Генератор потапова своими руками
Как изготовить вихревой тепловой генератор Потапова своими руками
Назначение вихревого теплогенератора Потапова (ВТГ), сделанного своими руками, состоит в том, чтобы получить тепло только при помощи электродвигателя и насоса. В основном это устройство используют как экономичный нагреватель.
Схема устройства вихревой теплосистемы.
Так как нет исследований по определению параметров изделия в зависимости от мощности насоса, то будут освещены примерные размеры.
Проще всего делать вихревой теплогенератор из стандартных деталей. Для этого подойдет любой электродвигатель. Чем он будет мощней, тем больший объем воды нагреет до заданной температуры.
Главное это двигатель
Выбирать двигатель нужно в зависимости от того, какое напряжение имеется. Есть много схем, при помощи которых можно подключить к сети 220 Вольт двигатель на 380 Вольт и наоборот. Но это другая тема.
Начинают сборку теплового генератора с электродвигателя. Его надо будет закрепить на станине. Конструкция этого устройства представляет собой металлический каркас, который проще всего сделать из угольника. Размеры надо будет подбирать на месте для тех устройств, которые будут в наличии.
Чертеж вихревого теплогенератора.
Список инструментов и материалов:
- угловая шлифовальная машинка;
- сварочный аппарат;
- электродрель;
- набор сверл;
- рожковые или накидные ключи на 12 и на 13;
- болты, гайки, шайбы;
- металлический уголок;
- грунтовка, краска, кисть малярная.
- Нарежьте при помощи угловой шлифовальной машинки угольники. Используя сварочный аппарат, соберите прямоугольную конструкцию. Как вариант – сборку можете сделать при помощи болтов и гаек. На конечном варианте конструкции это не скажется. Длину и ширину подберите так, чтобы все детали оптимально разместились.
- Вырежьте еще один кусок угольника. Прикрепите его как поперечину с таким расчетом, чтобы можно было закрепить двигатель.
- Сделайте покраску рамы.
- Просверлите отверстия в каркасе под болты и установите двигатель.
Установка насоса
Теперь надо будет подобрать водяной насос. Сейчас в специализированных магазинах можно приобрести агрегат любой модификации и мощности. На что надо обратить внимание?
- Насос должен быть центробежным.
- Ваш двигатель сможет его раскрутить.
Установите на раме насос, если надо будет сделать еще поперечины, то изготовьте их либо из уголка, либо из полосового железа такой же толщины, как и уголок. Соединительную муфту вряд ли возможно сделать без токарного станка. Поэтому придется ее где-то заказывать.
Схема гидровихревого теплогенератора.
Вихревой теплогенератор Потапова состоит из корпуса, сделанного в виде закрытого цилиндра. На его концах должны быть сквозные отверстия и патрубки для присоединения к системе отопления. Секрет конструкции находится внутри цилиндра. За входным отверстием должен располагаться жиклер. Его отверстие подбирается для данного устройства индивидуально, но желательно, чтобы оно было в два раза меньше четвертой части диаметра корпуса трубы. Если делать меньше, то насос не сможет пропускать воду через это отверстие и начнет сам нагреваться. Кроме того, начнут интенсивно за счет явления кавитации разрушаться внутренние детали.
Инструменты: угловая шлифовальная машинка или ножовка по металлу, сварочный аппарат, электродрель, разводной ключ.
Материалы: толстая металлическая труба, электроды, сверла, 2 патрубка с резьбой, соединительные муфты.
- Отрежьте кусок толстой трубы диаметром 100 мм и длиной 500-600 мм. Сделайте на ней внешнюю проточку примерно 20-25 мм и в половину толщины трубы. Нарежьте резьбу.
- Сделайте из такого же диаметра трубы два кольца длиной 50 мм. Нарежьте внутреннюю резьбу с одной стороны каждого полукольца.
- Из такой же толщины плоского металла, что и труба, сделайте крышки и приварите их с той стороны колец, где нет резьбы.
- Сделайте в крышках центральное отверстие: у одной по диаметру жиклера, а у другой по диаметру патрубка. С внутренней стороны крышки, где стоит жиклер, сверлом большего диаметра сделайте фаску. В результате должна получиться форсунка.
- Подключите теплогенератор к системе. Патрубок, где стоит форсунка, присоедините к насосу в отверстие, из которого вода подается под давлением. Ко второму патрубку подсоедините вход системы отопления. Выход из системы соедините с входом насоса.
Вода под давлением, которое создаст насос, будет проходить через форсунку вихревого теплогенератора, который вы делаете своими руками. В камере она начнет нагреваться за счет интенсивного перемешивания. Потом ее подадите в систему для обогрева. Чтобы регулировать температуру, поставьте за патрубком шаровое запирающее устройство. Прикройте его, и вихревой теплогенератор будет дольше гонять воду внутри корпуса, а значит, температура в нем начнет подниматься. Примерно так работает этот нагреватель.
Пути повышения производительности
Схема теплового насоса.
В насосе происходят потери тепла. Так что вихревой теплогенератор Потапова в таком варианте имеет существенный недостаток. Поэтому логично погруженный насос окружить водяной рубашкой, чтобы его тепло тоже шло на полезное нагревание.
Внешний корпус всего устройства сделайте чуть больше диаметра имеющегося в наличии насоса. Это может быть либо готовая труба, что желательно, либо сделанный из листового материала параллелепипед. Его размеры должны быть такими, чтобы внутрь входил насос, соединительная муфта и сам генератор. Толщина стенок должна выдерживать давление в системе.
