УЗИП принцип работы

Узип принцип работы

УЗИП – что это такое, описание и принцип работы

Перенапряжение — это превышение максимального показателя напряжения для той или иной сети.

Под импульсным перенапряжением понимается резкий скачок напряжения между фазой и землей, который занимает долю секунды.

Такой перепад напряжения опасен не только для линии, но и для подключенных к ней электроприборов.

Чтобы не допустить подобной ситуации, используется устройство защиты от импульсных перенапряжений.

Что такое УЗИП и для чего оно нужно?

УЗИП — это устройство защиты от импульсных перенапряжений, которое обеспечивает защиту электроустановок до 1 кВ.

Устройство защищает от перенапряжений в электросети, а также от грозовых воздействий посредством отвода импульсов тока на землю.

УЗИП применяют только в низковольтных силовых распределительных системах.

Данное устройство подходит как для промышленных предприятий, так и для жилых строений.

Принцип действия и устройство

Принцип работы УЗИП заключается в применении варисторов — нелинейный элемент в виде полупроводникового резистора сопротивления от приложенного напряжения.

Разновидности УЗИП

Устройства защиты от импульсных перенапряжений бывают с одним и двумя вводами, и подразделяются на:

  • Коммутирующие;
  • Ограничивающие;
  • Комбинированные.

Коммутирующие защитные аппараты

Характерной особенностью коммутирующих устройств является высокое сопротивление, которое при возникновении сильного импульса в напряжении мгновенно падает до нуля. Принцип работы коммутирующих устройств основывается на разрядниках.

Ограничители сетевого перенапряжения (ОПН)

Для ограничителя сетевых напряжений также характерно высокое сопротивление.

Его отличие от коммутирующего аппарата только в том, что снижение сопротивления происходит постепенно.

ОПН основывается на работе варистора (резистора), который используется в его конструкции.

Сопротивление варистора находится в нелинейной зависимости от воздействующего на него напряжения.

При резком увеличении напряжения происходит также резкое увеличение силы тока, который проходит непосредственно через варистор и таким образом сглаживаются электрические импульсы, после чего ограничитель сетевого напряжения возвращается в первоначальное состояние.

Комбинированные УЗИП

УЗИП комбинированного типа объединяют в себе разрядники и варисторы, и могут выполнять как функцию разрядника так и ограничителя.

Принцип действия и область применения УЗИП

Основная задача устройства защиты импульсных перенапряжений (УЗИП) для частного дома – трансформация проводимости:

  1. Базовый элемент варистор проводит ток при увеличении значений напряжения, при этом:
    1. варистор позволяет выдерживать более двух срабатываний при наибольшей величине электрического разряда;
    2. выдерживание более 5-ти, для номинальных значений.
  2. Стабилизация модулятором порогового значения частоты.
  3. Элемент триод направляет ток на контакты выхода, что приводит к трансформации параметров выходного тока.

В проектах молниезащиты зданий различного назначения, сооружений и промышленных объектов используют УЗИП которые помогут защитить от:

  1. прямых молниевых ударов в защищаемый контур объекта;
  2. разрядов молний в непосредственной близости от электрических коммуникаций;
  3. помех, вызванных электромагнитными волнами или иными электрическими установками и электроприборами.

Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.

Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи.

Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

УЗИП — что это такое, описание и схемы подключения в частном доме

Перенапряжение — это превышение максимального показателя напряжения для той или иной сети. Под импульсным перенапряжением понимается резкий скачок напряжения между фазой и землей, который занимает долю секунды. Такой перепад напряжения опасен не только для линии, но и для подключенных к ней электроприборов. Чтобы не допустить подобной ситуации, используется устройство защиты от импульсных перенапряжений.

Что такое УЗИП и для чего оно нужно?

УЗИП — это устройство защиты от импульсных перенапряжений, которое обеспечивает защиту электроустановок до 1 кВ. Устройство защищает от перенапряжений в электросети, а также от грозовых воздействий посредством отвода импульсов тока на землю.

УЗИП применяют только в низковольтных силовых распределительных системах. Данное устройство подходит как для промышленных предприятий, так и для жилых строений.

УЗИП бывает двух типов:

  • ОПС — ограничитель перенапряжений сети;
  • ОИН — ограничитель импульсных напряжений.

Принцип действия и устройство

Принцип работы УЗИП заключается в применении варисторов — нелинейный элемент в виде полупроводникового резистора сопротивления от приложенного напряжения.

УЗИП имеет два вида защиты:

  • Несимметричный (синфазный) — при перенапряжении устройство направляет импульсы на землю (фаза — земля и нейтраль – земля);
  • Симметричный (дифференциальный) — при перенапряжении энергия направляется на другой активный проводник (фаза — фаза или фаза – нейтраль).

Чтобы лучше понять принцип работы УЗИП приведем небольшой пример.

Нормальное напряжение цепи 220 В, а при возникновении импульса в этой самой цепи напряжение резко поднимается, например, при ударе молнии. При резком скачке напряжения, в УЗИП уменьшается сопротивление, что приводит к короткому замыканию, которое в свою очередь приводит к срабатыванию автоматического выключателя и в последствии к отключению самой цепи. Таким образом обеспечивается защита электрооборудования от резких перепадов напряжения, не допуская протекания через него импульса высокого напряжения.

Разновидности УЗИП

Устройства защиты от импульсных перенапряжений бывают с одним и двумя вводами, и подразделяются на:

  • Коммутирующие;
  • Ограничивающие;
  • Комбинированные.

Коммутирующие защитные аппараты

Характерной особенностью коммутирующих устройств является высокое сопротивление, которое при возникновении сильного импульса в напряжении мгновенно падает до нуля. Принцип работы коммутирующих устройств основывается на разрядниках.

Ограничители сетевого перенапряжения (ОПН)

Для ограничителя сетевых напряжений также характерно высокое сопротивление. Его отличие от коммутирующего аппарата только в том, что снижение сопротивления происходит постепенно. ОПН основывается на работе варистора (резистора), который используется в его конструкции. Сопротивление варистора находится в нелинейной зависимости от воздействующего на него напряжения. При резком увеличении напряжения происходит также резкое увеличение силы тока, который проходит непосредственно через варистор и таким образом сглаживаются электрические импульсы, после чего ограничитель сетевого напряжения возвращается в первоначальное состояние.

