ЗМН принцип действия
Как происходит работа защиты минимального напряжения?
Защита минимального напряжения (далее по тексту ЗМН) используется совместно с другими системами, контролирующими состояние электросети. Основная задача такой защиты – обеспечить работу ответственного оборудования при кратковременных понижениях напряжения. Узнать, как осуществляется этот процесс, можно прочитав о принципе работы ЗМН, ее устройстве и сфере применения. Всю эту информацию Вы найдете в нашей статье.
Кратко о назначении
Как известно, при снижении напряжения питания асинхронных двигателей уменьшается уровень магнитного потока, а, следовательно, и крутящего момента. При этом увеличивается потребление тока, ведущее к снижению уровня напряжения в электросети, что отражается на работе других устройств, подключенных к ней.
Помимо этого не следует забывать о стартовых токах, образующихся при запуске двигателей. ЗМН производит отключение менее важного оборудования, чтобы обеспечить процесс самозапуска ответственных двигателей, при восстановлении параметров электросети. Если автозапуск ответственных электродвигателей не отвечает нормам ТБ или не предполагается условиями техпроцесса, то реле минимального напряжения устанавливается и на это оборудование.
Когда параметры сети не соответствуют минимальному напряжению, то ЗМН производит отключение оборудования и/или подает соответствующий сигнал системе управления или оператору, это может происходить в следующих случаях:
- При фазном или межфазном коротком замыкании. В этом случае происходит резкое превышение номинального тока, что провоцирует падение напряжения ниже допустимого уровня. Если срабатывают при этом токовые реле, то произойдет полное исчезновение напряжения.
- Существенное превышение номинальной мощности, что также приводит к падению в питающих цепях напряжения.
Защита производит отключение питания оборудования, не относящегося к категории высокой важности. Это позволяет произвести нормальный автозапуск ответственных электромашин при высоких пусковых токах, в противном случае может произойти ложное срабатывание релейных защит.
Принцип работы защиты минимального напряжения
Вне зависимости от сферы применения ЗМН, ее принцип действия остается неизменным. Объясним алгоритм работы защиты на примере произвольного объекта, где для производственного процесса используется несколько электродвигателей и подключено оборудование собственных нужд. Допустим, на линии питающей объект произошло КЗ, вызвавшее срабатывание выключателя ввода (токовая защита). После завершения ремонтных работ и восстановления питания происходят следующие действия:
- Автозапуск двигателей, что приводит к появлению высоких пусковых токов, и, соответственно, к снижению напряжения в сети.
- Контакты реле защиты производят отключение неответственных механизмов, то есть оборудования, не принимающего участие в производственном процессе или простой которого не критичен для технологического цикла. Это приводит к нормализации тока и повышению напряжения до номинального уровня, что позволяет произвести штатный автозапуск основных узлов.
Устройство и схема ЗМН
Самый простой вариант при организации ЗМН можно сделать на одном реле, катушка которого запитана от междуфазного напряжения. Пример такой схемы приводится ниже.
Схема ЗМН на одном реле напряжения
К сожалению, такой вариант исполнения не отличатся высокой надежностью. Если произойдет обрыв цепи напряжения, то последует ложное отключение оборудования системой ЗМН. В связи с этим данная схема защиты применяется для отключения неответственных электродвигателей и оборудования собственных нужд.
Чтобы исключить ложное срабатывание системы ЗМН практикуется применение более сложных схем защиты. В качестве примера приведем одну из них, устанавливаемую на четыре асинхронных двигателя.
Схема ЗМН для четырех электродвигателей
Как видно из приведенной схемы включения ЗМН обмотки реле KVT1-4 подключаются к междуфазным напряжениям (АВ и ВС). Для повышения надежности защиты и исключения КЗ на землю одна из фаз (в нашем случае В) подключается посредством пробивного предохранителя к заземляющей шине. На фазы А и С устанавливаются однофазные АВ (автоматические выключатели). Причем один из них оборудован электромагнитной защитой, а второй – тепловой.
Рассмотрим, как будет вести себя данное устройство релейной защиты в случаях различных повреждений цепи питания:
- Фазное КЗ. В данном случае не последует отключение выключателей SF2 и SF3, поскольку цепь питания не обустроена глухим заземлением.
- Междуфазное КЗ. Если замыкание происходит между фазами В и С, то это вызывает отключение выключателя SF3 по току срабатывания. Цепи обмоток KVT1-2 продолжают быть запитаны от номинального напряжения, поэтому данные реле не срабатывают. Что касается KVT3-4, то они включаются, когда произойдет КЗ. Но, как только сработает SF3, на катушки реле подается фаза А (через емкость С1).
Если произойдет замыкание между другими фазами (АС или АВ), произойдет срабатывание SF2, соответственно, напряжение на обмотки KVT1-2 будет подано через емкость C1 от фазы С, а KVT3-4 не сработают.
Как видим, в данной схеме ложное срабатывание маловероятно, для этого должно произойти замыкание всех трех фаз, что вызовет одновременное срабатывание SF2 и SF3.