Для того чтобы потери тепла снизились, сделайте вокруг корпуса устройства теплоизоляцию. Защитить ее можно кожухом, сделанным из жести. В качестве изолятора используйте любой теплоизоляционный материал, выдерживающий температуру кипения жидкости.
- Соберите компактное устройство, состоящее из погружного насоса, соединительного патрубка и теплогенератора, который вы собрали своими руками.
- Определитесь в его габаритах и подберите трубу такого диаметра, внутри которой все эти механизмы легко бы разместились.
- Сделайте крышки с одной и другой стороны.
- Обеспечьте жесткость крепления внутренних механизмов и возможность насосу качать через себя воду из полученного резервуара.
- Сделайте входное отверстие и закрепите на нем патрубок. Насос должен своим забором воды располагаться внутри как можно ближе к этому отверстию.
На противоположном конце трубы приварите фланец. С его помощью будет крепиться через резиновую прокладку крышка. Чтобы проще монтировать внутренности, сделайте несложный легкий каркас или скелет. Внутри него соберите устройство. Проверьте подгонку и герметичность всех узлов. Вставьте в корпус и закройте крышкой.
Подключите к потребителям и проверьте все на герметичность. Если протечек нет, включите насос. Открывая и закрывая кран, который находится на выходе из генератора, отрегулируйте температуру.
Утепление генератора
Схема подключения теплогенератора к системе отопления.
Сначала надо сделать кожух утеплителя. Возьмите для этого лист оцинкованной жести или тонкого алюминия. Вырежьте из него два прямоугольника, если будете делать кожух из двух половинок. Или один прямоугольник, но с таким расчетом, что в нем после изготовления полностью поместится вихревой теплогенератор Потапова, который собрали своими руками.
Гнуть лист лучше всего на трубе большого диаметра или использовать поперечину. Положите на нее вырезанный лист и прижмите сверху рукой деревянный брусок. Второй рукой нажмите на лист жести так, чтобы образовался по всей длине небольшой изгиб. Продвиньте немного заготовку и снова повторите операцию. Делайте так до тех пор, пока не получится цилиндр.
- Соедините его при помощи замка, который используют жестянщики для водосточных труб.
- Сделайте крышки для кожуха, предусмотрев в них отверстия для подключения генератора.
- Обмотайте теплоизоляционным материалом устройство. При помощи проволоки или тонких полосок жести зафиксируйте изоляцию.
- Поместите устройство в кожух, закройте крышками.
Есть еще один способ увеличить производство тепла: для этого надо разобраться, как работает вихревой генератор Потапова, коэффициент полезного действия которого может приближаться к 100% и выше (нет единого мнения, почему так происходит).
Во время прохождения воды через сопло или жиклер на выходе создается мощный поток, который ударяется в противоположный конец устройства. Он закручивается, и за счет трения молекул происходит нагревание. Значит, поместив вовнутрь этого потока дополнительную преграду, можно увеличить перемешивание жидкости в устройстве.
Зная, как это работает, можно начать конструировать дополнительное усовершенствование. Это будет гаситель вихрей, сделанный из продольных пластин, расположенных внутри двух колец в виде стабилизатора авиационной бомбы.
Схема стационарного теплогенератора.
Инструменты: сварочный аппарат, угловая шлифовальная машинка.
Материалы: листовой металл или полосовое железо, толстостенная труба.
Сделайте из трубы меньшего диаметра, чем вихревой теплогенератор Потапова, два кольца шириной 4-5 см. Из полосового металла нарежьте одинаковые полоски. Длина их должна равняться четвертой части длины корпуса самого теплового генератора. Ширину подберите с таким расчетом, чтобы после сборки внутри оставалось свободное отверстие.
- Закрепите пластину в тисках. Повесьте на нее с одной и другой стороны кольца. Приварите к ним пластину.
- Выньте из зажима заготовку и переверните ее на 180 градусов. Поместите внутрь колец пластину и закрепите в зажиме так, чтобы пластины находились друг напротив друга. Закрепите таким образом на равном расстоянии 6 пластин.
- Соберите вихревой теплогенератор, вставив описанное устройство напротив сопла.
Наверное, можно и дальше усовершенствовать это изделие. Например, вместо параллельных пластин использовать стальную проволоку, смотав ее в воздушный клубок. Или на пластинах сделать отверстия разного диаметра. Об этом усовершенствовании нигде ничего не сказано, но это не значит, что делать этого не стоит.
Советы, к которым лучше прислушаться
Схема устройства тепловой пушки.
- Обязательно защитите при помощи окрашивания всех поверхностей вихревой теплогенератор Потапова.
- Внутренние его части во время работы будут находиться в очень агрессивной среде, вызванной процессами кавитации. Поэтому и корпус, и все, что в нем находится, постарайтесь сделать из толстого материала. Не экономьте на железе.
- Сделайте несколько вариантов крышек с разными входными отверстиями. Потом проще будет подбирать их диаметр, чтобы получить высокую производительность.
- Это же относится и к гасителю колебаний. Его также можно видоизменять.
Соберите небольшой лабораторный стенд, где будете обкатывать все характеристики. Для этого не подключайте потребители, а закольцуйте трубопровод на генератор. Это упростит его испытание и подбор необходимых параметров. Так как сложные приборы по определению коэффициента полезной деятельности в домашних условиях вряд ли можно найти, то предлагается следующий тест.
Включите вихревой теплогенератор и засеките время, когда он разогреет воду до определенной температуры. Градусник лучше иметь электронный, он точнее. Затем внесите изменения в конструкцию и снова проведите опыт, следя за повышением температуры. Чем сильнее вода будет нагреваться за одно и то же время, тем больше предпочтений надо будет отдавать окончательному варианту установленного усовершенствования в конструкции.
