так как он в корпусе SMD и имеет малые размеры, то запаян на небольшую плату и установлен на алюминиевый радиатор – контролирует температуру ключевых транзисторов.

Второй. Это так называемый NTC-термистор (JNR10S080L). О таких я ещё расскажу. Служит он для ограничения пускового тока. Забавно. Вроде терморезистор, а служит в качестве защитного элемента.

Почему то если заходит речь о терморезисторах, то обычно думают, что они служат для измерения и контроля температуры. Оказывается, они нашли применение и как устройства защиты.

Также терморезисторы устанавливаются в автомобильные усилители. Вот терморезистор в усилителе Supra SBD-A4240. Здесь он задействован в цепи защиты усилителя от перегрева.

Вот ещё пример. Это литий-ионный аккумулятор DCB-145 от шуруповёрта DeWalt. Вернее, его «потроха». Для контроля температуры аккумуляторных ячеек применён измерительный терморезистор.

Его почти не видно. Он залит силиконовым герметиком. Когда аккумулятор собран, то этот терморезистор плотно прилегает к одной из Li-ion ячеек аккумулятора.

Прямой и косвенный нагрев.

По способу нагрева терморезисторы делят на две группы:

Прямой нагрев. Это когда терморезистор нагревается внешним окружающим воздухом или током, который протекает непосредственно через сам терморезистор. Терморезисторы с прямым нагревом, как правило, используются либо для измерения температуры, либо температурной компенсации. Такие терморезисторы можно встретить в термометрах, термостатах, зарядных устройствах (например, для Li-ion батарей шуруповёртов).

Косвенный нагрев. Это когда терморезистор нагревается рядом расположенным нагревательным элементом. При этом он сам и нагревательный элемент электрически не связаны друг с другом. В таком случае, сопротивление терморезистора определяется функцией тока, протекающего через нагревательный элемент, а не через терморезистор. Терморезисторы с косвенным нагревом являются комбинированными приборами.

NTC-термисторы и позисторы.

По зависимости изменения сопротивления от температуры терморезисторы делят на два типа:

PTC-термисторы (они же позисторы).

Давайте разберёмся, какая между ними разница.

NTC-термисторы.

Своё название NTC-термисторы получили от сокращения NTC – Negative Temperature Coefficient, или «Отрицательный Коэффициент Сопротивления». Особенность данных термисторов в том, что при нагреве их сопротивление уменьшается. Кстати, вот так обозначается NTC-термистор на схеме.


Обозначение термистора на схеме

Как видим, стрелки на обозначении разнонаправлены, что указывает на основное свойство NTC-термистора: температура увеличивается (стрелка вверх), сопротивление падает (стрелка вниз). И наоборот.

На практике встретить NTC-термистор можно в любом импульсном блоке питания. Например, такой термистор можно обнаружить в блоке питания компьютера. Мы уже видели NTC-термистор на плате ИКАР’а, только там он был серо-зелёного цвета.

На этом фото NTC-термистор фирмы EPCOS. Применяется для ограничения пускового тока.

Для NTC-термисторов, как правило, указывается его сопротивление при 25°С (для данного термистора это 8 Ом) и максимальный рабочий ток. Обычно это несколько ампер.

Данный NTC-термистор устанавливается последовательно, на входе сетевого напряжения 220V. Взгляните на схему.

Так как он включен последовательно с нагрузкой, то весь потребляемый ток протекает через него. NTC-термистор ограничивает пусковой ток, который возникает из-за заряда электролитических конденсаторов (на схеме С1). Бросок зарядного тока может привести к пробою диодов в выпрямителе (диодный мост на VD1 — VD4).

При каждом включении блока питания конденсатор начинает заряжаться, а через NTC-термистор начинает протекать ток. Сопротивление NTC-термистора при этом велико, так как он ещё не успел нагреться. Протекая через NTC-термистор, ток разогревает его. После этого сопротивление термистора уменьшается, и он практически не препятствует протеканию тока, потребляемого прибором. Таким образом, за счёт NTC-термистора удаётся обеспечить «плавный запуск» электроприбора и уберечь от пробоя диоды выпрямителя.

Понятно, что пока импульсный блок питания включен, NTC-термистор находится в «подогретом» состоянии.

Если в схеме происходит выход из строя каких-либо элементов, то, обычно резко возрастает и потребляемый ток. При этом нередки случаи, когда NTC-термистор служит своего рода дополнительным предохранителем и также выходят из строя из-за превышения максимального рабочего тока.

