Защита светодиодных ламп от скачков напряжения

Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер

В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:

1. Отсутствие стабилизации по напряжению или току.

2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.

Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.

Схема светодиодной лампы с гасящим конденсатором:

А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» — это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

Импульсные драйвера для светодиодов

В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.

2. Трансформаторный – с гальванической развязкой.

Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором – выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Внешний вид варисторов

Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

Um — максимально допустимое действующее переменное напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.

Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.

Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.

Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.

В этом видео ролике автор интересно рассказывает о таком способе защиты.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).

Внутри расположено три детали, одну из которых мы рассмотрели выше:

Вот принципиальная схема. Вы можете её повторить.

Заключение

Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.

Все о блоках защиты для светодиодных и энергосберегающих ламп

Рано или поздно любые источники света, применяемые в приборах освещения, перегорают. Причин этому множество. В лампочках со спиралью происходит разрыв последней, а в лэд-элементах – расслоение и выход из строя полупроводников кристаллов.

Единственный способ максимально продлить срок службы светодиодных и энергосберегающих ламп – это установить в сеть специальный блок защиты. Рассмотрим, какие основные причины перегорания ламп существуют, каким наилучшим способ защитить их от резких изменений параметров бытовой сети, каковы основные технические данные блоков защиты, что нужно знать при их выборе, как правильно их подключить, установить и подобрать место монтажа.

Почему лампы перегорают

В отличие от обычных ламп накаливания у галогенных принцип работы позволяет частично восстанавливать постоянно утончающуюся в ходе свечения спираль. Это несколько продлевает срок ее действия. Светодиодный кристалл служит на порядок дольше, но он также не застрахован от перегорания. Помимо естественного износа спирали или полупроводниковой матрицы, существует целый ряд специфических причин, значительно снижающих их долговечность. Это такие свойства бытовой сети 220 В, как:

  1. Скачки напряжения.
  2. Фатальные скачки.
  3. Наведенная пульсация.
  4. Паразитарная пульсация.

Рассмотрим их особенности более детально.

Скачки напряжения

Изменение значения напряжение – достаточно характерное явление для отечественной бытовой сети. Любая энергосберегающая светодиодная лампа, оснащенная элементарным гасящим драйвером, имеет защиту от эффекта повышения номинала. С другой стороны, от его падения лэд-элемент не может быть огражден таким блоком. Потребуется также установка высоковольтного конденсатора.

Фатальные скачки напряжения

К этому виду причин поломок светодиодных и энергосберегающих ламп относятся сверхвысокое повышение силы тока и напряжения в сети. Это происходит при разряде молнии в непосредственной близости с линией электропередач. Как правило, стандартные блоки защиты не успевают блокировать воздействие такой мощности, и электроника сгорает моментально. В этом случае происходит эффект мигающих лэд-светильников в отключенном состоянии.

Наведенная пульсация

При близком расположении двух проводников, один из которых ведет к мощному потребителю, во втором, ведущем к светодиодной лампе, возникает достаточная для инициации свечения сила тока. Проблема в том, что такое дополнительно включение/выключение (равное частоте переменного тока, то есть 50 раз в секунду!) очень быстро приведет энергосберегающее устройство в негодность.

Паразитарная пульсация

Эффект паразитной пульсации возникает при использовании выключателей с лэд-подсветкой. Через ее элементы проходит ток, достаточной силы, чтобы возбудить кристаллы светодиодной энергосберегающей лампы. В результате она мигает и, естественно, постепенно расходует ресурс полупроводниковой матрицы.

Как защитить лампы лед от скачков напряжения в электросети

Для устранения мерцания, основной причины уменьшения срока действия лэд-элемента, потребуется установка блока защиты. Это особый прибор, внутри которого расположен элемент с электрическим сопротивлением, несколько меньшим, чем в светодиодной энергосберегающей лампе. Возникающие паразитная и наведенные пульсации просто проходят через него, минуя светильник. Чтобы модуль начал работать, его необходимо подключить к входным контактам самого драйвера питания.

Почему встроенные блоки питания не защищают

Стандартные блоки питания, устанавливаемые в любой энергосберегающей светодиодной лампе, это гасящие драйвера. Их основное назначение – защитить кристалл от скачка напряжения. Однако они не могут предотвратить воздействия на нее микротоков, достаточных для мерцания. Полупроводниковый кристалл имеет меньшее сопротивление, и потому подвергается действию паразитной и наведенной пульсации. Также они не способны предохранить от падения номинала в сети, что также вредно для лэд-элементов. Поэтому требуется установка отдельно блока защиты.

