Управление светодиодом через транзистор
Транзисторы: схема, принцип работы, чем отличаются биполярные и полевые
Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.
В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.
Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:
Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.
Биполярные транзисторы
Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:
Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.
Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.
Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.
NPN и PNP
Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).
NPN более эффективны и распространены в промышленности.
PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.
Полевые транзисторы
Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.
Полевые транзисторы обладают тремя контактами:
N-Channel и P-Channel
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Подключение транзисторов для управления мощными компонентами
Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.
Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:
Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.
Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:
здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.
Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА
Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.
Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:
это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.
Управление светодиодной лентой при помощи Аrduino
Ардуино идеально подходит для управления любыми устройствами. Микропроцессор ATmega с помощью программы-скетча манипулирует большим количеством дискретных выводов, аналогово-цифровых входов/выводов и ШИМ-контроллерами.
Благодаря гибкости кода микроконтроллер ATmega широко используется в модулях различной автоматики, в том числе на его основе возможно создать контроллер управления светодиодным освещением.
Принцип управления нагрузкой через Ардуино
Плата Ардуино имеет два типа портов вывода: цифровой и аналоговый (ШИМ-контроллер). У цифрового порта возможно два состояния – логический ноль и логическая единица. Если подключить к нему светодиод он либо будет светиться, либо не будет.
Аналоговый выход представляет собой ШИМ-контроллер, на который подаётся сигнал частотой около 500Гц с регулируемой скважностью. Что такое ШИМ-контроллер и принцип его работы можно найти в интернете. Через аналоговый порт возможно не только включать и выключать нагрузку, а и изменять напряжение (ток) на ней.
Синтаксис команд
pinMode(12, OUTPUT); — задаём порт 12 портом вывода данных;
digitalWrite(12, HIGH); — подаём на дискретный выход 12 логическую единицу, зажигая светодиод.
analogOutPin = 3; – задаём порт 3 для вывода аналогового значения;
analogWrite(3, значение); – формируем на выходе сигнал с напряжением от 0 до 5В. Значение – скважность сигнала от 0 до 255. При значении 255 максимальное напряжение.
Способы управления светодиодами через Ардуино
Напрямую через порт можно подключить лишь слабый светодиод, да и то лучше через ограничительный резистор. Попытка подключить более мощную нагрузку выведет его из строя.
Для более мощных нагрузок, в том числе светодиодных лент, используют электронный ключ – транзистор.
Виды транзисторных ключей
- Биполярный;
- Полевой;
- Составной (сборка Дарлингтона).
Способы подключения нагрузки | ||
---|---|---|
Через биполярный транзистор | Через полевой транзистор | Через коммутатор напряжения |
При подаче высокого логического уровня (digitalWrite(12, HIGH);) через порт вывода на базу транзистора через цепочку коллектор-эмиттер потечет опорное напряжение на нагрузку. Таким образом можно включать и отключать светодиод.
Аналогичным образом работает и полевой транзистор, но поскольку у него вместо «базы» сток, который управляется не током, а напряжением, ограничительный резистор в этой схеме необязателен.
Биполярный вид не позволяет регулировать мощные нагрузки. Ток через него ограничен на уровне 0,1-0,3А.
Полевые транзисторы работают с более мощными нагрузками с током до 2А. Для ещё более мощной нагрузки используют полевые транзисторы Mosfet с током до 9А и напряжением до 60В.
Вместо полевых можно использовать сборку Дарлингтона из биполярных транзисторов на микросхемах ULN2003, ULN2803.
Микросхема ULN2003 и принципиальная схема электронного коммутатора напряжения:
Принцип работы транзистора для плавного управления светодиодной лентой
Транзистор работает как водопроводный кран, только для электронов. Чем выше напряжение, подаваемое на базу биполярного транзистора либо сток полевого, тем меньше сопротивление в цепочке эмиттер-коллектор, тем выше ток, проходящий через нагрузку.
Подключив транзистор к аналоговому порту Ардуино, присваиваем ему значение от 0 до 255, изменяем напряжение, подаваемое на коллектор либо сток от 0 до 5В. Через цепочку коллектор-эмиттер будет проходить от 0 до 100% опорного напряжения нагрузки.
Для управления светодиодной лентой arduino необходимо подобрать транзистор подходящей мощности. Рабочий ток для питания метра светодиодов 300-500мА, для этих целей подойдет силовой биполярный транзистор. Для большей длины потребуется полевой транзистор.