Комбинированные УЗИП

УЗИП комбинированного типа объединяют в себе разрядники и варисторы, и могут выполнять как функцию разрядника так и ограничителя.

Классы УЗИП

Существует всего три класса устройств по степени защиты:

  • Устройство I класса (категория перенапряжения IV) — защищает систему от прямых ударов молнии, и устанавливается в главном распределительном щите или в вводно-распределительном устройстве (ВРУ). Обязательно нужно использовать данное устройство, если здание находится на открытой местности и окружено множеством высоких деревьев, что увеличивает риск грозового воздействия.
  • Устройство II класса (категория перенапряжения III) — используется как дополнение к устройству I класса для защиты сети от коммутационного воздействия, т.е. от внутреннего перенапряжения сети. Устанавливается в распределительном щите.
  • Устройство III класса (категория перенапряжения II) — применяется для защиты от остаточных атмосферных и коммутационных перенапряжений, а также для устранения высокочастотных помех прошедших через устройство II класса. Проводится монтаж как в обычные розетки или разветвительные коробки, так и в сами электроприборы, которые необходимо обезопасить.

Классификация по степени разряда тока:

  • Класс В — разрядки воздушные или же газовые с током разряда от 45 до 60 кА. Устанавливаются на вводе в здание в главном щите или в вводно-распределительном устройстве.
  • Класс С — варисторные модули с токами разряда порядка 40 кА. Устанавливаются в дополнительных щитах.
  • Классы С и D применяются в тандеме в случае, если необходим подземный кабельный ввод.

ВАЖНО! Расстояние между УЗИП должно быть не меньше 10 метров по длине проводки.

Как выбрать УЗИП?

Первое, что нужно сделать при выборе УЗИП это определить систему заземления, которая используется в здании.

Система заземления бывает трех типов:

  • TN-S с одной фазой;
  • TN-S с тремя фазами;
  • TN-C или TN-C-S с тремя фазами.

Не менее важно обратить на выдерживаемую температуру при приобретении устройства. Большинство УЗИП рассчитано на работу при температуре до -25. Если в вашем регионе очень холодный климат, и зимы бывают суровыми, тогда электрощит не должен находиться на улице, иначе устройство выйдет из строя.

При выборе УЗИП также необходимо учесть следующие факторы:

  • Значимость защищаемого оборудования;
  • Риск воздействия на объект: местность (город или пригород, равнинная открытая местность), зона с особым риском (деревья, горы, водоем), зона особых воздействий (молниеотвод на расстоянии от здания менее 50 метров, который представляет опасность).

В связи с положением, при котором возникла необходимость установки УЗИП, выбирается подходящий класс (I, II, III).

Также важно учитывать выдерживаемое устройством напряжение. Для устройств I-го класса этот показатель не превышает 4 кВ. Устройство II класса выдерживает уровень напряжения до 2,5 кВ, а устройство III класса до 1,5 кВ.

Еще одним важным параметром при выборе УЗИП является максимальное длительное рабочее напряжение — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Этот параметр должен быть равен номинальному напряжению в сети. Подробно можно ознакомиться с информацией в стандарте МЭК 61643 — 1, приложение 1.

При подключении УЗИП для защиты оборудования важно учитывать его номинальный постоянный или переменный ток, который может поддаваться нагрузке.

Как подключить УЗИП в частном доме?

Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

Схема подключения в однофазной сети системы заземления TN-S

При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

СПРАВКА. Рекомендуется использовать предохранители для дополнительной защиты УЗИП, которые ставятся непосредственно на само устройство.

Схема подключения в трехфазной сети системы заземления TN-S

Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

Схема подключения в трехфазной сети системы заземления TN-C

В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

Ошибки при подключении

1. Установка УЗИП в электрощитовую с плохим контуром заземления.

При допущении подобной ошибки можно лишиться не только всех электроприборов, но и самой щитовой при первом попадании молнии, так как от защиты с плохим контуром заземления не будет никакого толку, и соответственно никакой защиты.

2. Неправильно выбранное УЗИП, которое не подходит под используемую систему заземления.

Перед покупкой устройства обязательно узнайте какая система заземления используется в вашем доме, а при покупке тщательно ознакомьтесь с его техдокументацией во избежание ошибок.

3. Использование УЗИП не того класса.

Как уже разбирали выше, есть 3 класса устройств защиты от импульсного перенапряжения. Каждый класс соответствует определенной щитовой, и должен устанавливаться согласно правилам и нормам.

4. Установка УЗИП только одного класса.

Часто бывает недостаточно установки УЗИП одного класса для надежной защиты.

5. Перепутан класс устройства и место его назначения.

Бывает и такое, что приборы класса B ставятся в распределительный щит квартиры, приборы класса С в ВРУ здания, а приборы класса D перед электронной аппаратурой.

УЗИП — принцип работы, классы и разница между ними

Многие бытовые приборы в своих конструкциях имеют защитные блоки, так сказать, уже встроенные, которые защищают от импульсных перенапряжений. Это опасный вид напряжения, которое может быть вызвано грозой, при проведении ремонта сетей, при коммутации больших нагрузок и так далее. В общем, причин немало. Так вот встроенные блоки имеют очень небольшой ресурс. И если импульсная разновидность напряжения бывает часто, то приходит один момент, когда блок перестает работать и подвергает бытовую технику опасности. То есть, от перенапряжения техника просто начнет выходить из строя. Поэтому для предотвращения этих неприятностей надо установить в питающую сеть устройство защиты от импульсных перенапряжений (УЗИП). Итак, давайте разбираться: УЗИП – что это такое?

Что такое УЗИП и для чего оно нужно?

УЗИП — это устройство защиты от импульсных перенапряжений, которое обеспечивает защиту электроустановок до 1 кВ. Устройство защищает от перенапряжений в электросети, а также от грозовых воздействий посредством отвода импульсов тока на землю.

УЗИП применяют только в низковольтных силовых распределительных системах. Данное устройство подходит как для промышленных предприятий, так и для жилых строений.