Ступени срабатывания ЗМН
На практике применяются двухступенчатые системы защиты. Такой алгоритм работы позволяет разграничить реакцию ЗМН в зависимости от напряжения. Рассмотрим работу степеней срабатывания.
1-ая ступень.
Данная ступень защиты активируется при напряжении 70% от номинальной величины (Uном), временная задержка срабатывания устанавливается в диапазоне 0,5-1,5 сек, что соответствует параметрам токовых отсечек АВ. При срабатывании 1-й ступени защиты производится отключение неответсвенного оборудования.
2-ая ступень.
Ее срабатывание происходит при падении напряжения до 50% от номинала. При таких условиях автозапуск электродвигателей невозможен. Задержка активации 2-й ступени устанавливается в диапазоне 10,0-15,0 сек, после чего производится отключение ответственных двигателей. Такое время устанавливается, чтобы дать возможность автоматике подключить резервный источник питания или снизить оперативные токи путем отключения неответственного оборудования.
Пример двухступенчатой ЗМН
Для наглядности приведем схему простой двухступенчатой защиты и кратко опишем алгоритм ее работы.
Двухступенчатая ЗМН
Как видим из рисунка отключение неответственного оборудования производит реле времени Т1 (установка срабатывания 0,5 — 1,5 сек.). Его питание производится через замкнутые контакторы трех реле V1, включенных на междуфазное напряжение. При падении Uном ниже 70% от номинала, реле T1 (первая ступень) производит включение выключателя неответственного оборудования, чтобы поднять минимальное остаточное напряжение.
Вторая ступень защиты активируется промежуточным реле напряжения V2, обмотка которого рассчитана на отключение при U ≤ 0.5Uном, через промежуток времени, заданный на Т2 (как правило не более 15 секунд). Если за отведенное время не будет подключен резервный ввод (например, пуск схемы АВР электродвигателей) или не произойдет снижение напряжения, будет производиться отключение ответственного оборудования.
Применение
Безусловно, что рассматриваемая нами защита не лишена недостатков (например, в простых схемах наблюдается ложное срабатывание при нулевом токе), тем не менее она доказала свою эффективность во многих сферах производства. Например, ЗМН устанавливается на электростанции, а также распределительные и трансформаторные подстанции. Это позволяет при максимальных токовых нагрузках отключить от шины подстанции третью категорию потребителей.
Распределительное устройство с ЗМН
Большим плюсом системы ЗМН является то, что она может использоваться совместно с дистанционной, резервной и дифференциальной защитой, а также с устройством автоматического ввода резерва, трансформаторами тока и т.д. Это существенно расширяет сферу применения.
Расчет уставок ЗМН
Уставки рассчитываются исходя из особенностей технологического процесса. Приведем пример расчета пуска схемы типовой двухступенчатой защиты. Напряжение срабатывания первой ступени рассчитывается по следующей формуле: Uз1 = 0,7 х Uном. То есть, 70% от номинального напряжения. Повышение чувствительности системы путем повышение границы падения напряжения может привести к снижению эффективности из-за ложных срабатываний.
Время задержки срабатывания секционных выключателей устанавливается в пределах 0,5 -1,5 сек.
Расчет срабатывания второй ступени защиты выполняется по формуле: Uз2 = 0,5 х Uном.
Время задержки выбирается в диапазоне 10,0 -15,0 сек.
Принцип работы защиты минимального напряжения
Защита минимального напряжения обеспечивает безопасную работу важных узлов, наиболее ответственных механизмов в электрических сетях, на производствах, когда происходит кратковременное исчезновение напряжения в сети. Подает сигнал, отключает группу или секции присоединений схем, электроприборов, двигателей, трансформаторов при понижении напряжения ниже допустимого значения (уставки).
Назначение
ЗМН (защита минимального напряжения) используется совместно с защитами, которые осуществляют контроль сети. Эксплуатируется вкупе с устройством автоматического включения резерва (АВР). ЗМН выполняет отключение или подает соответствующий сигнал пользователю (системе) при возникновении аварий в сети потребителей, в следствии:
- Короткого замыкания, когда происходят значительные потери электроэнергии. Возникают большие токи, напряжение резко падает.
- Перегрузки сети. (Мощности источников электропитания не хватает или один из них вышел из строя).
Такое действие обеспечивает безопасность важных механизмов во время самозапуска, когда пусковые токи вызывают снижение напряжения. Автоматика отключает работу менее важных механизмов.
Схема ЗМН
Система ЗМН, как правило, выполняется при помощи электромагнитных или электронных реле напряжения. Это своеобразный реагирующий орган в цепи.
Релейные контакты соединяют последовательно, чтобы предотвратить сбой при перегорании предохранителей в электрических цепях. На контакты реле подается фаза через вспомогательный контакт от секционного трансформатора или электрической сети.
Дополнительно в состав змн входят реле:
- Времени, обеспечивающее последовательность работы в электрической схеме.