Блоки защиты ламп: подключение и применение, работа и устройство

Блок защиты от импульсных перенапряжений предохраняет энергосберегающие светодиодные лампы от скачков в сети до 20 кВ. В зависимости от конструкционных особенностей он монтируется в схему параллельно или последовательно.

Технические данные

Устройства для защиты от перепадов сети для светодиодов и энергосберегающих ламп характеризуются тремя основными параметрами:

  1. Суммарная мощность потребляемых светильников.
  2. Входное напряжение.
  3. Номинал на выходе.

Важно! Дополнительными характеристиками, влияющими на функциональность блока защиты, являются диапазон рабочих температур и степень защиты от атмосферной влажности.

Особенности выбора

Первым необходимым условием выбора блока защиты для светодиодных и иных энергосберегающих ламп является правильный расчет суммарной мощности потребления. При этом к расчетной мощности для страховки лучше добавить еще 20-30% от полученного значения. Если устройство приобретается не только для лэд-элементов, но и для лампочек накаливания или галогенок, то желательно, чтобы оно было оснащено системой плавного повышения напряжения.

Правила и способы подключения

Блок защиты для одной или нескольких светодиодных или других энергосберегающих ламп устанавливается в самом начале схемы (после выключателя) в соответствии с конструкцией (последовательно или параллельно).

Важно! Если в схеме есть выключатель с подсветкой, потребуется установить дополнительный резистор (около 50 кОм и 1Вт) – параллельно блоку защиты. Последний в неактивном состоянии разрывает цепь, и потому лед-элемент работать не будет.

Места установки защиты

Если блок защиты для светодиодных и энергосберегающих ламп небольшой (до 300 Вт), его можно установить в распределительном модуле для проводки. Однако необходимо иметь ввиду, что он должен хорошо охлаждаться и быть доступным в случае необходимости ремонта или замены.

Основные выводы

Блок защиты устраняет перепады напряжения в сети, обеспечивая длительный срок службы галогенным и прочим энергосберегающим и светодиодным лампам. Чаще всего причиной перегорания лампочек являются:

  1. Скачки напряжения.
  2. Фатальное повышение силы тока.
  3. Наведенная пульсация.
  4. Паразитарная пульсация.

Для надежной защиты энергосберегающих ламп и светодиодных светильников необходимо в начало электросхемы установить параллельно или последовательно (в зависимости от конструкции) специальный блок. При его выборе нужно учесть суммарную мощность электроприборов, а также напряжение на входе и выходе и условия будущей эксплуатации.

Все о блоках защиты для светодиодных и энергосберегающих ламп

Все о блоках защиты для светодиодных и энергосберегающих ламп

Рано или поздно любые источники света, применяемые в приборах освещения, перегорают. Причин этому множество. В лампочках со спиралью происходит разрыв последней, а в лэд-элементах – расслоение и выход из строя полупроводников кристаллов.

Единственный способ максимально продлить срок службы светодиодных и энергосберегающих ламп – это установить в сеть специальный блок защиты. Рассмотрим, какие основные причины перегорания ламп существуют, каким наилучшим способ защитить их от резких изменений параметров бытовой сети, каковы основные технические данные блоков защиты, что нужно знать при их выборе, как правильно их подключить, установить и подобрать место монтажа.

Чем опасны перепады напряжения

Перепад напряжения может быть вызван одновременным отключением нескольких мощных устройств, аварией на электросетях, нестабильной работой подстанции из-за перегрузки, эксплуатацией сварочного аппарата, низким качеством материалов электропроводки или ее монтажа. Нередко к существенному скачку напряжения приводит и удар молнии по линии электропередач.

Большинство перепадов незначительны и остаются незамеченными нами, но не техникой. Любой скачок, из-за которого напряжение в сети становится выше 250 Вольт, снижает срок службы подключенных устройств или дестабилизирует их работу. Даже несущественные отклонения на 5-10 %, происходящие регулярно, приводят к сбоям в управляющих блоках, сбросу настроек, возникновению помех. Перепады на 10-25 % сокращают срок службы приборов почти вдвое. А скачки напряжения до 300 Вольт выводят из строя блоки питания, управляющие и сенсорные панели, электродвигатели, сетевое оборудование.