Как своими силами сделать вихревой теплогенератор
Вихревой теплогенератор Потапова, или же сокращенно ВТП, был разработан специально для того, чтобы получать тепловую энергию с помощью всего лишь электрического двигателя и насоса. Такое устройство используется преимущественно в качестве экономного источника тепла.
Сегодня мы рассмотрим особенности конструкции этого устройства, а также как изготовить вихревой теплогенератор своими руками.
- 1 Принцип работы
- 2 Для чего используется?
- 3 Необходимые инструменты
- 4 Технология изготовления. Двигатель
- 5 Устанавливаем насос
- 6 Повышаем производительность
- 7 Утепляем ВТП
- 8 Гаситель вихрей
Принцип работы
Работает генератор следующим образом. Вода (или любой другой используемый теплоноситель) попадает в кавитатор. Электродвигатель затем раскручивает кавитатор, в котором при этом схлопываются пузырьки – это и есть кавитация, отсюда и название элемента. Так вся жидкость, которая в него попадает, начинает греться.
Электроэнергия, требуемая для работы генератора, тратится на три вещи:
- На образование звуковых колебаний.
- На то, чтобы преодолеть силу трения в устройстве.
- На нагревание жидкости.
При этом как утверждают создатели устройства, в частности, сам молдаванин Потапов, для работы используется возобновляемая энергия, хотя не совсем понятно, откуда она появляется. Как бы то ни было, дополнительного излучения не наблюдается, следовательно, можно говорить чуть ли не о стопроцентном КПД, ведь почти все энергия тратится на нагрев теплоносителя. Но это в теории.
Для чего используется?
Приведем небольшой пример. В стране есть масса предприятий, которые по тем или иным причинам не могут позволить себе газовое отопление: или магистрали нет неподалеку, или еще что-то. Тогда что остается? Обогреть электричеством, но тарифы на такого рода отопление могут ужаснуть. Вот тут и выручает чудо-прибор Потапова. При его использовании затраты на электроэнергию останутся теми же, КПД, разумеется, тоже, так как больше сотни ему все равно не быть, а вот КПД в плане финансовом будет составлять от 200% до 300%.
Получается, что эффективность вихревого генератора – 1.2-1.5.
Необходимые инструменты
Что же, пора приступать к самостоятельному изготовлению генератора. Давайте посмотрим, что нам потребуется:
- Шлифовальная машинка угловая, или турбинка;
- Железный уголок;
- Сварка;
- Болты, гайки;
- Электрическая дрель;
- Ключи 12-13;
- Сверла к дрели;
- Краска, кисточка и грунтовка.
Технология изготовления. Двигатель
Обратите внимание! Ввиду того, что не существует никакой информации касаемо характеристик устройства с точки зрения мощности насоса, все параметры, приведенные ниже, будут примерными.
Читайте так же про установку водяного насоса для отопления — тут
Самый простой вариант изготовить вихревой теплогенератор своими руками – использовать в работе стандартные детали. Нам может подойти практически любой двигатель, чем большую мощность он будет иметь, тем больше теплоносителя сможет нагреть. При выборе электродвигателя следует учесть, в первую очередь, напряжение в вашем доме. Следующий этап – создание станины под двигатель. Станина представляет собой обычный железный каркас, для которого лучше использовать железные уголки. Размеров никаких мы не скажем, так как они зависят от габаритов двигателя и определяются на месте.
- Нарезаем турбинкой угольники необходимой длины. Свариваем из них квадратную конструкцию таких размеров, чтобы все элементы туда поместились.
- Вырезаем дополнительный уголок и привариваем его к каркасу поперек таким образом, чтобы к нему можно было прикрепить электродвигатель.
- Красим станину, ждем, пока высохнет.
- Сверлим отверстия для крепежа, закрепляем электродвигатель.
Устанавливаем насос
Далее мы должны выбрать «правильный» водяной насос. Ассортимент этих инструментов сегодня настолько широк, что можно найти себе модель любой силы и габаритов. Нам же нужно обращать внимание лишь на две вещи:
- Сможет ли двигатель раскрутить этот насос;
- Является ли он (насос) центробежным.
Далее насос устанавливается все в том же каркасе, при необходимости крепятся дополнительные крепежные элементы.
У вихревого генератора корпус представляет собой цилиндр, закрытый с обеих сторон. По боками должны находиться сквозные отверстия, посредством которых устройство будет подсоединяться к отопительной системе. Но главная особенность конструкции – внутри корпуса: сразу возле входного отверстия размещен жиклер. Отверстие жиклера должно подбираться чисто индивидуально.
Обратите внимание! Желательно при этом, чтобы отверстие жиклера было вдвое меньше, чем 1/4 общего диаметра цилиндра. Если отверстие будет меньшим, то вода не сможет проходить сквозь него в необходимом количестве и насос начнет греться. Более того, внутренние элементы начнут разрушаться кавитацией.
Для изготовления корпуса нам потребуются следующие инструменты:
- Железная труба с толстыми стенками диаметром около 10 см;
- Муфты для соединения;
- Сварка;
- Несколько электродов;
- Турбинка;
- Пара патрубков, в которых проделана резьба;
- Электрическая дрель;
- Сверла;
- Ключ разводной.
Теперь – непосредственно к процессу изготовления.
- Для начала отрезаем кусок трубы длиной порядка 50-60 см и делаем на ее поверхности внешнюю проточку примерно на пол толщины, 2-2.5 см. нарезаем резьбу.
- Берем еще два куска этой же трубы, длиной по 5 см каждый, и делаем из них пару колец.