- Промежуточное, коммутирующее управляющие сигналы.
- Указательное, которое сигнализирует о срабатывании защиты.
- Минимального напряжения.
Также система защиты на производстве включает линейные контакторы или электромагнитные пускатели.
При понижении показателей до значения 50 процентов от номинального, замыкатель отключается, размыкает, шунтирующий кнопку пуск, контакт, предотвращает самозапуск двигателя, машины.
При такой системе запуск механизмов происходит после нажатия на кнопку, которая замкнет схему.
ЗМН могут работать автономно или совместно с токовыми защитами.
Принцип работы ЗМН
Защита от минимального напряжения (ЗМН) имеет идентичный принцип работы во всех сферах защиты по напряжению. Для понимания, функциональность ЗМН можно объяснить на примере электрических двигателей.
Механизмы останавливаются при возникновении КЗ (короткое замыкание). После его ликвидации происходит самозапуск двигателей, подключенных к секциям или шинам. У каждой группы свое входное питание от трансформатора, либо иного источника. Пусковые токи в несколько раз превышают номинальные значения, во время запуска происходит «просадка» напряжения на секциях.
Защита ЗМН отключает незначительных потребителей участка сети — это электродвигатели не влияющие на процесс, их простой не вызовет сбой в производстве. Следовательно, уменьшается суммарный пусковой ток, напряжение в сети не имеет критичной просадки, его хватает на самозапуск главных двигателей или узлов.
Секционный (групповой) самозапуск электрических двигателей начинается после возобновления подачи питания.
Система АВР
При длительном отсутствии электрического питания срабатывает отключение и на главные электродвигатели. Это необходимо для запуска АВР (автоматика включения резерва), также этого требует технология производства.
При прекращении подачи электропитания на секционный ввод, срабатывает автоматика, включающая резерв, включается секционный выключатель, обеспечивающий подачу питания от резервного источника.
Минимальное время работы АВР зависит от задержки в системе, контролирующей ввод рабочего напряжения, времени срабатывания промежуточных реле, временных интервалов отключения и включения выключателей рабочего, резервного ввода.
Ступени срабатывания ЗМН
1-ая ступень
Система срабатывает при снижении напряжения до 70 % от номинального значения и с временной выдержкой полсекунды.
При включении первой ступени защиты, отключаются менее важные для производства электродвигатели. Предотвращается дальнейшее снижение одного из главных параметров, обеспечивающего возможность самозапуска главных механизмов.
2-ая ступень
Следующая ступень срабатывает после работы первой ступени. Уставка второй имеет 50 % от номинального значения разности потенциалов, время срабатывания девять секунд.
Самозапуск главных электродвигателей не происходит, отключаются оставшиеся механизмы, подключенные к цепи защиты, но поддерживается работа агрегатов, отключение которых приведет к аварийной ситуации. Вторая ступень обеспечивает режим безопасного торможения и остановки.
Защита от напряжения
Реле напряжения, на котором основана ЗМН, постоянно контролирует величину значения сети, отключает потребителей, если они выходят за рамки установленных пределов. Возобновляет работу механизмов при возобновлении требуемых параметров.
Защита минимального напряжения может быть выполнена и автоматическими выключателями с расцепителем малого напряжения, который включает автомат при 80 % от номинального значения, а отключает его, если оно становится ниже 50 %.
Расцепитель низкого напряжения подходит для дистанционного отключения автоматики.
Достоинства
- Устройства змн (реле, автоматические выключатели) имеют небольшие габариты, подходят для установки на стальную, алюминиевую или гальваническую рейку (DIN-рейку).
- Некоторые модели подходят для включения в розетку. Пользователь может обеспечить защиту группе бытовых электроприборов, не изменяя конфигурацию проводки.
- Доступность. Низкая стоимость позволяет использовать реле или группу реле простому обывателю, а не только на производстве.
- Автоматика практически мгновенно реагирует на понижение напряжения в сети, отключая и обеспечивая бесперебойную работу механизмам.
Недостатки
- При защите с помощью одного реле возможна неправильная работа, если произошел обрыв в цепи. Такая релейная защита подходит только для неответственных механизмов.
- Не устраняет колебания напряжения в сети.
- После включения выключателя ввода, может произойти его несанкционированное отключение. Происходит такое от задержки срабатывания реле. Сигнал на отключение выключателя ввода приходит раньше, чем срабатывает реле напряжения, а временное и выходное (змн) реле возвращаются в исходное состояние.
Применение
Несмотря на некоторые недостатки, защита минимального напряжения тесно связана с производственными процессами, обеспечивает надежное функционирование техническому оборудованию.
Применяется для обеспечения защиты на электростанциях, обеспечивает работу важных механизмов при кратковременном исчезновении собственного питания. Устанавливается на проблемных участках электросети и подстанциях, отключая в первую очередь потребителей третьей категории. Обеспечивает сохранение напряжения на жизненно-важных объектах (больницы, железная дорога, связь, водопровод, канализация).