В большинстве многоквартирных домов качество электропроводки оставляет желать лучшего, они не выдерживают нагрузки, ведь в каждой квартире одновременно работают десятки приборов. Безусловно, лучше поменять в квартире проводку, чтобы минимизировать вероятность перепадов и не довести до пожара. Но даже если нет такой возможности, обезопасить себя и родных можно.

Основной параметр при выборе устройств, способных защитить от перепадов напряжения, — это выходная мощность, которая берется из силы тока (указывается в амперах А) умноженной на напряжение (указывается в вольтах В). Ее величина, указываемая в вольт-амперах (ВA), должна соответствовать общей мощности, потребляемой приборами. Поэтому перед приобретением нужно посчитать общую мощность техники, которую вы планируете подключить.

Скачки напряжения

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.

Напряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Фронт нарастания амплитуды напряжения настолько быстрый, что защитные каскады электроники не успевают справиться и выгорают целые платы. В светодиодной лампочке будут многочисленные пробои кристаллов. Мы отнесли такие скачки напряжения к фатальным, поскольку адекватной защиты от такого форс-мажора нет.

При штатном режиме эксплуатации возникает такое явление как мерцание ламп в выключенном состоянии.

Подробно о мигании включенных ламп мы уже рассматривали в этой статье.

Паразитарная пульсация

Паразитарная пульсация светодиодной лампы возникает, когда для её включения используют выключатель с подсветкой. Через светодиод подсветки так же проходит достаточный ток для мигания светодиодов. Наведённая и паразитарная пульсация — ведущий фактор риска для светодиодного освещения. Блок защиты светодиодных ламп 220в представляет собой шунт с сопротивлением меньше, чем сопротивление светодиодов в лампочке. При возникновении паразитарных наводок они проходят через шунт, минуя лампу. Одним из примеров таких устройств является УЗС LED защита (Устройство Защиты Светодиодов) .

ля активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

УЗС LED защита (Устройство Защиты Светодиодов) предназначено для предотвращения самопроизвольных включений (проблески, промаргивания) светодиодных источников света (лампы, светильники в т. ч. с преобразователями) возникающих вследствие воздействия малых токов в сети, особенно при коммутации через выключатели с подсветкой.

Применение

Светодиодные лампы и светильники в т. ч. работающие через внешние преобразователи (драйверы). Одно устройство подключается на одну линию питания (один выключатель), при этом количество LED- нагрузок не лимитировано.

Подключение

Устройство подключается только при отключенной сети. Устройство подключается параллельно цепи питания 230 VAC, после выключателя.

Технические характеристики

230В ±20%. Мощность нагрузки не лимитирована (определяется характеристиками сопряженного выключателя).

Паразитарная пульсация

Паразитарная пульсация светодиодной лампы возникает, когда для её включения используют выключатель с подсветкой. Через светодиод подсветки так же проходит достаточный ток для мигания светодиодов.

Наведённая и паразитарная пульсация – ведущий фактор риска для светодиодного освещения.

Наконец мы подошли к главной теме этого обзора — устройство защиты светодиодных ламп.

Блок защиты светодиодных ламп 220в представляет собой шунт с сопротивлением меньше, чем сопротивление светодиодов в лампочке. При возникновении паразитарных наводок они проходят через шунт, минуя лампу.

Одним из примеров таких устройств является вот такой девайс. Для активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

Стабилизатор напряжения для защиты от скачков напряжения

Стабилизатор напряжения подходит для защиты от перепадов напряжения в любых помещениях. Основным достоинством прибора является возможность пользоваться электроприборами, бытовой и электронной техникой даже во время скачков напряжения.

Стабилизатор защита от скачков напряжения

Стабилизатор не отключает технику, в отличие от реле. Его основная задача – нормализация рабочего напряжения вне зависимости от его значений. Стабилизаторы незаменимы в условиях постоянных перепадов напряжения. Чаще всего это дачи, загородные дома и пр.