- Затем берем металлический лист с такой же толщиной, какая и у трубы, вырезаем из нее своеобразные крышки, привариваем их там, где резьба не делалась.
- По центру крышек делаем два отверстия – одно из них по окружности патрубка, второе – по окружности жиклера. Внутри крышки рядом с жиклером просверливаем фаску таким образом, чтобы получилась форсунка.
- Подключаем генератор к отопительной системе. патрубок возле форсунки подсоединяем к насосу, но только к тому отверстию, откуда под напором поступает вода. Второй патрубок соединяем с входом в отопительную систему, выход же необходимо подсоединить к входу насоса.
Насос будет создавать давление, которое, воздействуя на воду, заставит ее проходить через форсунку нашей конструкции. В специальной камере вода будет перегреваться ввиду активного перемешивания, после чего подается непосредственно в отопительный контур. Дабы можно было регулировать температуру, вихревой теплогенератор своими руками должен оснащаться специальным запирающим устройством, располагающимся рядом с патрубком. Если несколько прикрыть запор, то конструкция будет дольше перегонять воду по камере, следовательно, из-за этого температура поднимется. Таким образом и работает такого рода обогреватель.
Про другие способы альтернативного отопления читайте тут
Повышаем производительность
Насос теряет тепловую энергию, что является главным недостатком вихревого генератора (по крайней мере, в описанном своем варианте). Поэтому насос лучше окунуть в специальную водяную рубашку, дабы исходящее от него тепло также приносило пользу.
Диаметр этой рубашки должен быть несколько больше, чем у насоса. Можем использовать для этого по традиции обрезок трубы, а можно из листовой стали сделать параллелепипед. Его габариты должны быть такими, чтобы все элементы генератора свободно в него помещались, а толщина – чтобы выдерживал рабочее давление системы.
Помимо того, снизить теплопотери можно установкой специального жестяного кожуха вокруг устройства. Изолятором может стать любой такого рода материал, который способен выдерживать рабочую температуру.
- Собираем следующую конструкцию: теплогенератор, насос и соединяющий патрубок.
- Измеряем, каковы их габариты, и подбираем трубу нужного диаметра – так, чтобы все детали легко в ней поместились.
- Изготавливаем крышки для обеих сторон.
- Далее заботимся о том, чтобы детали внутри трубы были жестко закреплены, а также о том, чтоб насос сумел прокачивать сквозь себя теплоноситель.
- Просверливаем выходное отверстие, крепим на него патрубок.
Обратите внимание! Необходимо поместить насос максимально близко к данному отверстию!
На втором конце трубы мы привариваем фланец, посредством которого будет закреплена крышка на прокладке-уплотнителе. Можно оборудовать внутри корпуса каркас, чтобы было проще устанавливать все элементы. Собираем устройство, проверяем, насколько прочны крепления, проверяем герметичность, вставляем в корпус и закрываем.
Затем подключаем вихревой теплогенератор ко всем потребителям, проверяем его еще раз на предмет герметичности. Если ничего не течет, то можно активировать насос. При открытии/закрытии крана на входе регулируем температуру.
Возможно вас так же заинтересует статья о том как сделать солнечный коллектор своими руками
Утепляем ВТП
Прежде всего, одеваем кожух. Берем для этого лист алюминия или нержавейки и вырезаем пару прямоугольников. Загибать их лучше по такой трубе, у которой больший диаметра, чтобы в итоге образовался цилиндр. Далее следуем инструкции.
- Скрепляем половинки между собой с помощью специального замка, используемого для соединения водопроводных труб.
- Делаем пару крышек для кожуха, но не забываем о том,/ что в них должны оставаться дырки для подключения.
- Обматываем устройство термоизоляционным материалом.
- Помещаем генератор в кожух и плотно закрываем обе крышки.
Есть и другой способ увеличения производительности, но для этого нужно знать, как же именно работает чудо-прибор Попова, КПД которого может превышать (не доказано и не объяснено) 100%. Мы то с вами уже знаем, как он работает, поэтому может приступать непосредственно к усовершенствованию генератора.
Гаситель вихрей
Да, мы сделаем приспособление с таким загадочным названием – гаситель вихрей. Он будет состоять из расположенных вдоль пластин, помещенный внутри обоих колец.
Посмотрим, что нам потребуется для работы.
- Сварка.
- Турбинка.
- Лист стали.
- Труба с толстыми стенками.
Труба должна быть меньшей, чем теплогенератор. Делаем из нее два кольца, примерно по 5 см каждое. Из листа вырезаем несколько полосок одного размера. Их длина должна составлять 1/4 длины корпуса устройства, а ширина такой, чтоб после сборки осталось свободное пространство внутри.
- Вставляем в тиски пластинку, навешиваем на одном ее конце металлические кольца и свариваем их с пластиной.
- Вынимаем пластину из зажима и поворачиваем другой стороной. Берем вторую пластину и помещаем ее в кольца таким образом, чтобы обе пластины размещались параллельно. Аналогичным образом закрепляем все оставшиеся пластины.
- Собираем вихревой генератор своими руками, а полученную конструкцию устанавливаем напротив сопла.
Отметим, что поле совершенствования устройства практически безгранично. К примеру, вместо указанных выше пластин мы можем применить проволоку из стали, скрутив ее предварительно в виде клубка. Кроме того, мы можем проделать дырки на пластинах различного размера. Конечно, обо всем этом нигде не упоминается, но кто сказал, что вы не можете использовать данные усовершенствования?