Видео по теме
Как работает защита минимального напряжения?
- Устройство и принцип работы
- Заключение
Устройство и принцип работы
Реагирующий орган системы – реле, контролирующее минимальное напряжение. Реле подключено к секционному трансформатору напряжения. В состав защиты входит также реле времени, указательное реле, сигнализирующее о срабатывании защиты, промежуточные реле.
Назначение, которое имеет защита, реагирующая на минимальное напряжение – отключение двигателей менее ответственных механизмов для обеспечения успешного самозапуска более важных.
Чтобы понять, что это значит и для чего нужна защита, рассмотрим ее принцип действия на тепловых электростанциях. Электродвигатели механизмов каждого котлоагрегата подключены к своей секции собственных нужд станции. Каждая секция имеет рабочий ввод питания от своего трансформатора собственных нужд. Кроме этого, секции связаны между собой секционным выключателем. Нормальной считается схема, когда секции питаются от вводов трансформаторов собственных нужд, секционный выключатель при этом отключен. Представим ситуацию, когда исчезает напряжение на вводе питания секции (например, в результате повреждения трансформатора собственных нужд). Рабочий ввод отключается, срабатывает АВР (автоматика включения резерва), включающая секционный выключатель. После чего питание секции осуществляется от другого трансформатора собственных нужд, через секционный выключатель. Минимальное время работы АВР складывается из задержки в системе, контролирующей напряжение рабочего ввода, времени срабатывания промежуточных реле, времени отключения и включения выключателей рабочего и резервного вводов. За это время происходит торможение электродвигателей, питающихся от секции.
После подачи питания начинается групповой самозапуск электродвигателей, присоединенных к секции. При этом, в зависимости от глубины произошедшего торможения имеет место посадка (снижение) напряжения в большей или меньшей степени.
Примечание. При запуске котлоагрегата в штатном режиме, включение механизмов происходит последовательно с большими промежутками времени. Поэтому, при одновременном запуске (пусть даже не до конца заторможенных) механизмов, суммарное значение пускового тока существенно превышает номинальный ток питающего ТСН. Это может вызвать глубокую посадку напряжения на секции.
Защита, реагирующая на минимальное напряжение, имеет две ступени. Срабатывание первой ступени происходит, если снижение достигает отметки 0,7*Uн с выдержкой времени 0,5 с. Вторая ступень имеет уставку 0,5*Uн и время срабатывания до 9 с. Если за время бестоковой паузы произошло минимальное торможение механизмов и напряжение не достигло 70% номинального, самозапуск всех электродвигателей секции проходит успешно, котел продолжает работать.
Если напряжение снижается до 70% и ниже, на время 0,5 секунд, защитная аппаратура запускает первую ступень. Отключаются наименее важные для работы котла механизмы. Это делается для предотвращения дальнейшего снижения напряжения, чтобы дать возможность запуститься ответственным механизмам.
Вывод. Принцип работы первой ступени защиты минимального напряжения служит с целью удержать котлоагрегат в работе путем отключения механизмов, имеющих второстепенное значение.
Дальнейшее снижение напряжения (после работы 1-й ступени защиты) и достижение его уровня 50% номинала на время до 9 секунд означает, что самозапуск ответственных механизмов котла не удался. На этом этапе вопрос о работе котла уже не стоит. Включается схема работы второй ступени. Отключаются оставшиеся механизмы, подключенные к цепям защиты. Остаются только те агрегаты, отключение которых может привести к аварийной ситуации при останове котла. Например, во избежание взрыва угольной пыли в топке котла, недопустимо отключение дымососа.
Вывод. Принцип работы второй ступени защиты преследует цель вывести котел в режим безопасного гашения и останова.
Заключение
Из сказанного следует, что принцип работы защиты, реагирующей на минимальное напряжение, тесно связан с функционированием технологического оборудования, к которому она привязана. Защитная аппаратура находится на подстанции, осуществляющей питание электроустановок технологического оборудования. Таким образом, окончательно разобраться, для чего нужна защита, можно только получив хотя бы минимальное представление о том, как работает весь технологический комплекс.
Напоследок рекомендуем просмотреть полезно видео, в котором предоставлен обзор защитных аппаратов, которые применяются на сегодняшний день:
Вот мы и рассмотрели назначение и принцип работы защиты минимального напряжения. Надеемся, предоставленная информация была для вас полезной и интересной!
Рекомендуем также прочитать:
Защита минимального напряжения в схемах станков, установок и машин
Защита минимального напряжения исключает возможность самозапуска электродвигателя или работы его при резко пониженном напряжении сети. Эту защиту называют иногда нулевой.
У двигателей постоянного тока параллельного возбуждения и асинхронных двигателей при снижении напряжения уменьшается магнитный поток и пропорциональный ему вращающий момент, что приводит к перегрузке двигателя и его перегреву. Это сокращает срок службы двигателя и может быть причиной выхода его из строя. Кроме того, при работе с пониженным напряжением двигатель, потребляя увеличенный ток, увеличивает падение напряжения в сети и ухудшает работу других потребителей.