УЗИП бывает двух типов:

  • ОПС — ограничитель перенапряжений сети;
  • ОИН — ограничитель импульсных напряжений.

Как работает УЗИП

Принцип работы УЗИП очень простое, потому что в нем несложная схема отвода перенапряжения. Так вот в схеме прибора установлен шунт, по которому электроэнергия движется к нагрузке. Конечно, которая через прибор подключена к питанию. Между шунтом и заземляющей линией устанавливается перемычка (мост), состоящая из варистора или разрядника.

Так вот, если напряжение в сети нормальное, то сопротивление варистора определяется мегаомами. Как только на линии появляется перенапряжение, то варистор тут же переходит в категорию проводников и начинает через себя пропускать ток, который устремляется в заземление. Вот так все просто.

Принцип действия и устройство

Принцип работы УЗИП заключается в применении варисторов — нелинейный элемент в виде полупроводникового резистора сопротивления от приложенного напряжения.

УЗИП имеет два вида защиты:

  • Несимметричный (синфазный) — при перенапряжении устройство направляет импульсы на землю (фаза — земля и нейтраль – земля);
  • Симметричный (дифференциальный) — при перенапряжении энергия направляется на другой активный проводник (фаза — фаза или фаза – нейтраль).

Чтобы лучше понять принцип работы УЗИП приведем небольшой пример.

Нормальное напряжение цепи 220 В, а при возникновении импульса в этой самой цепи напряжение резко поднимается, например, при ударе молнии. При резком скачке напряжения, в УЗИП уменьшается сопротивление, что приводит к короткому замыканию, которое в свою очередь приводит к срабатыванию автоматического выключателя и в последствии к отключению самой цепи. Таким образом обеспечивается защита электрооборудования от резких перепадов напряжения, не допуская протекания через него импульса высокого напряжения.

Разновидности УЗИП

Существует три класса, обозначаемые римскими цифрами.

  • Класс I используется в сетях, где импульс (волна) имеет характеристику 10/350 мкс. Как понять это? По сути, это время, в течение которого импульс достигнет своего максимума, и оно равно 10 микросекунд. А 350 мкс – это время падения напряжения до номинального. При этом УЗИП данного класса может выдерживать токи краткосрочного типа в пределах 25-100 кА. Это соответствует, например, удару молнии в линию электропередачи, если место удара удалено от потребителя на 1,5 км.
  • Класс II. Обозначим сразу показатели: 8/20 мкс, 10-40 кА. В этом приборе используются только варисторы. А так как эти элементы имеют незначительный ресурс, то в схему подключения между ними и шунтом впаивается предохранитель, он механический. Как только сопротивление варистора станет, так сказать, неадекватным в плане необходимой безопасности, предохранитель размыкает цепь. Он просто отпаивается. Если посмотреть на это с точки зрения физического принципа работы, то это в точности тепловая защита. Кстати, производители позаботились о том, чтобы предупреждать о снижении сопротивления варистора. Он связан с индикатором, который выведен на панель УЗИП.
  • Класс III. Приборы этого класса в точности повторяют предыдущий. Есть одно отличие – это сила тока, которую варистор должен выдерживать, ее значение не превышает 10 кА.

Кстати, необходимо отметить, что защитные блоки, встраиваемого типа, имеют точно такую же схему, и они работают точно также по этому принципу. Но как было сказано выше, у них слишком низкий ресурс эксплуатации. Поэтому добавляя в сеть УЗИП третьего класса, вы решаете проблемы с преждевременным отказом бытовой техники, связанными с перенапряжением в питающей сети.

Правда, надо быть до конца честными, разбираясь с прибором этого типа. Высокую надежность могут гарантировать сразу все три класса, установленные в распределительный щит. Почему? Все дело в разных импульсах. К примеру, УЗИП первого класса не сработает, если импульс напряжения будет коротким. Да и сама величина перенапряжения будет незначительной. Потому что это устройство относится к группе малочувствительных. А вот прибор с малой пропускной способностью по мощности просто не справиться с большой силой тока.

Добавим, что схема подключения данного устройства достаточно проста. По сути, он подключается как обычный автоматический выключатель.

Как выбрать УЗИП?

Первое, что нужно сделать при выборе УЗИП это определить систему заземления, которая используется в здании.

Система заземления бывает трех типов:

  • TN-S с одной фазой;
  • TN-S с тремя фазами;
  • TN-C или TN-C-S с тремя фазами.

Не менее важно обратить на выдерживаемую температуру при приобретении устройства. Большинство УЗИП рассчитано на работу при температуре до -25. Если в вашем регионе очень холодный климат, и зимы бывают суровыми, тогда электрощит не должен находиться на улице, иначе устройство выйдет из строя.

При выборе УЗИП также необходимо учесть следующие факторы:

  • Значимость защищаемого оборудования;
  • Риск воздействия на объект: местность (город или пригород, равнинная открытая местность), зона с особым риском (деревья, горы, водоем), зона особых воздействий (молниеотвод на расстоянии от здания менее 50 метров, который представляет опасность).

В связи с положением, при котором возникла необходимость установки УЗИП, выбирается подходящий класс (I, II, III).

Также важно учитывать выдерживаемое устройством напряжение. Для устройств I-го класса этот показатель не превышает 4 кВ. Устройство II класса выдерживает уровень напряжения до 2,5 кВ, а устройство III класса до 1,5 кВ.

Еще одним важным параметром при выборе УЗИП является максимальное длительное рабочее напряжение — действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Этот параметр должен быть равен номинальному напряжению в сети. Подробно можно ознакомиться с информацией в стандарте МЭК 61643 — 1, приложение 1.

При подключении УЗИП для защиты оборудования важно учитывать его номинальный постоянный или переменный ток, который может поддаваться нагрузке.

Как подключить УЗИП в частном доме?

Установка УЗИП производится в зависимости от показателя напряжения: 220В (одна фаза) и 380В (три фазы).

Схема подключения может быть направлена на бесперебойность или на безопасность, нужно определить приоритеты. В первом случае может временно отключиться молниезащиты для того, чтобы не допустить перебоя в снабжении потребителей. Во втором же случае недопустимо отключение молниезащиты, даже на несколько секунд, но возможно полное отключение снабжения.