И в качестве заключения – несколько дельных советов. Во-первых, все поверхности желательно защитить окрашиванием. Во-вторых, все внутренние детали стоит делать из толстых материалов, так как он (детали) будут постоянно находиться в достаточно агрессивной среде. И в-третьих, позаботьтесь о нескольких запасных крышках, имеющих разного размера отверстия. В дальнейшем вам будет подбирать необходимый диаметр, дабы добиться максимальной производительности устройства.
Делаем вместе теплогенератор своими руками
Делаем вместе теплогенератор своими руками
Высокая стоимость отопительного оборудования заставляет многих задуматься о том, стоит ли покупать промышленную модель или лучше собрать самому. По сути теплогенератор – это несколько видоизмененный центробежный насос. Собрать такой агрегат самостоятельно по силам тому, кто имеет минимальные знания в этой отрасли. Если нет собственных разработок, то готовые схемы всегда можно найти в сети. Главное выбрать такую по которой будет несложно собрать теплогенератор своими руками. Но сначала не помешает узнать об этом приборе как можно больше.
- Немного о данном генераторе
- Устройство и принцип работы
- Что необходимо для сборки
- Этапы изготовления агрегата
- Рекомендации специалистов
Устройство и принцип работы
Изначально, за счет вихревых потоков научились получать нагрев воздуха и других газовых смесей. В тот момент греть так воду не представлялось возможным из-за отсутствия у нее свойств к сжатию. Первые попытки в этом направлении сделал Меркулов, который предложил заполнить трубу Ранка водой вместо воздуха. Выделение тепла оказалось побочным эффектом вихревого движения жидкости, и долгое время процесс не имел даже обоснования.
Сегодня известно, что при движении жидкости по специальной камере от избыточного давления молекулы воды выталкивают молекулы газа, которые скапливаются в пузырьки. Из-за процентного преимущества воды ее молекулы стремятся раздавить газовые включения, и в них возрастает поверхностное давление. При дальнейшем поступлении молекул газа температура внутри включений возрастает, достигая 800 – 1000ºС. А после достижения зоны с меньшим давлением происходит процесс кавитации (схлопывания) пузырьков, при котором накопленная тепловая энергия выделяется в окружающее пространство.
В зависимости от способа формирования кавитационных пузырьков внутри жидкости все вихревые теплогенераторы подразделяются на три категории:
- Пассивные тангенциальные системы;
- Пассивные аксиальные системы;
- Активные устройства.
Теперь рассмотрим каждую из категорий более детально.
Принцип работы
«Кавитация» относится к образованию пузырьков в жидкости, таким образом, рабочее колесо работает в смешанной фазе (период жидкости и пузырьков газа) окружающей среды. Насосы, как правило, не предназначены для смешанной фазы потока (их работа уничтожает пузыри, из-за чего кавитационный генератор теряет эффективность). Данные термические приспособления предназначены, чтобы вызывать смешанный поток фаз как часть перемешивания жидкости, что приводит к термической конверсии.
Фото – Чертеж теплогенератора
В коммерческих кавитационных обогревателях, механическая энергия приводит в действие нагреватель входной энергии (например, двигатель, блок управления), в результате чего жидкость, которая отвечает за образование выходной энергии, возвращается к источнику. Такое сохранение превращает механическую энергию в ??тепловую с небольшой потерей (как правило, менее 1 процента), поэтому при пересчете учитываются погрешности преобразования.
Немного по иному работает суперкавитационный реактивный генератор энергии. Такой нагреватель используется на мощных предприятиях, когда тепловая энергия выхода передается на жидкость в определенном устройстве, её мощность значительно превышает количество механической энергии, необходимой для приведения в действие нагревателя. Эти приборы более энергетически продуктивны, чем возвратные механизмы, в частности тем, что они не требуют регулярной проверки и настройки.
Существуют разные типы таких генераторов. Самый распространенный вид – это роторно-гидродинамический механизм Григгса. Его принцип действия основан на работе центробежного насоса. Состоит он из патрубков, статора, корпуса и рабочей камеры. На данный момент существует множество модернизаций, самый простой – приводной или дисковый (сферический) водяной насос ротационного действия. Он представляет собой дисковую поверхность, в которой просверлено много различных отверстий глухого типа (без выхода), данные конструктивные элементы называются ячейки Григгса. Их размерные параметры, число напрямую зависят от мощности ротора, конструкции теплогенератора и частоты вращения привода.
Фото – Гидродинамический механизм Григгса
Между ротором и статором находится определенный зазор, который необходим для нагрева воды. Данный процесс осуществляется при помощи быстрого движения жидкости по поверхности диска, что способствует повышению температуры. В среднем, ротор движется приблизительно со скоростью 3000 оборотов в минуту, чего достаточно для повышения температуры до 90 градусов.
Второй вид кавитационного генератора принято называть статическим. Он не имеет, в отличие от роторного, никаких вращающихся частей, для того, чтобы осуществлялась кавитация, ему необходимы сопла. В частности, это детали известного Лаваля, которые подключены к рабочей камере.
Для работы, подключается обычный насос, как в роторном виде генератора, он нагнетает в рабочей камере давление, чем обеспечивает большую скорость движения воды, соответственно, повышение её температуры. Скорость жидкости на выходе из сопла обеспечена разностью диаметров поступательного и выходного патрубков. Его недостатком является то, что эффективность значительно ниже, чем в роторном, тем более, он более габаритный, тяжелый.
Обратите внимание! Ввиду того, что не существует никакой информации касаемо характеристик устройства с точки зрения мощности насоса, все параметры, приведенные ниже, будут примерными.