Самозапуск (самопроизвольный запуск, происходящий при восстановлении напряжения после его исчезновения или при включении общего рубильника станка магистрали и т. д.) для двигателей большинства механизмов промышленных предприятий недопустим по условиям безопасности обслуживающего персонала, из-за опасности поломки механизма, вследствие возможного брака продукции и по ряду других причин. Поэтому при значительном снижении напряжения в сети или его исчезновении двигатели, как правило, должны автоматически отключаться специальной защитой минимального напряжения .
Защита минимального напряжения (нулевая защита) в схемах контакторно-релейного управления двигателями осуществляется линейными контакторами, электромагнитными пускателями или специальными реле минимального напряжения .
Например, в схемах дистанционного управления с кнопками «пуск» и «стоп» при питании цепей управления и главных цепей от общего источника защиту минимального напряжения выполняет электромагнитный пускатель. В схемах управления крановыми двигателями — линейный контактор.
Напряжение отпускания пускателей и контакторов составляет около 40 — 50% от номинального напряжения катушки, поэтому при значительном снижении или полном исчезновении напряжения в сети пускатель или контактор выпадает, отключая главными контактами двигатель от сети.
Одновременно размыкается его контакт, шунтирующий кнопку подачи команды «пуск», что исключает возможность самопроизвольного срабатывания магнитного пускателя и включение двигателя после восстановления напряжения. Повторный пуск двигателя в этом случае возможен только после повторного нажатия на кнопку «пуск», т. е. только по команде рабочего, обслуживающего механизм.
В схеме автоматического управления, где пускатели двигателей включаются не кнопками, а различными элементами автоматики, работающими без участия оператора, защита минимального напряжения выполняется специальным реле минимального напряжения. При снижении или исчезновении напряжения реле минимального напряжения отключается, разрывает цепи и тем самым выключает все аппараты схемы управления.
Если подача команд осуществляется командоконтроллером или ключом управления с фиксированными положениями рукоятки, защита минимального напряжения также осуществляется специальным реле, обмотка которого включается через размыкающий контакт командоконтроллера, замкнутый только при положении рукоятки на нуле и разомкнутый во всех остальных положениях. Контакты всех видов защит, действующих на полное отключение установки, включаются последовательно в цепь обмотки реле минимального напряжения.
Защита минимального напряжения может быть выполнена автоматическими выключателями (автоматами) с расцепителем минимального напряжения , разрешающим включение автомата при напряжении сети не ниже 80 % от номинального и автоматически отключающим включенный автомат при исчезновении напряжения или снижении его до 50% от номинального.
Расцепитель минимального напряжения может быть использован для дистанционного отключения автомата, для чего в цепь его обмотки необходимо включить размыкающий контакт кнопки или другого аппарата. Некоторые автоматы изготовляются со специальной обмоткой отключения, выключающей автомат при включении ее под напряжение.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
11-5. Защита минимального напряжения
После отключения короткого замыкания происходит самозапуск электродвигателей, подключенных к секции или системе шин, на которых во время короткого замыкания имело место снижение напряжения. Токи самозапуска, в несколько раз превышающие номинальные, проходят по питающим линиям (или трансформаторам) собственного расхода. В результате напряжение на шинах собственного расхода, а следовательно, и на электродвигателях понижается настолько, что вращающий момент па валу электродвигателя может оказаться недостаточным для его разворота. Самозапуск электродвигателей может не произойти, если напряжение на шинах окажется ниже 55—65% UHOM. , Поэтому, для того чтобы обеспечить самозапуск наиболее ответственных электродвигателей, устанавливается защита минимального напряжения, отключающая неответственные электродвигатели, отсутствие которых в течение некоторого времени не отразится на производственном процессе. При этом уменьшается суммарный ток самозапуска и повышается напряжение на шинах собственного расхода, благодаря чему обеспечивается самозапуск ответственных электродвигателей.
В некоторых случаях при длительном отсутствии напряжения защита минимального напряжения отключает и ответственные электродвигатели. Это необходимо, в частности, для пуска схемы АВР электродвигателей, а также по технологии производства. Так, например, в случае остановки всех дымососов необходимо отключить мельничные и дутьевые вентиляторы и питатели пыли; в случае остановки дутьевых вентиляторов — мельничные вентиляторы и питатели пыли. Отключение ответственных электродвигателей защитой минимального напряжения производится также в тех случаях, когда их самозапуск недопустим по условиям техники безопасности или из-за опасности повреждения приводимых механизмов.
Наиболее просто защита минимального напряжения может быть выполнена с одним реле напряжения, включенным на междуфазное напряжение. Однако такое выполнение защиты ненадежно, так как при обрывах в цепях напряжения возможно ложное отключение электродвигателей. Поэтому однорелейная схема защиты применяется только при использовании реле прямого действия.