Выбор стабилизатора следует производить в соответствии с техническими параметрами и характеристиками устройства. Основные виды стабилизаторов по принципу действия:

  • Релейные
  • Электромеханические
  • Электронные
  • Электронные двойного преобразования

Также при выборе следует изучить следующие технические показатели устройства:

  • Количество фаз (однофазные, трехфазные) – в частных сетях обычно используются однофазные стабилизаторы напряжения
  • Мощность – следует предварительно получить данные о суммарной мощности всех электроприборов
  • Диапазон входного напряжения – этот показатель напрямую зависит от значений напряжения во время скачков

А что делать если ваш выключатель без подсветки, а лампа все равно моргает? При отключенном выключателе длинный питающий провод лампы может выступать своеобразной антенной. И если рядом с ним в одной штробе проложены много параллельных проводов под напряжением, то в отключенном проводе лампочки, они начнут наводить свое электрическое поле.

В результате чего образуется потенциал, который может заряжать фильтрующий конденсатор в схеме питания люминесцентной лампы.

Что с этим делать? Все также шунтировать лампу относительно маленьким сопротивлением, конденсатором или применять методы описанные выше.

Блок защиты для светодиодных ламп 220В

Главная и, пожалуй, единственная причина выхода из строя обыкновенных ламп накаливания, галогенных и люминесцентных лампочек – перегорание спирали. С точки зрения физики этот процесс легко объясним. С раскалённой спирали постоянно испаряются атомы вольфрама.

В обыкновенных лампах быстрее, в галогенных – медленнее. После выключения часть испарившихся атомов оседает назад на спираль, часть на колбу. Как следствие неравномерного оседания, со временем образуются истончённые участки. А что приводит в негодность светодиодные лампы?

Почему лампы перегорают?

Все лампы со спиралью накаливания работают по принципу термоэлектронной эмиссии, то есть при прохождении тока спираль раскаляется, излучая свет видимой части спектра. Интенсивность тепловыделения обратно пропорциональна толщине проводника, соответственно истончённые зоны спирали нагреваются значительно сильнее, теряя прочность. На этих участках и происходят разрывы.

В качестве методов борьбы с этой «болезнью» разработано множество схем плавного розжига спирали, что действительно способно значительно увеличить срок её службы. Все эти схемы относятся к устройствам защиты.

Наряду с устройствами защиты ламп со спиралью накаливания появляются устройства защиты светодиодных ламп. Казалось бы, для чего они нужны, если у светодиодов нет спирали…

Действительно, свечение кристалла светодиода происходит благодаря возбуждению электронов в полупроводниковом слое, а не за счёт раскалённой спирали. Но в основе эффекта лежит тот же эффект термоэлектронной эмиссии. С годами очень тонкий полупроводниковый слой прогорает. Если внимательно присмотреться к светодиодной лампочке через несколько лет её работы, можно заметит отдельные потускневшие или нерабочие кристаллы, у которых произошёл пробой слоя полупроводника.

Существует ряд факторов, способных существенно сократить срок жизни таких устройств. К ним относятся:

  • Скачки напряжения;
  • наведённая пульсация;
  • паразитарная пульсация.

Скачки напряжения

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.

Напряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Фронт нарастания амплитуды напряжения настолько быстрый, что защитные каскады электроники не успевают справиться и выгорают целые платы. В светодиодной лампочке будут многочисленные пробои кристаллов. Мы отнесли такие скачки напряжения к фатальным, поскольку адекватной защиты от такого форс-мажора нет.

При штатном режиме эксплуатации возникает такое явление как мерцание ламп в выключенном состоянии.

Подробно о мигании включенных ламп мы уже рассматривали в этой статье.

Наведённая пульсация

Сила тока, требующаяся для работы светодиодов очень мала — микроамперы. Если две линии внутриквартирной проводки находятся в непосредственной близости, а в одной из линий включена мощная нагрузка, электромагнитные волны способны возбуждать ток в проводнике достаточный для свечения светодиода.

Вечные светодиоды такой же миф, как и вечный двигатель. Каждый эпизод включения/выключения на чуть-чуть уменьшает срок его жизни. Никто не измерял такой параметр для светодиодов, но при частоте события пятьдесят раз в секунду (частота пульсации сети 50 Гц) даже очень большие числа — понятие относительное.

Паразитарная пульсация

Паразитарная пульсация светодиодной лампы возникает, когда для её включения используют выключатель с подсветкой. Через светодиод подсветки так же проходит достаточный ток для мигания светодиодов.

Наведённая и паразитарная пульсация – ведущий фактор риска для светодиодного освещения.

Наконец мы подошли к главной теме этого обзора — устройство защиты светодиодных ламп.