Схема подключения LED ленты к ардуино:
Управление RGB лентой с помощью Andurino
Кроме однокристальных светодиодов, Ардуино может работать и с цветными LED. Подключив выводы каждого цвета к аналоговым выходам Ардуино можно произвольно изменять яркость каждого кристалла, добиваясь необходимого цвета свечения.
Схема подключения к Arduino RGB светодиода:
Аналогично построено и управление RGB лентой Arduino:
Аrduino RGB контроллер лучше собирать на полевых транзисторах.
Для плавного управления яркостью можно использовать две кнопки. Одна будет увеличивать яркость свечения, другая уменьшать.
Скетч управления яркостью светодиодной ленты Arduino
int led = 120; устанавливаем средний уровень яркости
void setup() <
pinMode(4, OUTPUT); устанавливаем 4й аналоговый порт на вывод
pinMode(2, INPUT);
pinMode(4, INPUT); устанавливаем 2й и 4й цифровой порт на ввод для опроса кнопок
>
void loop()<
button1 = digitalRead(2);
button2 = digitalRead(4);
if (button1 == HIGH) нажатие на первую кнопку увеличит яркость
<
led = led + 5;
analogWrite(4, led);
>
if (button2 == HIGH) нажатие на вторую кнопку уменьшит яркость
<
led = led — 5;
analogWrite(4, led);
>
При удержании первой или второй кнопки плавно изменяется напряжение, подаваемое на управляющий контакт электронного ключа. Тогда и произойдет плавное изменение яркости.
Модули управления Ардуино
Для создания полноценного драйвера управления светодиодной лентой можно использовать модули-датчики.
ИК-управление
Модуль позволяет запрограммировать до 20 команд.
Радиус сигнала около 8м.
Цена комплекта 6 у.е.
По радиоканалу
Четырёхканальный блок с радиусом действия до 100м
Цена комплекта 8 у.е.
Позволяет включать освещение еще при приближении к квартире.
Бесконтактное
Датчик расстояния способен по движению руки увеличивать и уменьшать яркость освещения.
Управление светодиодами tinyAVR
Управление светодиодами заключается в их включении и выключении с помощью специальной схемы. Единственный способ включить и выключить светодиод в схеме на рис. 2.4 — подать и отключить напряжение питания. Однако светодиоды можно включать/выключать при помощи микроконтроллера и получать интересные световые узоры. На рис. 2.8 показана принципиальная схема, состоящая из микроконтроллера Tinyl3 и пяти светодиодов.
Все светодиоды подключены к контактам микроконтроллера через резисторы. Два светодиода (LED1 и LED2) подключены по схеме с общим анодом к источнику питания, а остальные три (LED1, LED2 и LED3)— по схеме с общим катодом к общей шине. Эти два разных способа использованы только для примера. Для микросхем 74-й серии TTL-вентилей (например, 7400 или 74LS00) предпочтительнее подключение внешней нагрузки к источнику питания, чем к общей шине. Однако для современных микросхем КМОП (таких, как микроконтроллеры AVR) способ подключения светодиодов не имеет значения.
В схеме на рис. 2.8 светодиоды LED1 и LED2 загорятся, когда на соответствующем выходе контроллера будет логический нуль, а остальные светодиоды — когда на соответствующих выходах появится логическая единица. Величина сопротивления резистора зависит от требуемого тока через светодиод, который не должен превышать выходной ток микроконтроллера. Максимальный выходной ток микроконтроллеров AVR — 40 мА. Напряжение источника питания должно быть больше порогового напряжения включения светодиодов. Например, двух щелочных батареек (3 В) будет достаточно для включения красных светодиодов. Однако синие светодиоды работать не будут. Для их работы напряжение питания должно быть равно 5 В.
Микроконтроллер может переключать светодиоды с любой частотой. Однако если частота коммутации превышает 20 Гц, то светодиоды будут неприятно мерцать. При увеличении частоты, например»до 100 Гц, мерцание исчезнет и светодиоды будут казаться постоянно включенными. На самом деле светодиоды будут включаться и выключаться с частотой 100 Гц, однако человеческий глаз не может реагировать на столь быстрое переключение. Это интересное явление (оно называется модуляцией интенсивности свечения) мы будем использовать для изменения интенсивности свечения светодиодов.