Далее на фото наглядный пример – сгоревший NTC-термистор 5D-11, который был установлен в зарядном устройстве ИКАР-506. Он ограничивал пусковой ток при включении.

Выход из строя ключевых транзисторов в блоке питания зарядного устройства привел к превышению максимального рабочего тока этого термистора (max 4A) и он сгорел.

Позисторы. PTC-термисторы.

Термисторы, сопротивление которых при нагреве растёт, называют позисторами. Они же PTC-термисторы (PTC — Positive Temperature Coefficient, «Положительный Коэффициент Сопротивления»).

Стоит отметить, что позисторы получили менее широкое распространение, чем NTC-термисторы.

Условное обозначение позистора на схеме.

Позисторы легко обнаружить на плате любого цветного CRT-телевизора (с кинескопом). Там он установлен в цепи размагничивания. В природе встречаются как двухвыводные позисторы, так и трёхвыводные.

На фото представитель двухвыводного позистора, который применяется в цепи размагничивания кинескопа.

Внутри корпуса между выводами-пружинами установлено рабочее тело позистора. По сути это и есть сам позистор. Внешне выглядит как таблетка с напылением контактного слоя по бокам.

Как я уже говорил, позисторы используются для размагничивания кинескопа, а точнее его маски. Из-за магнитного поля Земли или влияния внешних магнитов маска намагничивается, и цветное изображение на экране кинескопа искажается, появляются пятна.

Наверное, каждый помнит характерный звук «бдзынь», когда включается телевизор — это и есть тот момент, когда работает петля размагничивания.

Кроме двухвыводных позисторов широко применяются трёхвыводные позисторы. Вот такие.

Далее на фото трёхвыводный позистор СТ-15-3.

Отличие их от двухвыводных заключается в том, что они состоят из двух позисторов-«таблеток», которые установлены в одном корпусе. На вид эти «таблетки» абсолютно одинаковые. Но это не так. Кроме того, что одна таблетка чуть меньше другой, так ещё и сопротивление их в холодном состоянии (при комнатной температуре) разное. У одной таблетки сопротивление около 1,3

3,6 кОм, а у другой всего лишь 18

Трёхвыводные позисторы также применяются в цепи размагничивания кинескопа, как и двухвыводные, но только схема их включения немного иная. Если вдруг позистор выходит из строя, а такое бывает довольно часто, то на экране телевизора появляются пятна с неестественным отображением цвета.

Более детально о применении позисторов в цепи размагничивания кинескопов я уже рассказывал здесь.

Так же, как и NTC-термисторы, позисторы используются в качестве устройств защиты. Одна из разновидностей позистора — это самовосстанавливающийся предохранитель.

SMD-терморезисторы.

С активным внедрением SMT-монтажа, производители стали выпускать миниатюрные терморезисторы, адаптированные и под него. Размеры их корпуса, как правило, соответствуют стандартным типоразмерам (0402, 0603, 0805, 1206), которые имеют чип резисторы и конденсаторы. Маркировка на них не наносится, что затрудняет их идентификацию. По внешнему виду SMD-терморезисторы очень похожи на керамические SMD-конденсаторы.

Встроенные терморезисторы.

В электронике активно применяются и встроенные терморезисторы. Если у вас паяльная станция с контролем температуры жала, то в нагревательный элемент встроен тонкоплёночный терморезистор. Также терморезисторы встраиваются и в фен термовоздушных паяльных станций, но там он является отдельным элементом.

Стоит отметить, что в электронике наряду с терморезисторами активно применяются термопредохранители и термореле (например, типа KSD), которые также легко обнаружить в электронных приборах.

Теперь, когда мы познакомились с терморезисторами, пора узнать об их параметрах.

Энциклопедия электроники

Терморезистор (термометр сопротивления, thermistor) – элемент, сопротивление которого меняется в зависимости от температуры.

Условно графическое обозначение (УГО)

Внешний вид терморезисторов определяется согласно ГОСТ 2.728-74 «ЕСКД. Обозначения условные графические в схемах. Резисторы, конденсаторы». Размеры прямоугольника такие же как и у постоянного резистора.

Классификация

По характеру изменения сопротивления при изменении температуры терморезисторы делятся на две группы:

  • Термистор (Thermistor NTC), терморезистор с отрицательным ТКС – сопротивление уменьшается при нагреве;
  • Позистор (Thermistor PTC), терморезистор с положительным ТКС – сопротивление увеличивается при нагреве.