Схема подключения в однофазной сети системы заземления TN-S

При использовании однофазной сети TN-S к УЗИП нужно подключить фазный, нулевой рабочий и нулевой защитный проводник. Фаза и ноль сначала подключаются к соответствующим клеммам, а затем шлейфом к линии оборудования. К защитному проводнику подключается заземляющий проводник. УЗИП устанавливается сразу после вводного автомата. Для облегчения процесса подключения все контакты на устройстве обозначены, поэтому сложностей не должно возникнуть.

Пояснение к схеме: А, В, С – фазы электрической сети, N – рабочий нулевой проводник, PE – защитный нулевой проводник.

СПРАВКА. Рекомендуется использовать предохранители для дополнительной защиты УЗИП, которые ставятся непосредственно на само устройство.

Схема подключения в трехфазной сети системы заземления TN-S

Отличительной особенностью трехфазной сети TN-S от однофазной является то, что от источника питания исходит пять проводников, три фазы, рабочий нулевой и защитный нулевой проводники. К клеммам подключается три фазы и нулевой провод. Пятый защитный проводник подключается к корпусу электроприбора и земле, то есть служит некой перемычкой.

Схема подключения в трехфазной сети системы заземления TN-C

В системе подключения заземления TN-C рабочий и защитный проводник объединены в один провод (PEN), это и является главным отличием от заземления TN-S.

Система TN-C является более простой и уже довольно устаревшей, и распространена в устаревшем жилом фонде. По современным нормам применяется система заземления TN-C-S, в которой находятся по отдельности нулевой рабочий и нулевой защитный проводники.

Переход на более новую систему необходим для того, чтобы избежать поражения электрическим током обслуживающего персонала, и ситуаций с возникновений пожара. Ну и конечно же в системе TN-C-S лучше защита от резких импульсных перенапряжений.

Во всех трех вариантах подключения при перенапряжении ток направляется на землю через кабель заземления или же через общий защитный провод, что не дает импульсу навредить всей линии и оборудованию.

Ошибки при подключении

1. Установка УЗИП в электрощитовую с плохим контуром заземления.

При допущении подобной ошибки можно лишиться не только всех электроприборов, но и самой щитовой при первом попадании молнии, так как от защиты с плохим контуром заземления не будет никакого толку, и соответственно никакой защиты.

2. Неправильно выбранное УЗИП, которое не подходит под используемую систему заземления.

Перед покупкой устройства обязательно узнайте какая система заземления используется в вашем доме, а при покупке тщательно ознакомьтесь с его техдокументацией во избежание ошибок.

3. Использование УЗИП не того класса.

Как уже разбирали выше, есть 3 класса устройств защиты от импульсного перенапряжения. Каждый класс соответствует определенной щитовой, и должен устанавливаться согласно правилам и нормам.

4. Установка УЗИП только одного класса.

Часто бывает недостаточно установки УЗИП одного класса для надежной защиты.

5. Перепутан класс устройства и место его назначения.

Бывает и такое, что приборы класса B ставятся в распределительный щит квартиры, приборы класса С в ВРУ здания, а приборы класса D перед электронной аппаратурой.

УЗИП конечно вещь хорошая и нужная, но ее использование в электропитании дома не является обязательным. В случае подключения данного устройства стоит помнить, что оно подбирается индивидуально для каждой системы заземления. Именно по этой причине непосредственно перед покупкой рекомендуется воспользоваться услугами опытного электрика, дабы избежать неприятностей.

УЗИП — устройство защиты от импульсных перенапряжений

Назначение УЗИП

Устройство защиты от импульсных перенапряжений (УЗИП) — устройство предназначенное для защиты электрической сети и электрооборудования от перенапряжений которые могут быть вызваны прямым или косвенным грозовым воздействием, а так же переходными процессами в самой электросети.

Другими словами УЗИПы выполняют следующие функции:

Защита от удара молнии электрической сети и оборудования, т.е. защита от перенапряжений вызванных прямыми или косвенными грозовыми воздействиями

Защита от импульсных перенапряжений вызванных коммутационными переходными процессами в сети, связанных с включением или отключением электрооборудования с большой индуктивной нагрузкой, например силовых или сварочных трансформаторов, мощных электродвигателей и т.д.

Защита от удаленного короткого замыкания (т.е. от перенапряжения возникшего в результате произошедшего короткого замыкания)

УЗИПы имеют различные названия: ограничитель перенапряжений сети — ОПС (ОПН), ограничитель импульсных напряжений — ОИН, но все они имеют одинаковые функции и принцип работы.

Внешний вид УЗИП:

Принцип работы и устройство защиты УЗИП

Принцип работы УЗИПа основан на применении нелинейных элементов, в качестве которых, как правило, выступают варисторы.

Варистор — это полупроводниковый резистор сопротивление которого имеет нелинейную зависимость от приложенного напряжения.

Ниже представлен график зависимости сопротивления варистора от приложенного к нему напряжения:

Из графика видно, что при повышении напряжения выше определенного значения сопротивление варистора резко снижается.

Как это работает на практике разберем на примере следующей схемы:

На схеме упрощенно представлена однофазная электрическая цепь, в которой через автоматический выключатель подключена нагрузка в виде лампочки, в цепь так же включен УЗИП, с одной стороны он подключен к фазному проводу после автоматического выключателя, с другой — к заземлению.

В нормальном режиме работы напряжение цепи составляет 220 Вольт, при таком напряжении варистор УЗИПа обладает высоким сопротивлением измеряющимся тысячами МегаОм, настолько высокое сопротивление варистора препятствует протеканию тока через УЗИП.

Что же происходит при возникновении в цепи импульса высокого напряжения, например, в результате удара молнии (грозового воздействия).

На схеме видно что при возникновении импульса в цепи резко возрастает напряжение, что в свою очередь вызывает мгновенное, многократное уменьшение сопротивления УЗИПа (сопротивление варистора УЗИПа стремится к нулю), уменьшение сопротивление приводит к тому, что УЗИП начинает проводить электрически ток, закорачивая электрическую цепь на землю, т.е. создавая короткое замыкание которое приводит к срабатыванию автоматического выключателя и отключению цепи. Таким образом ограничитель импульсных перенапряжений защищает электрооборудование от протекания через него импульса высокого напряжения.