Блок защиты светодиодных ламп 220в представляет собой шунт с сопротивлением меньше, чем сопротивление светодиодов в лампочке. При возникновении паразитарных наводок они проходят через шунт, минуя лампу.

Одним из примеров таких устройств является вот такой девайс. Для активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

Выбор, монтаж и подключение блока защиты ламп от перепадов напряжения в сети

Лампы накаливания функционируют согласно принципу термоэлектронной эмиссии. При попадании тока в спираль она нагревается, в результате чего продуцируется свет видимой части спектра. Причем мощность тепловыделения обратной пропорциональна диаметру проводника. Вследствие этого утончившиеся участки спирали накаляются очень быстро, что приводит к потере их прочности. Именно истонченные места являются слабым звеном, где и происходит перегорание.

Обратите внимание! К перегоранию ламп приводят не только перепады напряжения, но и такие явления, как наведенная и паразитарная пульсация.

Галогенные лампочки также склонны к перегоранию в результате скачков напряжения. Имеется у таких источников света особенность, присущая только им, — склонность к перегреванию. Чрезмерно разогретая лампочка может перегореть в любой момент.

В защите нуждаются не только лампы накаливания и галогенные светильники, но и светодиодные лампы. На первый взгляд это выглядит странно, ведь у светодиодов отсутствует спираль, и свечение кристалла возникает в результате возбуждения электронов, а не разогревания спирали. Однако в основе принципа действия светодиодов также имеется термоэлектронная эмиссия. По прошествии нескольких лет полупроводниковый участок выгорает и, если присмотреться к ЛЕД-лампе, на ней заметны тусклые кристаллы с пробитым слоем полупроводника.

Техническая информация:

УЗИП комбинированное

Для монтажа в распределительный щит: готовое к применению УЗИП компактного исполнения, класса I + II на основе искровых разрядников, обеспечивающее эффективное ограничение энергии тока молнии (т.н. «функция прерывания волны»), например, УЗИП DEHNshield®.

Многополюсное УЗИП класса II

Для скрытого монтажа: исполнение с защитой управляющей фазы и визуальной сигнализацией аварийного состояния для каждой линии, с возможностью размыкания цепи нагрузки в случае сбоя, например, УЗИП DEHNcord тип DCOR L 3P 275 SO LTG.

Многополюсное УЗИП класса II

Универсальный вариант УЗИП в корпусе со степенью защиты IP 65, с возможностью применения при дооснащении существующей системы освещения, например, УЗИП DEHNcord тип DCOR L 3P 275 SO IP. Для скрытого монтажа с помощью заходящего снаружи внутрь гибкого соединительного кабеля, c защитой управляющей фазы и визуальной сигнализацией аварийного состояния для каждой линии, с возможностью размыкания цепи нагрузки в случае сбоя.

Заземление опор и короткозамыкающее устройство для светильников наружного освещения

Для скрытого монтажа внутри опоры или в корпуса светильников наружного освещения. Информация для этого изделия предоставляется на международном сайте, на английском языке.

Скачки напряжения

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.

Напряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Фронт нарастания амплитуды напряжения настолько быстрый, что защитные каскады электроники не успевают справиться и выгорают целые платы. В светодиодной лампочке будут многочисленные пробои кристаллов. Мы отнесли такие скачки напряжения к фатальным, поскольку адекватной защиты от такого форс-мажора нет.

При штатном режиме эксплуатации возникает такое явление как мерцание ламп в выключенном состоянии.

Подробно о мигании включенных ламп мы уже рассматривали в этой статье.

Паразитарная пульсация

Паразитарная пульсация светодиодной лампы возникает, когда для её включения используют выключатель с подсветкой. Через светодиод подсветки так же проходит достаточный ток для мигания светодиодов. Наведённая и паразитарная пульсация — ведущий фактор риска для светодиодного освещения. Блок защиты светодиодных ламп 220в представляет собой шунт с сопротивлением меньше, чем сопротивление светодиодов в лампочке. При возникновении паразитарных наводок они проходят через шунт, минуя лампу. Одним из примеров таких устройств является УЗС LED защита (Устройство Защиты Светодиодов) .

ля активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

УЗС LED защита (Устройство Защиты Светодиодов) предназначено для предотвращения самопроизвольных включений (проблески, промаргивания) светодиодных источников света (лампы, светильники в т. ч. с преобразователями) возникающих вследствие воздействия малых токов в сети, особенно при коммутации через выключатели с подсветкой.