Рис. 2.9. Сигнал с широтно-импульсной модуляцией
На рис. 2.9 показан сигнал с широтно-импульсной модуляцией (ШИМ, PWM), имеющий частоту F=UT (показана на верхнем графике). Предположим, что частота F равна 100 Гц. При постоянной частоте сигнала меняем время нахождения сигнала в состоянии логической единицы. Пусть это время равно ΤΊ. Отношение периода Т к времени 71 называется скважностью сигнала. Сигналы, показанные на рис. 2.9, можно без труда сгенерировать при помощи микроконтроллерной схемы, приведенной на рис. 2.8. Если сигнал, обозначенный как 50%, подать на светодиод LED3 через контакт РВ2 данной схемы, то наблюдатель увидит интенсивность свечения 50% от той, которая будет получена в случае подачи на контакт РВ2 постоянной логической единицы (при котором яркость максимальна). Так происходит потому, что теперь средний ток через светодиод составляет 50% от максимального.
Если же на светодиод LED3 подать сигнал, помеченный как 75%, то интенсивность составит 75% от максимальной. Можно задать любое значение сигнала от 0% (минимальная интенсивность) до 100% (максимальная интенсивность). Сигнал с широтно-импульсной модуляцией можно сгенерировать либо программно, либо аппаратно (при помощи встроенных в микроконтроллер AVR таймеров). Использование аппаратных таймеров позволяет микроконтроллеру выполнять другие дополнительные задачи. Эти способы управления светодиодами будут встречаться во многих последующих проектах. Особенно удобно с помощью ШИМ управлять многоцветными светодиодами, создавая большое количество промежуточных цветов и оттенков.
Помимо управления интенсивностью свечения следует также обсудить способы соединения светодиодов. До настоящего момента мы рассматривали подключение только одного светодиода к одному контакту микроконтроллера. Кроме этого, светодиоды можно соединять последовательно или параллельно. Возможно последовательное соединение светодиодов с одним резистором (рис. 2.10).
Число светодиодов, последовательно подключаемых к выводу микроконтроллера, будет определяться напряжением включения светодиодов и напряжением питания. При напряжении питания, равном 5 В, можно последовательно подключить два красных светодиода. Но два синих светодиода подключить так не удастся, поскольку напряжение включения цепочки из двух синих светодиодов будет выше, чем напряжение питания +5 В. По той же причине не удастся последовательно подключить и три красных светодиода.
Рис. 2.10. Последовательное соединение светодиодов
Если нужно подключить три светодиода, то лучше их соединить параллельно, как показано на рис. 2.11.
Рис. 2.11. Подключение параллельно соединенных светодиодов к контроллеру
Рис. 2.12. Вариант подключения последовательно соединенных светодиодов через транзистор
Обратите внимание, что вместо одного резистора и параллельного подключения светодиодов мы выбрали вариант подключения по одному резистору на каждый светодиод и последующее параллельное соединение этих· цепей. Так сделано потому, что светодиоды из одной партии могут иметь различные напряжения включения; и если при этом соединить параллельно несколько светодиодов, то светодиод с самым низким напряжением включения будет доминировать над остальными (потреблять больший ток и светиться ярче остальных). В худшем случае весь ток пойдет через один светодиод, а остальные вовсе не загорятся. При параллельном подключении нескольких светодиодов суммарный ток через все светодиоды должен быть меньше, чем максимальный ток выхода микроконтроллера. Если же ток через светодиоды превышает возможности микроконтроллера, то можно применить схему, показанную на рис. 2.12, где η-р-и-транзистор управляет несколькими последовательно соединенными светодиодами.