Классификация УЗИП

Согласно ГОСТ Р 51992-2011 разработанного на основе международного стандарта МЭК 61643-1-2005 есть следующие классы УЗИП:

УЗИП 1 класс — (так же обозначается как класс B) применяются для защиты от непосредственного грозового воздействия (удара молнии в систему), атмосферных и коммутационных перенапряжений. Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Обязательно должен устанавливаться для отдельно стоящих зданий на открытой местности, зданий подключаемых к воздушной линии, а так же зданий имеющих молниеотвод или находящихся рядом с высокими деревьями, т.е. зданиях с высоким риском оказаться под прямым или косвенным грозовым воздействием. Нормируются импульсным с формой волны 10/350 мкс. Номинальный разрядный ток составляет 30-60 кА.

УЗИП 2 класс — (так же обозначается как класс С) применяются для защиты сети от остатков атмосферных и коммутационных перенапряжений прошедших через УЗИП 1-го класса. Устанавливаются в местных распределительных щитках, например во вводном щитке квартиры или офиса. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток составляет 20-40 кА.

УЗИП 3 класс — (так же обозначается как класс D) применяются для защиты электронной аппаратуры от остатков атмосферных и коммутационных перенапряжений, а так же высокочастотных помех прошедших через УЗИП 2-го класса. Устанавливаются в разветвительные коробки, розетки, либо встраивается непосредственно в само оборудование. Примером использования УЗИПа 3-го класса служат сетевые фильтры применяемые для подключения персональных компьютеров. Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток составляет 5-10 кА.

Маркировка УЗИП — характеристики

Характеристики УЗИП:

  • Номинальное и максимальное напряжение — максимальное рабочее напряжение сети на работу под которым рассчитан УЗИП.
  • Частота тока — рабочая частота тока сети на работу при которой рассчитан УЗИП.
  • Номинальный разрядный ток (в скобках указана форма волны тока) — импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА), который УЗИП способен пропустить многократно.
  • Максимальный разрядный ток (в скобках указана форма волны тока) — максимальный импульс тока с формой волны 8/20 микросекунд в килоАмперах (кА) который УЗИП способен пропустить один раз не выйдя при этом из строя.
  • Уровень напряжения защиты — максимальное значение падения напряжения в килоВольтах (кВ) на УЗИПе при протекании через него импульса тока. Данный параметр характеризует способность УЗИПа ограничивать перенапряжение.

    Схема подключения УЗИП

    Общим условием при подключении УЗИП являетя наличие со стороны питающей сети предохранителя или автоматического выключателя соответствующего нагрузке сети, поэтому все представленные ниже схемы будут включать в себя автоматические выключатели (схему подключения УЗИП в электрощитке смотрите здесь):

    Схемы подключения УЗИП (ОПС, ОИН) в однофазную сеть 220В (двухпроводную и трехпроводную):

    Схемы подключения УЗИП (ОПС, ОИН) в трехфазную сеть 3800В

    Принципиальные схемы подключения УЗИП выглядят следующим образом:

    При устройстве многоступенчатой защиты от перенапряжения, т.е. установки УЗИПов 1-го класса в ВРУ здания совместно с УЗИПами 2-го класса в распределительных щитах здания и с УЗИПами 3-го класса, например, в розетках, необходимо соблюдать расстояние между УЗИПами по кабелю не менее 10 метров:

    Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

    Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

    Что такое УЗИП

    УЗИП: особенности выбора и применения

    Даже кратковременные импульсные броски напряжения, в несколько раз превышающие номинальное, могут нанести непоправимый ущерб дорогостоящей электротехнике и электронике, а то и стать причиной пожара. Перенапряжение в сетях может возникать из-за грозы, аварий или переходных процессов. Например, импульсные перенапряжения могут стать следствием попадания молнии в систему молниезащиты или линию электропередач, переключения мощных индуктивных потребителей, таких как электродвигатели и трансформаторы, коротких замыканий.

    Что такое УЗИП и для чего оно нужно?

    Ограничитель перенапряжения в электроустановках напряжением до 1 кВ называют устройством защиты от импульсных перенапряжений – УЗИП. Устройства защиты от импульсных перенапряжений – как раз и призваны защитить электрооборудование от подобных ситуаций. Они служат для ограничения переходных перенапряжений и отвода импульсов тока на землю, снижения амплитуды перенапряжения до уровня, безопасного для электрических установок и оборудования. УЗИП применяются как в гражданском строительстве, так и на промышленных объектах.

    Основной российский документ, определяющий, что такое УЗИП, это ГОСТ Р 51992-2002, «Устройства для защиты от импульсных перенапряжений в низковольтных силовых распределительных системах».

    УЗИП призваны обеспечить защиту от ударов молнии в систему молниезащиты здания (объекта) или воздушную линию электропередач (ЛЭП), защитить высокочувствительное оборудование и технику от импульсных перенапряжений и коммутационных бросков питания. Широкое распространение получили УЗИП с быстросъемным креплением для установки на DIN-рейку.

    Аппараты защиты от импульсных напряжений включают в себя устройства нескольких категорий:

    Для чего предназначено

    Для защиты от непосредственного воздействия грозового разряда. Защищают от импульсов 10/350 мкс: попадание молнии в систему внешней молниезащиты и попадание молнии в линию электропередач вблизи объекта. Амплитуда импульсных токов с крутизной фронта волны 10/350 мкс находится в пределах 25-100 кА, длительность фронта волны достигает 350 мкс.

    Устанавливаются на вводе питающей сети в здание (ВРУ/ГРЩ). Данными устройствами должны укомплектовываться вводно- распределительные устройства административных и промышленных зданий и жилых многоквартирных домов

    Обеспечивают защиту от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции дополнительной молниезащиты. Предназначены для защиты от импульсов 8/20 мкс. Они защищают от ударов молнии в ЛЭП, от переключений в системе электроснабжения. Амплитуда токов — 15-20 кА.