Применение

Светодиодные лампы и светильники в т. ч. работающие через внешние преобразователи (драйверы). Одно устройство подключается на одну линию питания (один выключатель), при этом количество LED- нагрузок не лимитировано.

Подключение

Устройство подключается только при отключенной сети. Устройство подключается параллельно цепи питания 230 VAC, после выключателя.

Технические характеристики

230В ±20%. Мощность нагрузки не лимитирована (определяется характеристиками сопряженного выключателя).

Паразитарная пульсация

Паразитарная пульсация светодиодной лампы возникает, когда для её включения используют выключатель с подсветкой. Через светодиод подсветки так же проходит достаточный ток для мигания светодиодов.

Наведённая и паразитарная пульсация – ведущий фактор риска для светодиодного освещения.

Наконец мы подошли к главной теме этого обзора — устройство защиты светодиодных ламп.

Блок защиты светодиодных ламп 220в представляет собой шунт с сопротивлением меньше, чем сопротивление светодиодов в лампочке. При возникновении паразитарных наводок они проходят через шунт, минуя лампу.

Одним из примеров таких устройств является вот такой девайс. Для активации защиты достаточно подключить его к клеммам входного напряжения драйвера питания светодиодной лампы. Применение даже такого элементарного способа защиты во много раз продлит срок жизни светодиодному освещению.

Выбор в пользу того или иного устройства для защиты от сетевых перепадов стоит делать, основываясь на главной проблеме и условиях эксплуатации аппарата:

  • Если в доме нормальное электроснабжение со стабильным напряжением, но при этом часто отключают свет, лучше отдать предпочтение источнику бесперебойного питания.
  • Если электричество есть постоянно, но отмечаются скачки напряжения, желательно на всю сеть поставить стабилизатор. Или хотя бы подключить самые дорогие виды техники через сетевые фильтры.

Оптимальным решением будет установка обоих видов устройств. Они способны взаимно дополнять друг друга.

Самым современным устройством считается источник бесперебойного питания с двойным энергопреобразователем ON-LINE. Он способен в режиме реального времени стабилизировать напряжение в широких диапазонах. Если свет отключают, устройство автоматически переключается на работу аккумуляторных батарей – работает как автономный генератор.

Вечная лампа накаливания

Для изготовления понадобится лампа, цоколь от другой лампы накаливания, предварительно снятый и очищенный, два диода Д226, инструменты (кусачки, плоскогубцы), надфиль, паяльные принадлежности. Подключение через диод позволяет повысить срок в разы. Исходя из опыта, можно сказать, что в подвале у меня лампочка такой конструкции работает исправно уже несколько лет.

В качестве диода применяется любой, на напряжение не менее 350 В. Учитываем силу тока, которая должна быть, не менее 0,5 А. Можно использовать диоды Д245, а в нашем случае Д226. Такие диоды использовались в старых советских телевизорах, в любой старой радиотехнике. Их можно купить в магазине радиодеталей, стоят они копейки. Схема подключения лампы через диод простая, но создает хорошую защиту.

Берем диод и откусываем один вывод корпуса под корень. Второй вывод в виде трубочки тоже откусываем.

В трубочку вставляем проволочку и запаиваем. Получается так:

Теперь наш диод без проблем влезет в цоколь. Берем паяльник и припаиваем диод к цоколю лампы:

Теперь берем цоколь и надеваем его, и опаиваем конец провода. Лишнюю часть провода откусываем. Зафиксируем в 3-4 местах два цоколя между собой паяльником.


Вечная лампочка готова. Единственный недостаток этой лампочки – мерцающий свет. Для подъезда или подвала мерцание не играет важной роли.

Принцип диода можно применить, поставив диод не в лампочке, а в выключателе или в светильнике. Этот способ будет полезен тем, кто не особо дружит с электричеством.

Можно использовать такую схему подключения лампы накаливания:

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Защита светодиодных ламп от скачков напряжения

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Три основных вида источников питания для светодиодов: Реактивное сопротивление конденсатора, импульсный драйвер на основе ШИМ и высоковольтный стабилизатор тока.