По способу подогрева терморезисторы делятся на две группы:

  • прямого подогрева – сопротивление которого изменяется при прохождении непосредственно через ЧЭ;
  • косвенного подогрева – сопротивление изменяется при прохождении тока через специальный подогреватель, расположенный в непосредственной близости от ЧЭ.

Принципиальное отличие терморезистора косвенного подогрева от прямого – гальваническая изоляция цепи нагрева от измерительной цепи.

Конструкция и принцип действия

Принцип действия терморезисторов основан на изменении сопротивления в зависимости от температуры.

Для создания темрорезисторов применяются полупроводниковые материалы с высокой зависимостью сопротивления от температуры.

Термисторы в основном выполняют из смеси окислов переходных металлов, способных изменять в соединениях свою валентность. Для термисторов применяются оксиды металлов:

  • оксид кобальта (Co3O4)
  • оксид никеля (NiO);
  • оксид магния (MgO);
  • диоксид титана (TiO2),
  • оксид марганца (Mn3O4);
  • оксид меди (CuO);
  • оксид ванадия (V2O5);
  • оксид железа (Fe2O3).

Например, советские терморезисторы ММТ-1, ММТ-4 созданы на основе окислов CuO – Mn3O4.

Для позисторов применяются оксиды бария и стронция. Например, советсвие позисторы СТ6 созданы на основе титаната бария (BaTiO3).

Электрические свойства терморезисторов определяются множеством параметров: соотношение исходных материалов, структура материала, расположение и валентность катионов в кристаллической решетке и других. Производство терморезисторов происходит в следующей последовательности:

  • смесь окислов металлов смешивают и прессуют для придания формы (диска, цилиндра и т.д.);
  • заготовки подвергают обжигу в печи (время нахождения в печи – несколько часов при температуре около 1400 °C);
  • прикрепляют контактные выводы к заготовкам;
  • термочувствительный элемент терморезисторов покрывают лаком или помещают в герметичную оболочку.

У терморезисторов зависимость выходного сопротивления от температуры нелинейная. Реальный график зависимости сопротивления от температуры показан на рисунке.

Для применения терморезисторов производители приводят таблицу значений «отношение сопротивлений – температура». Под отношением сопротивлений принимается отношение текущего сопротивления к номинальному (при температуре 25 °С), так как номенклатура номинальных сопротивлений большая и не стандартизирована.

Для термисторов производители так же приводят коэффициенты для уравнения Стейнхарта — Харта (Steinhart-Hart):

, где:

В формуле используется четыре коэффициента A, B, C, D. Обычно в расчетах коэффициент C равен нулю и производители указывают только три коэффициента.

Практически можно пользоваться упрощенной формулой:

Вольт амперная характеристика (ВАХ) термистора и позистора показана на рисунке. Вид ВАХ зависит от многих параметров, таких как: материал резистора, конструкции, габаритов, температуры и т.д. Нелинейность ВАХ объясняется нагревом терморезистора за счет проходящего через него тока.

Основные параметры терморезисторов

Номинальное сопротивление – сопротивление терморезистора при температуре 25 °C (редко при 20 °C). В отличие от постоянных резисторов номинальное значения не берется из стандартизованного ряда.

Точность (tolerance) – допустимое отклонение он номинального сопротивления при температуре 25 °C.Допустимое отклонение современных терморезисторов составляет ±1%…±20 % (типовые значения ±10 % и ±20 %).

Максимальная мощность рассеяния – максимальная мощность, которую может непрерывно рассеивать терморезистор без изменения эксплуатационных характеристик. Единица измерения — Вт.

Коэффициент рассеяния (Dissipation factor) – мощность, рассеиваемая на терморезисторе, при которой температура элемента повышается на 1 °C по отношению к температуре окружающей среды. Единица измерения — мВт/К.

Постоянная времени τ (Thermal time constant) – время, за которое собственная температура терморезистора изменится на 63,2% от разницы между начальной и конечной температурой при скачкообразном измерении температуры (например, при переносе терморезистора в помещение с другой температурой). Единица измерения с.

Коэффициенты A, B, C, D – коэффициенты зависимости сопротивления от температуры (более подробно про зависимость указано ранее).

Маркировка терморезисторов

Стандартов на маркировку терморезисторов не существует. Каждый производитель самостоятельно определяет каким образом маркировать терморезисторы.