    Монтируются и подключаются к сети в распределительных щитах. Служат дополнительной защитой от импульсов, которые не были полностью нейтрализованы УЗИП I класса

    Для защиты от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нейтралью. Также работают в качестве фильтров высокочастотных помех. Предназначены для защиты от остаточных импульсов 1,2/50 мкс и 8/20 мкс импульсов после УЗИП I и II классов.

    Используются для защиты чувствительного электронного оборудования, поблизости от которого и устанавливаются. Характерные области применения — ИТ- и медицинское оборудование. Также актуальны для частного дома или квартиры — подключаются и устанавливаются непосредственно у потребителей.

    Конструкция УЗИП постоянно совершенствуется, повышается их надежность, снижаются требования по техническому обслуживанию и контролю.

    Как работает УЗИП?

    УЗИП устраняет перенапряжения:

    — Несимметричный (синфазный) режим: фаза — земля и нейтраль – земля.

    — Симметричный (дифференциальный) режим: фаза — фаза или фаза – нейтраль.

    В несимметричном режиме при превышении напряжением пороговой величины устройство защиты отводит энергию на землю.

    В симметричном режиме отводимая энергия направляется на другой активный проводник.

    Схема подключения УЗИП в однофазной и трехфазной сети системы TN-S. В системе заземления TN-C применяется трехполюсное УЗИП. В нем нет контакта для подключения нулевого проводника.

    По принципу действия УЗИП разделяются вентильные и искровые разрядники, нередко применяемые в сетях высокого напряжения, и ограничители перенапряжения с варисторами.

    В разрядниках при воздействии грозового разряда в результате перенапряжения пробивает воздушный зазор в перемычке, соединяющей фазы с заземляющим контуром, и импульс высокого напряжения уходит в землю. В вентильных разрядниках гашение высоковольтного импульса в цепи с искровым промежутком происходит на резисторе.

    УЗИП на основе газонаполненных разрядников рекомендуется к применению в зданиях с внешней системой молниезащиты или снабжаемых электроэнергией по воздушным линиям.

    В варисторных устройствах варистор подключается параллельно с защищаемым оборудованием. При отсутствии импульсных напряжений, ток, проходящий через варистор очень мал (близок к нулю), но как только возникает перенапряжение, сопротивление варистора резко падает, и он пропускает его, рассеивая поглощенную энергию. Это приводит к снижению напряжения до номинала, и варистор возвращается в непроводящий режим.

    УЗИП имеет встроенную тепловую защиту, которая обеспечивает защиту от выгорания в конце срока службы. Но со временем, после нескольких срабатываний, варисторное устройство защиты от перенапряжений становится проводящим. Индикатор информирует о завершении срока службы. Некоторые УЗИП предусматривают дистанционную индикацию.

    Как выбрать УЗИП?

    При проектировании защиты от перенапряжений в сетях до 1 кВ, как правило, предусматривают три уровня защиты, каждая из которых рассчитана на определенный уровень импульсных токов и форму фронта волны. На вводе устанавливаются разрядники (УЗИП класса I), обеспечивающие молниезащиту. Следующее защитное устройство класса II подключается в распределительном щите дома. Оно должно снижать перенапряжения до уровня, безопасного для бытовых приборов и электросети. В непосредственной близости от оборудования, чувствительного к броскам в сети, можно подключить УЗИП класса III. Предпочтительнее использовать УЗИП одного вендора.

    Для координации работы ступеней защиты устройства должны располагаться на определенном расстоянии друг от друга — более 10 метров по питающему кабелю. При меньших дистанциях требуется включение дросселя, возмещающего недостающие активно-индуктивные сопротивления проводов. Также рекомендуется защищать УЗИП с помощью плавких вставок.

    При каскадной защите требуется минимальный интервал 10 м между устройствами защиты.

    Классы УЗИП не являются унифицированными и зависят от конкретной страны. Каждая строительная организация может ссылаться на один из трех классов испытаний. Европейский стандарт EN 61643-11 включает определенные требования по стандарту МЭК 61643-1. На основе МЭК 61643 создан российский ГОСТ Р 51992.

    Оценка значимости защищаемого оборудования.

    Необходимость защиты, экономические преимущества устройств защиты и соответствующие устройства защиты должны определяться с учетом факторов риска: соответствующие нормы прописаны в МЭК 62305-2. Критерии проектирования, монтажа и техобслуживания учитываются для трех отдельных групп:

    Меры защиты для минимизации риска ущерба имуществу и вреда здоровью людей

    Меры защиты для минимизации отказов электрических и электронных систем

    Меры защиты для минимизации риска ущерба имуществу и отказов инженерных сетей (в основном электрические и телекоммуникационные линии)

    Оценка риска воздействия на объект.

    Нормы установки молниезащитных разрядников прописаны в международном стандарте МЭК 61643-12 (Принципы выбора и применения). Несколько полезных разделов содержит международный стандарт МЭК 60364 (Электроустановки зданий):

    — МЭК 60364-4-443 (Защита для обеспечения безопасности). Если установка запитывается от воздушной линии или включает в себя такую линию, должно предусматриваться устройство защиты от атмосферных перенапряжений, если грозовой уровень для рассматриваемого объекта соответствует классу внешних воздействий AQ 1 (более 25 дней с грозами в год).

    — МЭК 60364-4-443-4 (Выбор оборудования установки). Этот раздел помогает в выборе уровня защиты для разрядника в зависимости от защищаемых нагрузок. Номинальное остаточное напряжение устройств защиты не должно превышать выдерживаемого импульсного напряжения категории II.

    Выбор оборудования по МЭК 60364.

    В качестве первой ступени лучше применять УЗИП на базе разрядников без съемного модуля. Вряд ли вам удастся найти варисторное устройство с номинальным током Iimp более 20 кА. Шкаф, в котором установлено УЗИП такого типа, должен быть из несгораемого материала.

    Важнейшим параметром, характеризующим УЗИП, является уровень напряжения защиты Up. Он не должен превышать стойкость электрооборудования к импульсному напряжению. Для УЗИП I-го класса Up не превышает 4 кВ. Уровень напряжения защиты Up для устройств II-го класса не должен превышать 2,5 кВ, для III-го класса — 1,5 кВ. Это тот уровень, который должна выдерживать техника.