Для предотвращения ложного срабатывания защиты при нарушении цепей напряжения применяются специальные схемы включения реле напряжения. Одна из таких схем для четырех электродвигателей, разработанная в Тяжпромэлектропроекте [Л. 42], показана на рис. 11-7. Реле минимального напряжения прямого действия 1РНВ — 4РНВ включены на междуфазные напряжения АВ и ВС. Для повышения надежности защиты эти реле питаются отдельно от приборов и счетчиков, которые подключены к цепям напряжения через трехфазный автомат 3А с мгновенным электромагнитным расцепителем (использованы две фазы автомата).
Фаза В цепей напряжения заземлена не глухо, а через пробивной предохранитель, что исключает возможность однофазных коротких замыканий в цепях напряжения и также повышает надежность защиты. В фазе А защиты установлен однофазный автомат 1А с электромагнитным мгновенным расцепителем, а в фазе С автомат 2А с замедленным тепловым расцепителем. Между фазами А и С включен конденсатор С емкостью порядка 30 мкФ, назначение которого указано ниже.
При повреждениях в цепях напряжения рассматриваемая защита будет работать следующим образом.. Замыкание одной из фаз на землю, как уже отмечалось выше, не приводит к отключению автоматов, так как цепи напряжения не имеют глухого заземления.
При двухфазном коротком замыкании ВС отключится только автомат 2А фазы С. Реле напряжения 1РНВ и 2РНВ остаются при этом подключенными к нормальному напряжению и поэтому не запускаются. Реле ЗРНВ и 4РНВ, запустившиеся при коротком замыкании в цепях напряжения, после отключения автомата 2А вновь подтянутся, так как на них будет подано напряжение через конденсатор от фазы А.
При коротком замыкании АВ или АС отключается автомат 1А, установленный в фазе А. После отключения короткого замыкания реле 1РНВ и 2РНВ вновь подтянутся, так как на них будет подано напряжение от фазы С через конденсатор. Реле ЗРНВ и 4РНВ не запустятся. Аналогично будут вести себя реле и при обрыве фаз А и С.
Таким образом, рассмотренная схема защиты не работает ложно при наиболее вероятных повреждениях цепей напряжения. Ложная работа защиты возможна только при маловероятных видах повреждения цепей напряжения — трехфазном коротком замыкании или при отключении обоих автоматов 1А и 2А.
Сигнализация неисправности цепей напряжения осуществляется контактами реле 1РН, 2РН, ЗРН и контактами автоматов 1А, 2А, ЗА,
В установках с постоянным оперативным током защита минимального напряжения выполняется для каждой секции сборных шин собственного расхода по схеме, приведенной па рис. 11-8. В цепи реле времени В1, действующего на отключение неответственных электродвигателей, включены последовательно контакты трех минимальных реле напряжения H1. Благодаря такому включению реле предотвращается ложное срабатывание защиты при перегорании любого предохранителя в цепях трансформатора напряжения.
Напряжение срабатывания реле Н1 принимается порядка 70% UHOM.
Выдержка времени защиты на отключение неответственных электродвигатели отстраивается от отсечек электродвигателей и устанавливается равной 0,5—1,5 с. Выдержка времени на отключение ответственных электродвигателей принимается 10—15 с, для того чтобы защита не действовала на их отключение при снижениях напряжения, вызванных короткими замыканиями и самозапуском электродвигателей.
Как показывает опыт эксплуатации, в ряде случаев самозапуск электродвигателей продолжается 20—25 с при снижении напряжения на шинах собственного расхода до 60—70% UHOM. При этом, если не принять дополнительных мер, защита минимального напряжения (реле H1), имеющая уставку срабатывания 0,6—0,7 UHOM, могла бы доработать и отключить ответственные электродвигатели. Для предотвращения этого в цепи обмотки реле времени В2, действующего на отключение ответственных электродвигателей, включается контакт четвертого реле напряжения H2. Это минимальное реле напряжения имеет уставку срабатывания порядка 0,4-0,5 UHOM и надежно возвращается во время самозапуска. Реле Н2 будет длительно держать замкнутым свой контакт только при полном снятии напря-жения с шин собственного расхода. В тех случаях, когда длительность самозапуска меньше выдержки времени реле В2, реле H2 не устанавливается.
В некоторых случаях для обеспечения самозапуска наиболее ответственных электродвигателей приходится отключать, кроме неответственных, также и часть ответственных электродвигателей. При этом целесообразно применять схему, осуществляющую автоматическое повторное включение (АПВ) отключенных ответственных электродвигателей после восстановления напряжения на шинах собственного расхода [Л. 14].
Особенности независимого расцепителя
Кратко о назначении
Как известно, при снижении напряжения питания асинхронных двигателей уменьшается уровень магнитного потока, а, следовательно, и крутящего момента. При этом увеличивается потребление тока, ведущее к снижению уровня напряжения в электросети, что отражается на работе других устройств, подключенных к ней.