Читайте так же про установку водяного насоса для отопления — тут
Самый простой вариант изготовить вихревой теплогенератор своими руками – использовать в работе стандартные детали. Нам может подойти практически любой двигатель, чем большую мощность он будет иметь, тем больше теплоносителя сможет нагреть. При выборе электродвигателя следует учесть, в первую очередь, напряжение в вашем доме. Следующий этап – создание станины под двигатель. Станина представляет собой обычный железный каркас, для которого лучше использовать железные уголки. Размеров никаких мы не скажем, так как они зависят от габаритов двигателя и определяются на месте.
- Нарезаем турбинкой угольники необходимой длины. Свариваем из них квадратную конструкцию таких размеров, чтобы все элементы туда поместились.
- Вырезаем дополнительный уголок и привариваем его к каркасу поперек таким образом, чтобы к нему можно было прикрепить электродвигатель.
- Красим станину, ждем, пока высохнет.
- Сверлим отверстия для крепежа, закрепляем электродвигатель.
Как изготовить
Для создания самодельного генератора тепла понадобится шлифовальная машинка, электродрель, а также сварочный аппарат.
Процесс будет происходить следующим образом:
- Сначала нужно отрезать кусок достаточно толстой трубы, общим диаметром 10 см, а длиной не более 65 см. После этого на ней нужно сделать внешнюю проточку в 2 см и нарезать резьбу.
- Теперь из точно такой же трубы необходимо сделать несколько колец, длиной по 5 см, после чего нарезается внутренняя резьба, но только с одной её стороны (то есть полукольца) на каждой.
- Далее нужно взять лист металла толщиной, аналогичной с толщиной трубы. Сделайте из него крышки. Их нужно приварить к кольцам с той стороны, где у них нет резьбы.
- Теперь нужно сделать в них центральные отверстия. В первой оно должно соответствовать диаметру жиклера, а во второй диаметру патрубка. При этом, с внутренней стороны той крышки, которая будет использоваться с жиклером, нужно сделать, используя сверло, фаску. В итоге должна выйти форсунка.
- Теперь подключаем ко всей этой системе теплогенератор. Отверстие насоса, откуда вода подается под давлением, нужно присоединить к патрубку, находящемуся возле форсунки. Второй патрубок соедините со входом уже в саму отопительную систему. А вот выход из последней подключите ко входу насоса.
Таким образом, под давлением, создаваемым насосом, теплоноситель в виде воды начнет проходить через форсунку. За счет постоянного движения теплоносителя внутри этой камеры он и будет нагреваться. После этого она попадает уже непосредственно в систему отопления. А чтобы была возможность регулировать получаемую температуру, нужно за патрубком установить шаровой кран.
Изменение температуры будет происходить при изменении его положения, если он будет меньше пропускать воды (будет находиться в полузакрытом положении). Вода будет дольше находиться и двигаться внутри корпуса, за счет чего её температура увеличится. Именно таким образом и работает подобный водонагреватель.
Смотрите видео, в котором даются практические советы по изготовлению вихревого теплогенератора своими руками:
Кавитационный нагреватель и его типы
Нагреватель, работающий с кавитацией, может быть нескольких типов. Чтобы понять, какой генератор вам нужен, следует разобраться в его типажах.
Кавитационный нагреватель следует время от времени осматривать на наличие изношенных деталей
Виды кавитационного нагревателя:
- Роторный – самый популярный из них это аппарат Григгса, работающий с помощью центробежного насоса ротационного действия. Внешне он выглядит как диск с отверстиями без выхода. Одно такое отверстие носит название: ячейка Григгса. Параметры этих ячеек и их число зависят от типа генератора и частоты вращения привода. Нагрев воды происходит между статором и ротором посредством быстрого ее движения по поверхности диска.
- Статический – он не имеет никаких вращающихся элементов, а кавитацию создают специальные сопла (элементы Лаваля). Насос нагнетает давление воды, что проводит к ее быстрому движению и нагреву. Выходные отверстия сопел более узкие, чем предыдущие и жидкость начинает двигаться еще быстрее. Из-за быстрого расширения воды и получается кавитация, дающая в итоге тепло.
Если выбирать между этими двумя видами, то следует учитывать, что производительность роторного кавитатора более высокая и он не такой габаритный, как статический.
Правда, статический нагреватель меньше изнашивается из-за отсутствия вращающихся элементов. Использовать аппарат можно до 5 лет, а если выйдет из строя сопло – его с легкостью можно заменить, затрачивая на это куда меньше средств, чем на теплогенератор в роторном кавитаторе.
Советы, к которым лучше прислушаться
Схема устройства тепловой пушки.
- Обязательно защитите при помощи окрашивания всех поверхностей вихревой теплогенератор Потапова.
- Внутренние его части во время работы будут находиться в очень агрессивной среде, вызванной процессами кавитации. Поэтому и корпус, и все, что в нем находится, постарайтесь сделать из толстого материала. Не экономьте на железе.
- Сделайте несколько вариантов крышек с разными входными отверстиями. Потом проще будет подбирать их диаметр, чтобы получить высокую производительность.
- Это же относится и к гасителю колебаний. Его также можно видоизменять.
Соберите небольшой лабораторный стенд, где будете обкатывать все характеристики. Для этого не подключайте потребители, а закольцуйте трубопровод на генератор. Это упростит его испытание и подбор необходимых параметров. Так как сложные приборы по определению коэффициента полезной деятельности в домашних условиях вряд ли можно найти, то предлагается следующий тест.
Включите вихревой теплогенератор и засеките время, когда он разогреет воду до определенной температуры. Градусник лучше иметь электронный, он точнее. Затем внесите изменения в конструкцию и снова проведите опыт, следя за повышением температуры. Чем сильнее вода будет нагреваться за одно и то же время, тем больше предпочтений надо будет отдавать окончательному варианту установленного усовершенствования в конструкции.