В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Достоинства:

1. Не греется.
2. Ток через конденсатор зависит от нагрузки, поэтому происхочит частичная независимость напряжения на каждом светодиоде от их количества, а значит и тока через каждый. Другими словами, если мы включим в цепь 100 светодиодо или 50, напряжение на каждом не изменится в 2 раза. Или если мы будем увеличивать емкость конденсатора в 2 раза, это не значит, что и напряжение увеличится в 2 раза. Все приводимые в инете формулы для расчета емкости в простейшем драйвере, эмпиричиские и не соответствуют действительности.
3. Дешевизни и минимум деталей. Как учили меня, чем проще схема, тем дольше она проработает. Идаже при аварии устранить поломку намного проще, чем в любом другом драйвере.

Недостаток один: пульсации свечения диодов. Только этот недостаток чисто теоретический — никто не доказал и не показал влияние этих пульзаций на организм. Покажите мне хоть одного ослепшего от прсмотра телевизора с вакуумным кинескопом.

Схема светодиодной лампы с гасящим конденсатором:

Очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» — это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

Импульсные драйвера для светодиодов

В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.
2. Трансформаторный – с гальванической развязкой.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором – выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Внешний вид варисторов

Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

Um — максимально допустимое действующее переменное напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).

Внутри расположено три детали, одну из которых мы рассмотрели выше:
1. Варистор.
2. Конденсатор.
3. Резистор.

Вот принципиальная схема. Вы можете её повторить.

Светодиодный драйвер: развенчание мифов.

Я уже не помню чью статью и откуда я когда-то скачал. Мне понравилась логика товарища и я этот текст скачал исключительно для внутреннено использования. Но «все течет и все меняется». Вот и у меня появились дополнения, изменения и, в некоторых вопросах, несогласие с автором. И по этому (да простит меня автор) я размещю этот материвл на своём сайте с некоторыми комментариями (этим цветом).

«При бросках. » — утверждение сильно спорное. В какой момент чаще всего «сгорает» лампочка? Правильно, при включении. В лампах накаливания это бросок тока в холодной нити накаливания, в «конденсаторной схеме» (КС) — переходные процессы при прохождении тока через конденсатор. Вспомним физику на уровне садика: выключатель, мгновеная подача напряжения (а если еще и с искрой. ) равнозначна сильно высокочастотному колебанию, а значит реактивное сопротивление конденсатора в этот момент приближается к нулю. Бросок тока достаточен что б «убить светодиод». Решение простое — в лучшем случае дросель или термистор на входе, в худшем просто резистор. Резистор ограничит бросок, но и малек полезный ток.

Товарищь «передернул карты». В моей молодости за такое за карточным столом пивной кружкой по лбу. Нельзя сравнивать временные интервалы нестабильности сети 220 В +/- 10% с пульзацией постоянного напряжения питания светодиодов. Тем паче нельзя сравнивать инертность излучения светодиода и лампы накаливания.

В предыдущем абзаце атор рассуждал о напряжении, а тут вдруг об токе. Опять кружкой. Повышение напряжения на 10% не значит, что и ток через светодиод увеличится на 10%. Не буду всех грузить квантовой физикой, просто проведите опыт. Подайте на диод 3V, а потом 3,3V. Сравните токи. Специально для автора сделал лабораторную работу: 3V →21,5mA; 3,3V→47,5mA. А это, прошу пардону, 220%!

Скоки-скоки. Ну ладно, описАлся, бывает. Имеется ввиду 50 Гц. Но спутать 50 Гц и 100 Гц это уже не описка. Это непонимание процесса. Просветление не помешает. Об гениальности промолчу.. .

Не спорю т.к. лично знаком с этими нормами, но когда на работе санэпидстанция меряла на моем рабочем месте, то тетка сравнивала лампочку накаливания монитор и свет за окошком. Монитор забраковали, а слнце от лампочки не отличалось.

Тут, батенька, Вы сам сабе кружкой.
1. То Вам 20% «рекламный ход» и ничего страшного, а тут уже 10% «зрение садится».
2. Открою секрет, визуально живой конденсатор и по емкости не отличается от негодного. Прочитай про ESR.
3. А конденсаторы дохнут не от того, что их сушит температура, а от безграмотного использования. В любых импульсных БП их надо шунтировать керамическими малой емкости. Они вздуваются медленно, но верно т.к. им на мозги постоянно капают очень короткие импульсы генератора высокой частоты с напряжением до 500V, которые можно обнаружить только на экране ВЧ осцилографа..