Напряжение V(Drive), подаваемое на светодиоды, должно быть больше суммы напряжений включения всех последовательно включенных светодиодов. Резистор R1 определяет ток через светодиоды. Резистор Rb в цепи базы п-р-и-транзистора служит для ограничения тока базы; сопротивление Rb вычисляется по току коллектора (который течет и через светодиоды) и по коэффициенту усиления транзистора. Вот пример: предположим, что вы хотите соединить последовательно пять красных светодиодов и подать на них ток 30 мА. Из табл. 2.1 видно, что напряжение включения красного светодиода равно 2 В, следовательно, потребуется источник 10 В. Падение на выводах коллектора и эмиттера транзистора составит 0,5 В. Желательно получить напряжение V(Drive) в 15 В, поэтому сопротивление R1 = (15 – 10,5) В/30 мА = 150 Ом. Для данного случая подойдет транзистор малой мощности типа ВС547. Обычно значение β для ВС547 составляет 100, поэтому требуемый ток базы 30 мА/100 = 300 мкА. Если микроконтроллер питается напряжением +5 В, то за логическую единицу можно принять напряжение в 4,5 В. Падение напряжения V(be) на переходе «база-эмиттер» примерно равно 0,7 В. Таким образом, Rb = (4,5 – 0,7) В/300 мкА = 12,6 кОм. Следовательно, в качестве Rb вполне подойдет сопротивление 10 кОм. Для схемы, приведенной на рис. 2.13, необходимо, чтобы все последовательно соединенные светодиоды были одного цвета. При расчете нужно учесть суммарное падение напряжения на всех этих светодиодах, чтобы определить напряжение V(Drive) и значения R1 и Rb.
На рис. 2.13 показано, как можно соединить несколько светодиодов параллельно и подключить к контроллеру через п-р-и-транзистор. Такая схема нужна, когда суммарный ток через светодиоды превышает выходной ток микроконтроллера. Предположим, что вы хотите управлять десятью параллельными светодиодами (каждый с током в 20 мА). Потребуется ток в 200 мА, что гораздо больше, чем может дать один вывод микроконтроллера. Однако для управления этими светодиодами будет вполне достаточно п-р-и-транзистора средней мощности с максимальным током коллектора 1 А. Расчет сопротивления резистора для каждого из светодиодов (а также сопротивления Rb) аналогичен рассмотренному ранее.
Рис. 2.13. Вариант подключения параллельно соединенных светодиодов через транзистор
Источник: Гадре, Д., Занимательные проекты на базе микроконтроллеров tinyAVR / Дхананья Гадре, Нигул Мэлхотра: Пер. с англ. — СПб.: БХВ-Петербург, 2012. — 352 с.: ил. — (Электроника)
Подключение транзистора к Ардуино
Подключение полевого транзистора ► рассмотрим самый простой способ подключения мотора к Arduino — использование транзистора для управления двигателем.
Подключение полевого / биполярного транзистора к Arduino — рассмотрим на этом занятии устройство и применение транзисторов в электронной автоматике. Запрограммируем работу мотора постоянного тока в зависимости от показаний датчика влаги или фоторезистора. Вспомним использование операторов if, else и рассмотрим тип данных — unsigned int, который часто используется в языке C++.
Устройство и принцип работы транзистора
Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Транзисторы являются ключами (кнопками) в сетях с постоянным током. Биполярные транзисторы могут управлять электрической цепью до 50 В, полевые транзисторы могут управлять приборами до 100 В (при напряжении на затворе 5 В). В сетях с переменным током использую реле.
Фото. Устройство полевого и биполярного транзистора
При отсутствии напряжения на базе или затворе транзистора, эмиттерный и коллекторный переход находятся в равновесия, токи через них не проходят и равны нулю. Таким образом, подавая на базу биполярного транзистора напряжение в 5 В, мы можем включать электрические цепи до 50 Вольт. Сегодня этот полупроводниковый элемент встречается почти в любом устройстве (в телефоне, компьютере и т.д.).
Транзисторы являются основой для построения микросхем логики, памяти и микропроцессоров компьютеров. Транзистор — это электронный элемент из полупроводникового материала, обычно с тремя выводами, позволяющий с помощью входного сигнала управлять током высокого напряжения. Использование транзистора — это наиболее простой способ подключения к Ардуино мотора постоянного тока.
Как подключить транзистор к Ардуино
Для этого занятия нам потребуется:
- плата Arduino Uno / Arduino Nano / Arduino Mega;
- макетная плата;
- 1 биполярный транзистор;
- 1 мотор постоянного тока;
- 2 резистора от 1 до 10 кОм;
- провода «папа-папа» и «папа-мама».
Подключить мотор постоянного тока напрямую к цифровым или аналоговым портам Arduino не получится. Это обусловлено тем, что пины на плате Ардуино не способны выдавать ток более 40 мА. При этом мотору постоянного тока, в зависимости от нагрузки, необходимо сотни миллиампер. Потому и возникает потребность управления электрической цепью высокого напряжения транзистором или Motor Shield L293D.