Вихревой теплогенератор : устройство, принцип работы, критерии выбора
Далеко не на всех промышленных объектах существует возможность отапливать помещения классическими теплогенераторами, работающими от сжигания газа, жидкого или твердого топлива, а использование нагревателя с ТЭНами является нецелесообразным или небезопасным. В таких ситуациях на помощь приходит вихревой теплогенератор, использующий для нагревания рабочей жидкости кавитационные процессы. Основные принципы работы этих устройств были открыты еще в 30-х годах прошлого века, активно разрабатывались с 50-х годов. Но внедрение в производственный процесс нагрева жидкости за счет вихревых эффектов произошло только в 90-х годах, когда вопрос экономии энергоресурсов стал наиболее остро.
Устройство и принцип работы
Изначально, за счет вихревых потоков научились получать нагрев воздуха и других газовых смесей. В тот момент греть так воду не представлялось возможным из-за отсутствия у нее свойств к сжатию. Первые попытки в этом направлении сделал Меркулов, который предложил заполнить трубу Ранка водой вместо воздуха. Выделение тепла оказалось побочным эффектом вихревого движения жидкости, и долгое время процесс не имел даже обоснования.
Сегодня известно, что при движении жидкости по специальной камере от избыточного давления молекулы воды выталкивают молекулы газа, которые скапливаются в пузырьки. Из-за процентного преимущества воды ее молекулы стремятся раздавить газовые включения, и в них возрастает поверхностное давление. При дальнейшем поступлении молекул газа температура внутри включений возрастает, достигая 800 – 1000ºС. А после достижения зоны с меньшим давлением происходит процесс кавитации (схлопывания) пузырьков, при котором накопленная тепловая энергия выделяется в окружающее пространство.
В зависимости от способа формирования кавитационных пузырьков внутри жидкости все вихревые теплогенераторы подразделяются на три категории:
- Пассивные тангенциальные системы;
- Пассивные аксиальные системы;
- Активные устройства.
Теперь рассмотрим каждую из категорий более детально.
Пассивные тангенциальные ВТГ
Это такие вихревые теплогенераторы, в которых термогенерирующая камера имеет статическое исполнение. Конструктивно такие вихревые генераторы представляют собой камеру с несколькими патрубками, по которым осуществляется подача и съем теплоносителя. Избыточное давление в них создается путем нагнетания жидкости компрессором, форма камеры и ее содержание представляет собой прямую или закрученную трубу. Пример такого устройства приведен на рисунке ниже.
Рис. 1. Принципиальная схема пассивного тангенциального генератора
При движении жидкости по входному патрубку происходит затормаживание на входе в камеру за счет тормозящего приспособления, из-за чего возникает разреженное пространство в зоне расширения объема. Затем происходит схлопывание пузырьков и нагревание воды. Для получения вихревой энергетики в пассивных вихревых теплогенераторах устанавливаются несколько входов / выходов из камеры, форсунки, переменная геометрическая форма и прочие приемы для создания переменного давления.
Пассивные аксиальные теплогенераторы
Как и предыдущий тип, пассивные аксиальные не имеют подвижных элементов для создания завихрений. Вихревые теплогенераторы такого типа осуществляют нагрев теплоносителя за счет установки в камере диафрагмы с цилиндрическими, спиральными или коническими отверстиями, сопла, фильера, дросселя, выступающих в роли сужающего устройства. В некоторых моделях устанавливаются по нескольку нагревательных элементов с различными характеристиками проходных отверстий для повышения эффективности их работы.
Рис. 2: принципиальная схема пассивного аксиального теплогенератора
Посмотрите на рисунок, здесь приведен принцип действия простейшего аксиального теплогенератора. Данная тепловая установка состоит из нагревательной камеры, входного патрубка, вводящего холодный поток жидкости, формирователя потока (присутствует далеко не во всех моделях), сужающего устройства, выходного патрубка с горячим потоком воды.
Активные теплогенераторы
Нагревание жидкости в таких вихревых теплогенераторах осуществляется за счет работы активного подвижного элемента, взаимодействующего с теплоносителем. Они оснащаются камерами кавитационного типа с дисковыми или барабанными активаторами. Это роторные теплогенераторы, одним из наиболее известных среди них является теплогенератор Потапова. Простейшая схема активного теплогенератора приведена на рисунке ниже.
Рис. 3. принципиальная схема активного теплогенератора
При вращении активатора в таком кавитационном теплогенераторе происходит образование пузырьков благодаря отверстиям на поверхности активатора и разнонаправленных с ними на противоположной стенке камеры. Такая конструкция считается наиболее эффективной, но и достаточно сложной в подборе геометрических параметров элементов. Поэтому преимущественное большинство вихревых теплогенераторов имеет перфорацию только на активаторе.
Назначение
На заре внедрения кавитационного генератора в работу он использовался только по прямому назначению – для передачи тепловой энергии. Сегодня, в связи с развитием и совершенствованием данного направления, вихревые теплогенераторы применяются для:
- Отопления помещений, как в бытовых, так и в производственных зонах;
- Нагревания жидкости для осуществления технологических операций;
- В качестве проточных водонагревателей, но с более высоким КПД, чем у классических бойлеров;
- Для пастеризации и гомогенезации пищевых и фармацевтических смесей с установленной температурой (при этом обеспечивается удаление вирусов и бактерий из жидкости без термической обработки);
- Получения холодного потока (в таких моделях горячая вода является побочным эффектом);
- Смешивание и разделение нефтепродуктов, добавление в получаемую смесь химических элементов;
- Парогенерации.