Помимо этого не следует забывать о стартовых токах, образующихся при запуске двигателей. ЗМН производит отключение менее важного оборудования, чтобы обеспечить процесс самозапуска ответственных двигателей, при восстановлении параметров электросети. Если автозапуск ответственных электродвигателей не отвечает нормам ТБ или не предполагается условиями техпроцесса, то реле минимального напряжения устанавливается и на это оборудование.
Когда параметры сети не соответствуют минимальному напряжению, то ЗМН производит отключение оборудования и/или подает соответствующий сигнал системе управления или оператору, это может происходить в следующих случаях:
- При фазном или межфазном коротком замыкании. В этом случае происходит резкое превышение номинального тока, что провоцирует падение напряжения ниже допустимого уровня. Если срабатывают при этом токовые реле, то произойдет полное исчезновение напряжения.
- Существенное превышение номинальной мощности, что также приводит к падению в питающих цепях напряжения.
Защита производит отключение питания оборудования, не относящегося к категории высокой важности. Это позволяет произвести нормальный автозапуск ответственных электромашин при высоких пусковых токах, в противном случае может произойти ложное срабатывание релейных защит.
Принцип работы защиты минимального напряжения
Вне зависимости от сферы применения ЗМН, ее принцип действия остается неизменным. Объясним алгоритм работы защиты на примере произвольного объекта, где для производственного процесса используется несколько электродвигателей и подключено оборудование собственных нужд. Допустим, на линии питающей объект произошло КЗ, вызвавшее срабатывание выключателя ввода (токовая защита). После завершения ремонтных работ и восстановления питания происходят следующие действия:
- Автозапуск двигателей, что приводит к появлению высоких пусковых токов, и, соответственно, к снижению напряжения в сети.
- Контакты реле защиты производят отключение неответственных механизмов, то есть оборудования, не принимающего участие в производственном процессе или простой которого не критичен для технологического цикла. Это приводит к нормализации тока и повышению напряжения до номинального уровня, что позволяет произвести штатный автозапуск основных узлов.
Особенности монтажа
В отличие от реле напряжения у расцепителя РММ-47 нет своих силовых контактов, поэтому в характеристиках не указан номинальный ток. Он является приставкой или дополнительным устройством к автоматическим выключателям и выключателям нагрузки.
Для этого на боковой стороне большинства автоматических выключателей есть отверстие, которое обеспечивает подключение дополнительных устройств. На фото ниже вы можете увидеть, как получить к нему доступ. Для этого нужно провернуть заглушку и вынуть её из посадочного места.
В окошке вы видите часть взводного механизма автоматического выключателя. На левой грани РММ-47 есть выступающий штырь для механической связи расцепителя с приводом силовых контактов автоматов и выключателей нагрузки.
Этим и обусловлен принцип работы расцепителя РММ-47:
- Электронная плата управления анализирует действующее напряжение в сети и сравнивает значение с установленными производителем настройками.
- В случае отклонения более допустимых норм она посылает управляющий сигнал на соленоид, который в свою очередь механически связан с приводом для подключения автоматического выключателя.
- Соответственно вместе со срабатыванием соленоида расцепителя отключится механически связанный с ним разъединитель. Чтобы вернуть аппараты в исходное состояние и подать энергию нужно нажать на кнопку «ВОЗВРАТ» и взвести флажок автоматического выключателя.
Следующее видео наглядно демонстрирует принцип монтажа подобных приставок для коммутационных защитных аппаратов:
Устройство и схема ЗМН
Самый простой вариант при организации ЗМН можно сделать на одном реле, катушка которого запитана от междуфазного напряжения. Пример такой схемы приводится ниже.
Схема ЗМН на одном реле напряжения
К сожалению, такой вариант исполнения не отличатся высокой надежностью. Если произойдет обрыв цепи напряжения, то последует ложное отключение оборудования системой ЗМН. В связи с этим данная схема защиты применяется для отключения неответственных электродвигателей и оборудования собственных нужд.
Чтобы исключить ложное срабатывание системы ЗМН практикуется применение более сложных схем защиты. В качестве примера приведем одну из них, устанавливаемую на четыре асинхронных двигателя.
Схема ЗМН для четырех электродвигателей
Как видно из приведенной схемы включения ЗМН обмотки реле KVT1-4 подключаются к междуфазным напряжениям (АВ и ВС). Для повышения надежности защиты и исключения КЗ на землю одна из фаз (в нашем случае В) подключается посредством пробивного предохранителя к заземляющей шине. На фазы А и С устанавливаются однофазные АВ (автоматические выключатели). Причем один из них оборудован электромагнитной защитой, а второй – тепловой.
Рассмотрим, как будет вести себя данное устройство релейной защиты в случаях различных повреждений цепи питания:
- Фазное КЗ. В данном случае не последует отключение выключателей SF2 и SF3, поскольку цепь питания не обустроена глухим заземлением.
- Междуфазное КЗ. Если замыкание происходит между фазами В и С, то это вызывает отключение выключателя SF3 по току срабатывания. Цепи обмоток KVT1-2 продолжают быть запитаны от номинального напряжения, поэтому данные реле не срабатывают. Что касается KVT3-4, то они включаются, когда произойдет КЗ. Но, как только сработает SF3, на катушки реле подается фаза А (через емкость С1).