Схема подключения мотора постоянного тока к Ардуино
Соберите электрическую цепь, как на рисунке выше. Если присмотреться к сборке на макетной плате, то вы заметите, что транзистор играет роль кнопки. Если кнопка замыкает электрическую цепь при нажатии на толкатель, то транзистор начинает пропускать ток при подаче напряжения на базу. Таким образом, мы можем сделать автоматическое или полуавтоматическое управление мотором на Ардуино.
Скетч. Управление мотором через транзистор
Если вы заметили, то это скетч из занятия — Включение светодиода на Ардуино. С точки зрения микропроцессора абсолютно не важно, что подключено к Pin13 — светодиод, транзистор или драйвер светодиодов для Светового меча на Ардуино. Обратите внимание на то, что резистор R1 подтягивает базу транзистора к земле, а резистор R2 служит для защиты порта микроконтроллера от перегрузки.
Скетч. Управление мотором от датчика
Скетч управления двигателем постоянного тока на Ардуино можно написать по-другому. Добавим в схему фоторезистор и сделаем автоматическое включение мотора при снижении уровня освещенности в комнате. Можно также использовать датчик уровня жидкости или любой другой датчик. В скетче мы используем операторы if и else для управлением (включением/выключением) мотора постоянного тока.
Управление двигателем постоянного тока на Arduino UNO
Несколько простых схем питания светодиодов
Несмотря на богатый выбор в магазинах светодиодных фонариков различных конструкций, радиолюбители разрабатывают свои варианты схем для питания белых суперярких светодиодов. В основном задача сводится к тому, как запитать светодиод всего от одной батарейки или аккумулятора, провести практические исследования.
После того, как получен положительный результат, схема разбирается, детали складываются в коробочку, опыт завершен, наступает моральное удовлетворение. Часто исследования на этом останавливаются, но иногда опыт сборки конкретного узла на макетной плате переходит в реальную конструкцию, выполненную по всем правилам искусства. Далее рассмотрены несколько простых схем, разработанных радиолюбителями.
В ряде случаев установить, кто является автором схемы очень трудно, поскольку одна и та же схема появляется на разных сайтах и в разных статьях. Часто авторы статей честно пишут, что эту статью нашли в интернете, но кто опубликовал эту схему впервые, неизвестно. Многие схемы просто срисовываются с плат тех же китайских фонариков.
Автор статьи, которую Вы сейчас читаете, на авторство схем тоже не претендует, это просто небольшая подборка схем на «светодиодную» тему.
Зачем нужны преобразователи
Все дело в том, что прямое падение напряжения на светодиоде, как правило, не менее 2,4…3,4В, поэтому от одной батарейки с напряжением 1,5В, а тем более аккумулятора с напряжением 1,2В зажечь светодиод просто невозможно. Тут есть два выхода. Либо применять батарею из трех или более гальванических элементов, либо строить хотя бы самый простой DC-DC преобразователь.
Именно преобразователь позволит питать фонарик всего от одной батарейки. Такое решение уменьшает расходы на источники питания, а кроме того позволяет полнее использовать заряд гальванического элемента: многие преобразователи работоспособны при глубоком разряде батареи до 0,7В! Использование преобразователя также позволяет уменьшить габариты фонарика.
Простейшая схема для питания светодиода
Схема представляет собой блокинг-генератор. Это одна из классических схем электроники, поэтому при правильной сборке и исправных деталях начинает работать сразу. Главное в этой схеме правильно намотать трансформатор Tr1, не перепутать фазировку обмоток.
В качестве сердечника для трансформатора можно использовать ферритовое кольцо с платы от негодной энергосберегающей люминесцентной лампы. Достаточно намотать несколько витков изолированного провода и соединить обмотки, как показано на рисунке ниже.
Трансформатор можно намотать обмоточным проводом типа ПЭВ или ПЭЛ диаметром не более 0,3мм, что позволит уложить на кольцо чуть большее количество витков, хотя бы 10…15, что несколько улучшит работу схемы.
Обмотки следует мотать в два провода, после чего соединить концы обмоток, как показано на рисунке. Начало обмоток на схеме показано точкой. В качестве транзистора можно использовать любой маломощный транзистор n-p-n проводимости: КТ315, КТ503 и подобные. В настоящее время проще найти импортный транзистор, например BC547.