    Ещё несколько важных параметров, которые необходимо знать для выбора УЗИП. Максимальное длительное рабочее напряжение Uc – действующее значение переменного или постоянного тока, которое длительно подаётся на УЗИП. Оно равно номинальному напряжению с учетом возможного завышения напряжения в электросети.

    Минимальное требуемое значение Uc для УЗИП в зависимости от системы заземления сети.

    Номинальный ток нагрузки IL – максимальный длительный переменный (действующее значение) или постоянный ток, который может подаваться к нагрузке. Этот параметр важен для УЗИП, подключаемых в сеть последовательно с защищаемым оборудованием. УЗИП обычно подключаются параллельно цепи, поэтому данный параметр у них не указывается.

    Выбор защитной аппаратуры: чувствительное оборудование и оборудование здания.

    Выбор защитной аппаратуры: бытовая техника и электроника.

    Выбор защитной аппаратуры: производственное оборудование.

    Выбор защитной аппаратуры: ответственное оборудование.

    Сегодня многие крупные потребители электрической энергии с успехом используют на территории России высококачественные элементы УЗИП. Положительные результаты испытаний и эффективность применения УЗИП в России позволяют говорить о том, что их использование в российских условиях выгодно и удобно. Остается подобрать нужную модель устройства и установить ее на объекте.

    Тел.: +7(800) 301-65-25, (495) 505-65-25

    Москва, ул.Бутлерова, д.17. Тел.: +7 (495) 505-65-25

    Подольск, ул.Ленина 1. Тел.: +7 (495) 505-65-25, (4967) 58-65-25

    Краснодар, ул.Одесская 48. Тел.: +7 (861) 200-95-15

    Новосибирск, просп. Карла Маркса, 30/1. Тел.: +7 (383) 209-64-25

    Санкт-Петербург, улица Ефимова, 4а. Тел.: +7 (800) 301-65-25

    Внутренний веб-портал

    УЗИП – устройство защиты от импульсных перенапряжений

    Обычное перенапряжение представляет собой превышение граничного показателя напряжения в сторону увеличения в конкретной сети. Что касается импульсного перенапряжения, то здесь все процессы происходят в виде резкого скачка напряжения на участке между фазой и землей, занимающего доли секунд. Подобные перепады наносят вред не только самой сети, но и оказывают разрушающее воздействие на все подключенные приборы. Защититься от подобных ситуаций поможет УЗИП – устройство защиты от импульсных перенапряжений.

    1. Назначение
    2. Конструкция
    3. Принцип работы
    4. Виды
    5. Классы защиты
    6. Характеристики
    7. Особенности подключения

    Назначение

    Основной функцией УЗИП является защита сетей и подключенного оборудования от высоких импульсных напряжений, возникающих в результате непосредственного или косвенного влияния разрядов грозы и прочих негативных факторов, происходящих в этой сети.

    Подобные аномалии могут появиться не только вблизи, но и при попадании молнии в ЛЭП на значительном расстоянии от объекта. Помимо грозы, причинами импульсов нередко становятся мощные агрегаты и оборудование, запускаемые в той же самой сети. Как правило, это сварочная аппаратура, электродвигатели, конденсаторы и другие аналогичные устройства.

    Приборы категории УЗИП актуальны не только в частном секторе, но и среди владельцев квартир многоэтажных домов. Все они до предела насыщены тонкой электронной аппаратурой с повышенной чувствительностью, и сильный кратковременный импульс может просто вывести ее из строя без возможности восстановления. Следует помнить, что от этого явления не спасают автоматы, УЗО, УЗМ и другие традиционные защитные средства.

    Таким образом УЗИП способны защитить от многих негативных явлений:

    • Разряды молний, поражающие электросети и приборы, вызывающие сильные скачки напряжения под прямым или косвенным воздействием.
    • Импульсные перенапряжения, возникающие из-за переходных процессов коммутации при включении-выключении мощного оборудования.
    • Короткие замыкания, возникающие на удалении, способные вызвать перенапряжение в домашней сети.

    Данные устройства могут называться по-разному. Кроме УЗИП, они называются ОПС – ограничители перенапряжений сети, или ОИН – ограничители импульсных напряжений. Все они выполняют одни и те же функции, действуя совершенно одинаково.

    Конструкция

    УЗИП изготавливаются по стандартным размерам в модульном исполнении. Поэтому они легко монтируются на обычную ДИН-рейку, шириной 35 мм. В соответствии с классом защиты, в конструкцию прибора может входить от 1 до 4 модулей. Отработанные секции, выполнившие свою защитную функцию, легко заменяются новыми. Для этого центральная часть корпуса оборудована специальными направляющими под новые модули. Таким образом, замена выполняется быстро, поскольку не требуется отключать провода и демонтировать все устройство.

    Основным защитным компонентом служит варистор, представляющий собой разновидность полупроводников. Для его изготовления применяется керамическая смесь и окись цинка. К ним добавляются специальные примеси, создающие уникальные запирающие свойства готового элемента, на котором основан принцип действия всего прибора. Кроме того, каждый модуль отдельно защищен от повышенных токовых нагрузок.

    На передней панели имеется окно с дисплеем, где отображается состояние и работоспособность устройства. Подключение проводников осуществляется через клеммы, предназначенные для входа и выхода. Надежность контактов повышается за счет насечек, существенно увеличивающих площадь соприкосновения и снижающих сопротивление самих контактов. Подключая провода, нужно обязательно соблюдать полярность. Во избежание путаницы, каждая клемма промаркирована в соответствии со своим предназначением.

    Принцип работы

    Устранение перенапряжения выполняется в двух основных режимах:

    • Несимметричный или синфазный. Используются схемы фаза-земля и нейтраль-земля, при которых вся избыточная энергия отводится в землю.
    • Симметричный или дифференциальный. Здесь используются варианты фаза-фаза и фаза-нейтраль, где вся энергия перенаправляется для отвода по другому активному проводнику.

    То, как работает УЗИП, полностью зависит от исполнения и конструкции аппаратуры. Первый вариант предполагает использование вентильных и искровых разрядников, особенно эффективных в сетях с высоким напряжением. Когда на них воздействует грозовой разряд, под влиянием перенапряжения в перемычке пробивается воздушный зазор. Поскольку она соединяет фазу и контур заземления, то высокое импульсное напряжение уйдет в землю.