Если произойдет замыкание между другими фазами (АС или АВ), произойдет срабатывание SF2, соответственно, напряжение на обмотки KVT1-2 будет подано через емкость C1 от фазы С, а KVT3-4 не сработают.
Как видим, в данной схеме ложное срабатывание маловероятно, для этого должно произойти замыкание всех трех фаз, что вызовет одновременное срабатывание SF2 и SF3.
Конструкция независимого расцепителя
Независимый выключатель — это специализированный аппарат для удаленной деактивации автомата. По своей конструкции система напоминает магнит. В тот период, когда на него оказывает влияние кратковременный импульс, расцепительный механизм при помощи оборудованного рычага оказывает давление, за счет чего происходит отключение защитного устройства.
Штифт автоматического выключателя
В каждой конструкции имеется электромагнитная катушка, обладающая разными показателями мощности. Расцепительный механизм пропускает постоянный и переменный токи. Уровень напряжения варьируется в пределах 110 до 415 В или от 12 до 60 В. Степень показателей обычно зависит от модели агрегата.
Вам это будет интересно БП из электронного трансформатора
Разница между составными расцепителями заключается в токовой защите. Электромагнитное устройство представляет ее без выдержки времени, то есть без токовой отсечки.
К сведению! Тепловое расцепительное устройство реализовывает интегральную зависимость времени реагирования защитной системы от величины тока. Он обеспечивает отключение автоматического оборудования в случае перегрузки, когда потребляемый ток становится больше номинального на 20 %.
Ступени срабатывания ЗМН
На практике применяются двухступенчатые системы защиты. Такой алгоритм работы позволяет разграничить реакцию ЗМН в зависимости от напряжения. Рассмотрим работу степеней срабатывания.
1-ая ступень.
Данная ступень защиты активируется при напряжении 70% от номинальной величины (Uном), временная задержка срабатывания устанавливается в диапазоне 0,5-1,5 сек, что соответствует параметрам токовых отсечек АВ. При срабатывании 1-й ступени защиты производится отключение неответсвенного оборудования.
2-ая ступень.
Ее срабатывание происходит при падении напряжения до 50% от номинала. При таких условиях автозапуск электродвигателей невозможен. Задержка активации 2-й ступени устанавливается в диапазоне 10,0-15,0 сек, после чего производится отключение ответственных двигателей. Такое время устанавливается, чтобы дать возможность автоматике подключить резервный источник питания или снизить оперативные токи путем отключения неответственного оборудования.
Назначение расцепителя
РММ-47 используется для защиты электроустановок от высокого и низкого напряжения. Чаще всего такие ситуации возникают в результате отгорания нуля и перекоса фаз в трёхфазной сети. Это устройство не защищает от высоковольтных импульсов в сети. Его назначение – отслеживать параметры питающей сети и давать команду на отключения питания потребителей.
Примечание: для защиты от импульсных скачков есть специализированные устройства, например, УЗИП – разнообразные защитные аппараты на основе варисторов.
В зависимости от схемы подключения, используя расцепитель максимального и минимального напряжения РММ-47 вы можете организовать защиту как конкретных электроприборов, так и всего объекта в целом, подключив расцепитель к вводному автоматическому выключателю.
Пример двухступенчатой ЗМН
Для наглядности приведем схему простой двухступенчатой защиты и кратко опишем алгоритм ее работы.
Двухступенчатая ЗМН
Как видим из рисунка отключение неответственного оборудования производит реле времени Т1 (установка срабатывания 0,5 — 1,5 сек.). Его питание производится через замкнутые контакторы трех реле V1, включенных на междуфазное напряжение. При падении Uном ниже 70% от номинала, реле T1 (первая ступень) производит включение выключателя неответственного оборудования, чтобы поднять минимальное остаточное напряжение.
Вторая ступень защиты активируется промежуточным реле напряжения V2, обмотка которого рассчитана на отключение при U ≤ 0.5Uном, через промежуток времени, заданный на Т2 (как правило не более 15 секунд). Если за отведенное время не будет подключен резервный ввод (например, пуск схемы АВР электродвигателей) или не произойдет снижение напряжения, будет производиться отключение ответственного оборудования.
Применение
Безусловно, что рассматриваемая нами защита не лишена недостатков (например, в простых схемах наблюдается ложное срабатывание при нулевом токе), тем не менее она доказала свою эффективность во многих сферах производства. Например, ЗМН устанавливается на электростанции, а также распределительные и трансформаторные подстанции. Это позволяет при максимальных токовых нагрузках отключить от шины подстанции третью категорию потребителей.
Распределительное устройство с ЗМН
Большим плюсом системы ЗМН является то, что она может использоваться совместно с дистанционной, резервной и дифференциальной защитой, а также с устройством автоматического ввода резерва, трансформаторами тока и т.д. Это существенно расширяет сферу применения.