Если под рукой не окажется транзистора структуры n-p-n, то можно применить транзистор проводимости p-n-p, например КТ361 или КТ502. Однако, в этом случае придется поменять полярность включения батарейки.
Резистор R1 подбирается по наилучшему свечению светодиода, хотя схема работает, даже если его заменить просто перемычкой. Вышеприведенная схема предназначена просто «для души», для проведения экспериментов. Так после восьми часов беспрерывной работы на один светодиод батарейка с 1,5В «садится» до 1,42В. Можно сказать, что почти не разряжается.
Для исследования нагрузочных способностей схемы можно попробовать подключить параллельно еще несколько светодиодов. Например, при четырех светодиодах схема продолжает работать достаточно стабильно, при шести светодиодах начинает греться транзистор, при восьми светодиодах яркость заметно падает, транзистор греется весьма сильно. А схема, все-таки, продолжает работать. Но это только в порядке научных изысканий, поскольку транзистор в таком режиме долго не проработает.
Преобразователь с выпрямителем
Если на базе этой схемы планируется создать простенький фонарик, то придется добавить еще пару деталей, что обеспечит более яркое свечение светодиода.
Нетрудно видеть, что в этой схеме светодиод питается не пульсирующим, а постоянным током. Естественно, что в этом случае яркость свечения будет несколько выше, а уровень пульсаций излучаемого света будет намного меньше. В качестве диода подойдет любой высокочастотный, например, КД521 (принцип действия полупроводникового диода).
Преобразователи с дросселем
Еще одна простейшая схема показана на рисунке ниже. Она несколько сложнее, чем схема на рисунке 1 , содержит 2 транзистора, но при этом вместо трансформатора с двумя обмотками имеет только дроссель L1. Такой дроссель можно намотать на кольце все от той же энергосберегающей лампы, для чего понадобится намотать всего 15 витков обмоточного провода диаметром 0,3…0,5мм.
При указанном параметре дросселя на светодиоде можно получить напряжение до 3,8В (прямое падение напряжения на светодиоде 5730 3,4В), что достаточно для питания светодиода мощностью 1Вт. Наладка схемы заключается в подборе емкости конденсатора C1 в диапазоне ±50% по максимальной яркости светодиода. Схема работоспособна при снижении напряжения питания до 0,7В, что обеспечивает максимальное использование емкости батареи.
Если рассмотренную схему дополнить выпрямителем на диоде D1, фильтром на конденсаторе C1, и стабилитроном D2, получится маломощный блок питания, который можно применить для питания схем на ОУ или других электронных узлов. При этом индуктивность дросселя выбирается в пределах 200…350 мкГн, диод D1 с барьером Шоттки, стабилитрон D2 выбирается по напряжению питаемой схемы.
При удачном стечении обстоятельств с помощью такого преобразователя можно получить на выходе напряжение 7…12В. Если предполагается использовать преобразователь для питания только светодиодов, стабилитрон D2 можно из схемы исключить.
Все рассмотренные схемы являются простейшими источниками напряжения: ограничение тока через светодиод осуществляется примерно так же, как это делается в различных брелоках или в зажигалках со светодиодами.
Светодиод через кнопку включения, без всякого ограничительного резистора, питается от 3…4-х маленьких дисковых батареек, внутреннее сопротивление которых ограничивает ток через светодиод на безопасном уровне.
Схемы с обратной связью по току
А светодиод является, все-таки, токовым прибором. Неспроста в документации на светодиоды указывается именно прямой ток. Поэтому настоящие схемы для питания светодиодов содержат обратную связь по току: как только ток через светодиод достигает определенного значения, выходной каскад отключается от источника питания.
В точности также работают и стабилизаторы напряжения, только там обратная связь по напряжению. Ниже показана схема для питания светодиодов с токовой обратной связью.
При внимательном рассмотрении можно увидеть, что основой схемы является все тот же блокинг-генератор, собранный на транзисторе VT2. Транзистор VT1 является управляющим в цепи обратной связи. Обратная связь в данной схеме работает следующим образом.
Светодиоды питаются напряжением, которое накапливается на электролитическом конденсаторе. Заряд конденсатора производится через диод импульсным напряжением с коллектора транзистора VT2. Выпрямленное напряжение используется для питания светодиодов.