Серии терморезисторов

Отечественной промышленностью выпускались следующие серии терморезисторов прямого подогрева.

  • СТ1 – термисторы медно-марганцевые (ранее — ММТ);
  • СТ2 – термисторы кобальто-марганцевые (ранее — КМТ);
  • СТ3 – термисторы медно-кобальто-марганцевые;
  • СТ4 – термисторы никель-кобальто-марганцевые;
  • СТ5 – позисторы на основе титана бария, легированного германием;
  • СТ6 – позисторы на основе титаната бария (BaTiO3);
  • СТ8 – термисторы на основе полутораокиси ванадия и ряда поликрсталлических твердых растворов в системах V2O3-Me2O3 (Me=Ti; Al, Cr);
  • СТ9 – термисторы на основе двуокиси ванадия VO2;
  • СТ10 – Позисторы на основе системы (Ba, Sr)TiO3;
  • СТ11 – Позисторы на основе системы (Ba, Sr)(Ti, Sn)O3 легированной цернем.

Типоразмеры терморезисторов

Терморезисторы выпускаются различного исполнения:

  • цилиндрические и дисковые с выводами для установки в отверстия платы;
  • поверхностного монтажа на плату(типоразмера SMD, MILF);
  • резьбового крепления;
  • дисковые.

Применение терморезисторов

Назначение терморезисторов в схемах можно условно поделить на два типа: измерение температуры и использование в качестве нелинейного элемента.

Благодаря малым размерам и низкой стоимости терморезисторы применяются повсеместно в сложных устройствах для контроля температуры: мобильные телефоны, компьютерная техника и т.д.

Широкое применение позисторы нашли в промышленности для защиты асинхронных электродвигателей от перегрева обмоток. В аварийных режимах работы (недостаточное охлаждение, заклинивание ротора и прочие) обмотка может сильно нагреваться, в результате чего происходит разрушение изоляционного слоя обмотки с последующим замыканием обмотки.

Для защиты от перегорания в каждую обмотку укладывают позистор. Позисторы соединяют последовательно между собой.

Для измерения температуры и отключения электродвигателя применяют специализированные приборы термисторные реле. Принцип действия этих реле основан на постоянном измерении сопротивления позисторов. При превышении заданного порога контакты реле переключаются и отключают электродвигатель. На рисунке показано подключение электродвигателя: силовые выводы U, V, W; вывод термосопротивления: T1, T2.

Большое распространение термисторы нашли во входной цепи импульсных блоков питания. При включении блока питания в сеть начинается заряд конденсаторов. В этот момент может протекать значительный ток на входе. Для ограничения тока во входную цепь устанавливают термистор TR1. При прохождении тока термистор постепенно нагревается, его сопротивление падает и соответственно снижается потеря напряжения на нем.

Для мощных устройств (например, 2 кВт) параллельно термистору устанавливают контакт реле. После запуска на катушку реле поступает питание и его контакты шунтируют термистор для снижения потерь при работе устройства.

Позисторы применяются в телевизорах с электронно-лучевой трубкой (ЭЛТ). Со временем кинескоп начинает намагничиваться, из-за этого на экране кинескопа появляются цветные пятна. Для размагничивания кинескопа сзади него проложена петля размагничивания. Петля включается в цепь питания телевизора после позистора. По мере нагрева позистора его сопротивление увеличивается и ток по петле уменьшается до приемлемых значений. Для поддержания позистора в нагретом состоянии применяют сдвоенные позисторы в одном корпусе. Позистор, включенный последовательно с петлей снижает ток после размагничивания, позистор включенный параллельно петле поддерживает нагрев, когда телевизор работает. Стоит отметить особенность данной схемы: размагничивание происходит только в момент включения телевизора кнопкой на телевизоре. Если все время выключатель телевизор с пульта, то размагничивание происходить не будет.

Позисторы применяются в цепи запуска бытовых компрессоров холодильников. В момент пуска необходимо подать питание на рабочую и пусковую обмотку. После запуска компрессора питание с пусковой обмотки нужно снять. Для этого пусковую обмотку подключают через позистор к рабочей. После подачи питания ток проходит к рабочей и пусковой обмотке, по мере работы компрессора позистор нагревается и его сопротивление повышается, снижая ток через пусковую обмотку. Для таких схем применяются дисковые позисторы, которые имеют большой максимальный ток.