    Если вместо воздушного используется искровой промежуток, то для гашения импульса применяется резистор. УЗИП с газонаполненными разрядниками рекомендуется устанавливать на объектах, где имеется внешняя система молниезащиты или подача электроэнергии осуществляется при помощи воздушных линий.

    Второй вариант представляет собой ограничитель перенапряжения, сконструированный на основе варистора, подключаемого параллельно с оборудованием, находящимся под защитой. В обычном рабочем режиме через варистор проходит ток очень малой величины, приближенной к нулю. Однако, при возникновении перенапряжения, его сопротивление резко снижается и высокий ток свободно проходит через защитный компонент, рассеивая при этом всю полученную энергию. После этого напряжение снижается до номинального и варистор вновь работает в непроводящем режиме.

    Все приборы оборудуются встроенной тепловой защитой, предупреждающей выгорание в конце срока эксплуатации. Неоднократные срабатывания приводят к потере полезных качеств варистора, и он превращается в постоянный проводник тока. Такое состояние определяется индикатором, а информация об этом выводится на дисплей.

    Рассматриваемые защитные устройства имеют один или два ввода и условно разделяются на следующие типы УЗИП:

    • Коммутирующая аппаратура. Отличается высоким сопротивлением, мгновенно падающим до нуля при сильном импульсе. Типичными представителями является разрядник.
    • Ограничивающие устройства. К ним относятся ОПН – ограничители сетевого перенапряжения с таким же высоким сопротивлением. В отличие от коммутирующей аппаратуры, сопротивление здесь снижается постепенно. Основой конструкции является варистор, плавно сглаживающий высокие импульсы, а затем возвращающийся в исходное состояние.
    • Приборы комбинированного типа соединяют в себе разрядник и варистор, выполняя функции обоих компонентов.

    Классы защиты

    УЗИП классифицируются по защитным свойствам и подразделяются на такие классы:

    • 1-й класс. Соответствует 4-й категории перенапряжения. Непосредственно защищает от прямых попаданий разрядов, монтируется в ГРЩ или ВРУ. Обязательно устанавливается при расположении объекта на открытой территории или в окружении высоких деревьев.
    • 2-й класс. Рассчитан на 3-ю категорию перенапряжения и дополняет УЗИП класса 1. То есть, УЗИП 1 и 2 класса используются вместе. Защищает сети от внутренних перенапряжений, вызванных коммутационными воздействиями. Устанавливается в обычный распределительный щит.
    • 3 класс. Работает со 2-й категорией перенапряжения, нейтрализует остаточные коммутационные и атмосферные импульсы. Устраняет помехи высокой частоты, преодолевшие защиту 2-го класса. Устройства III класса монтируются в розетки, распределительные коробки или непосредственно в защищаемые устройства.

    Данные устройства дополнительно разделяются по степени токовых разрядов:

    • Класс В. Состоит из воздушных или газовых разрядников, выдерживающих ток 45-60 кА. Монтируются на вводе объекта, в главных щитах или ВРУ.
    • Класс С. Устройства на основе варисторов с токами разрядки 40 кА. Монтируются в типовых электрощитах.
    • Класс D. Используется вместе с классом С при оборудовании кабельных вводов под землей.

    Между каждым типом УЗИП длина проводки соблюдается от 10 метров и более.

    Характеристики

    Выбор защитной аппаратуры во многом зависит от знания его параметров и технических характеристик. Показатели по каждой модели отображаются в ее документации, важно знать сам перечень и что представляет собой каждая позиция.

    Для всех УЗИП общие характеристики будут такими:

    • Величина номинального напряжения (Un) в данной сети, для которой предназначено защитное устройство. Как правило, находится в пределах 230-440 вольт.
    • Максимально допустимое по продолжительности рабочее напряжение Uc. Эту величину устройство должно периодически выдерживать на протяжении всего срока эксплуатации.
    • Величина импульсного тока (Iimp). Рассчитывается по заряду и пиковому значению импульса при испытании. Этим током испытывается устройство защиты от импульсных перенапряжений УЗИП 1-го класса.
    • Значение номинального импульсного разрядного тока. Применяется для испытаний приборов 2-го класса, которые должны выдерживать его многократные воздействия.
    • Величина максимального импульсного разрядного тока, который УЗИП 2-е классы может пропустить через себя один раз без выхода из строя.
    • Максимальное падение напряжения, определяющее уровень защиты прибора во время прохождения импульса. Определяется его способность к ограничению перенапряжения, появляющегося на клеммах.
    • Напряжение защищаемых линий в среднем составляет 1-2 кВ.
    • Максимальный разряд, выдерживаемый аппаратурой в зависимости от степени защиты – от 10 до 60 кА.
    • Время срабатывания защитного устройства не превышает 25 нс.

    Особенности подключения

    Монтаж УЗИП будет разным в одно- или трехфазных электросетях. Применяемая схема направляется по выбору пользователя на бесперебойную или безопасную работу. В одном случае потребуется временное отключение от молниезащиты, чтобы исключить перебои в электроснабжении. В другом – запрещается отключать молниезащиту даже на незначительное время.

    Когда устройство подключается к однофазной сети с заземляющей системой TN-S, тогда задействуются проводники фазы, нулевые рабочий и защитный. В начале в нужные клеммы подключается фаза и ноль, а затем через общий шлейф выполняется соединение с линией оборудования. Защитный проводник соединяется с заземляющим проводом. Установка прибора осуществляется сразу же за вводным автоматическим защитным устройством. Промаркированные контакты исключают возможные ошибочные действия при монтаже.

    При соединении с трехфазной сетью с такой же системой заземления TN-S, используется уже пять проводников. Три из них являются фазными, а два нулевых выполняют функции рабочего и защитного проводников. С клеммами соединяются только три фазы и ноль. Подключение защитного проводника производится на корпус электрооборудования и на землю, играя роль своеобразной перемычки.

    Таким образом, в обоих вариантах подключения высокий ток перенапряжения будет уходить в землю, не причиняя вреда подключенным электронным устройствам.

    Устройство защиты от импульсных перенапряжений