Ток через светодиоды проходит по следующему пути: плюсовая обкладка конденсатора, светодиоды с ограничительными резисторами, резистор токовой обратной связи (сенсор) Roc, минусовая обкладка электролитического конденсатора.
При этом на резисторе обратной связи создается падение напряжения Uoc=I*Roc, где I ток через светодиоды. При возрастании напряжения на электролитическом конденсаторе (генаратор, все-таки, работает и заряжает конденсатор), ток через светодиоды увеличивается, а, следовательно, увеличивается и напряжение на резисторе обратной связи Roc.
Когда Uoc достигает 0,6В транзистор VT1 открывается, замыкая переход база-эмиттер транзистора VT2. Транзистор VT2 закрывается, блокинг-генератор останавливается, и перестает заряжать электролитический конденсатор. Под воздействием нагрузки конденсатор разряжается, напряжение на конденсаторе падает.
Уменьшение напряжения на конденсаторе приводит к снижению тока через светодиоды, и, как следствие, уменьшению напряжения обратной связи Uoc. Поэтому транзистор VT1 закрывается и не препятствует работе блокинг-генератора. Генератор запускается, и весь цикл повторяется снова и снова.
Изменяя сопротивление резистора обратной связи можно в широких пределах изменять ток через светодиоды. Подобные схемы называются импульсными стабилизаторами тока.
Интегральные стабилизаторы тока
В настоящее время стабилизаторы тока для светодиодов выпускаются в интегральном исполнении. В качестве примеров можно привести специализированные микросхемы ZXLD381, ZXSC300. Схемы, показанные далее, взяты из даташитов (DataSheet) этих микросхем.
На рисунке показано устройство микросхемы ZXLD381. В ней содержится генератор ШИМ (Pulse Control), датчик тока (Rsense) и выходной транзистор. Навесных деталей всего две штуки. Это светодиод LED и дроссель L1. Типовая схема включения показана на следующем рисунке. Микросхема выпускается в корпусе SOT23. Частота генерации 350КГц задается внутренними конденсаторами, изменить ее невозможно. КПД устройства 85%, запуск под нагрузкой возможен уже при напряжении питания 0,8В.
Прямое напряжение светодиода должно быть не более 3,5В, как указано в нижней строчке под рисунком. Ток через светодиод регулируется изменением индуктивности дросселя, как показано в таблице в правой части рисунка. В средней колонке указан пиковый ток, в последней колонке средний ток через светодиод. Для снижения уровня пульсаций и повышения яркости свечения возможно применение выпрямителя с фильтром.
Здесь применяется светодиод с прямым напряжением 3,5В, диод D1 высокочастотный с барьером Шоттки, конденсатор C1 желательно с низким значением эквивалентного последовательного сопротивления (low ESR). Эти требования необходимы для того, чтобы повысить общий КПД устройства, по возможности меньше греть диод и конденсатор. Выходной ток подбирается при помощи подбора индуктивности дросселя в зависимости от мощности светодиода.
Микросхема ZXSC300
Отличается от ZXLD381 тем, что не имеет внутреннего выходного транзистора и резистора-датчика тока. Такое решение позволяет значительно увеличить выходной ток устройства, а следовательно применить светодиод большей мощности.
В качестве датчика тока используется внешний резистор R1, изменением величины которого можно устанавливать требуемый ток в зависимости от типа светодиода. Расчет этого резистора производится по формулам, приведенным в даташите на микросхему ZXSC300. Здесь эти формулы приводить не будем, при необходимости несложно найти даташит и подсмотреть формулы оттуда. Выходной ток ограничивается лишь параметрами выходного транзистора.
При первом включении всех описанных схем желательно батарейку подключать через резистор сопротивлением 10Ом. Это поможет избежать гибели транзистора, если, например, неправильно подключены обмотки трансформатора. Если с этим резистором светодиод засветился, то резистор можно убирать и проводить дальнейшие настройки.
Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!
Записывайтесь в онлайн-университет от GeekBrains:
Изучить C, механизмы отладки и программирования микроконтроллеров;
Получить опыт работы с реальными проектами, в команде и самостоятельно;
Получить удостоверение и сертификат, подтверждающие полученные знания.
Starter box для первых экспериментов в подарок!
После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.
Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.