С дальнейшим совершенствованием вихревых теплогенераторов сфера их применения будет расширяться. Тем более что данный вид нагревательного оборудования имеет ряд предпосылок для вытеснения пока еще конкурентных технологий прошлого.
Преимущества и недостатки
В сравнении с идентичными технологиями, предназначенными для обогрева помещений или нагрева жидкостей вихревые теплогенераторы обладают рядом весомых преимуществ:
- Экологичность – в сравнении с газовыми, твердотопливными и дизельными теплогенераторами они не загрязняют окружающую среду;
- Пожаро- и взрывобезопасность – вихревые модели, в сравнении с газовыми теплогенераторами и устройствами на нефтепродуктах не представляют такой угрозы;
- Вариативность — вихревой теплогенератор может устанавливаться в уже существующие системы без необходимости установки новых трубопроводов;
- Экономность – в определенных ситуациях гораздо выгоднее классических теплогенераторов, так как обеспечивают ту же тепловую мощность в перерасчете на затрачиваемую электрическую мощность;
- Нет необходимости организации системы охлаждения;
- Не требуют организации отвода продуктов сгорания, не выделяют угарный газ и не загрязняют воздух рабочей зоны или жилого помещения;
- Обеспечивают достаточно высокий КПД – порядка 91 – 92% при сравнительно небольшой мощности электродвигателя или насоса;
- Не образуется накипь в процессе нагревания жидкости, что в значительной мере снижает вероятность повреждений из-за коррозии и засорения известковыми осадками;
Но, помимо преимуществ вихревые теплогенераторы имеют и ряд недостатков:
- Создает сильную шумовую нагрузку в месте установки, что сильно ограничивает их применение непосредственно в спальнях, залах, офисах и им подобных местах;
- Характеризуется большими габаритами, в сравнении с классическими нагревателями жидкости;
- Требует точной настройки процесса кавитации, так как пузырьки при столкновении со стенками трубопровода и рабочими элементами насоса приводят к их быстрому изнашиванию;
- Достаточно дорогостоящий ремонт при выходе со строя элементов вихревого теплогенератора.
Критерии выбора
При выборе вихревого теплогенератора важно определить актуальные параметры устройства, которые в наибольшей степени подойдут для решения поставленной задачи. К таким параметрам относятся:
- Потребляемая мощность – определяет количество расходуемой из сети электроэнергии, требуемой для работы установки.
- Коэффициент преобразования – определяет соотношение потребленной энергии в кВт и выделенной в качестве тепловой энергии в кВт.
- Скорость потока – определяет скорость движения жидкости и возможность ее регулирования (позволяет регулировать теплообмен в системах отопления или напор в нагревателе воды).
- Тип вихревой камеры – определяет способ получения тепловой энергии, эффективность процесса и требуемые для этого затраты.
- Габаритные размеры – важный фактор, влияющий на возможность установки теплогенератора в каком-либо месте.
- Количество контуров циркуляции – некоторые модели помимо контура теплоснабжения имеют контур отведения холодной воды.
Параметры некоторых вихревых теплогенераторов приведены в таблице ниже:
Таблица: характеристики некоторых моделей вихревых генераторов
Установленная мощность электродвигателя, кВт | 55 | 75 | 90 | 110 | 160 |
Напряжение в сети, В | 380 | 380 | 380 | 380 | 380 |
Обогреваемый объем до, куб.метры. | 5180 | 7063 | 8450 | 10200 | 15200 |
Максимальная температура теплоносителя, о С | 95 | 95 | 95 | 95 | 95 |
Масса нетто, кг. | 700 | 920 | 1295 | 1350 | 1715 |
Габаритные размеры: | 2000 700 775 | 2000 700 775 | 2000 700 775 | 2400 980 775 | 3200 1000 918 |
— длина мм — ширина мм. — высота мм. | |||||
Режим работы | автомат | автомат | автомат | автомат | автомат |
Также немаловажным фактором является цена вихревого теплогенератора, которая устанавливается заводом изготовителем и может зависеть как от его конструктивных особенностей, так и от параметров работы.
ВТГ своими руками
Для изготовления вихревого теплогенератора в домашних условиях вам понадобится: электрический двигатель, плоская герметичная камера с вращающимся в ней диском, насос, болгарка, сварка (для металлических труб), паяльник (для пластиковых труб) электрическая дрель, трубы и фурнитура к ним, станина или стенд для размещения оборудования. Сборка включает в себя следующие этапы:
- При помощи дрели просверлите несквозную перфорацию на диске;
Рис. 5: просверлите отверстия в диске
- Закройте диск кожухом, проследите за надежной герметизацией камеры;
- Соедините вал электродвигателя с валом вращающегося диска;
- Установите электродвигатель с камерой на станину и прочно закрепите;
- Подведите к теплогенерирующей камере трубы для подачи холодной и отвода горячей воды;
- Подключите к двигателю и насосу для прокачки жидкости по системе электропитание от внешнего источника.
Такой вихревой теплогенератор можно подключить как к уже существующей системе теплоснабжения, так и установить для него отдельные радиаторы отопления.
Вихревой теплогенератор
Вихревой теплогенератор
Теплогенератор Ю. С. Потапова очень похож на вихревую трубу Ж. Ранке, изобретенную этим французским инженером ещё в конце 20-х годов XX века. Работая над совершенствованием циклонов для очистки газов от пыли, тот заметил, что струя газа, выходящая из центра циклона, имеет более низкую температуру, чем исходный газ, подаваемый в циклон. Уже в конце 1931 г. Ранке подаёт заявку на изобретенное устройство, названное им «вихревой трубой». Но получить патент ему удаётся только в 1934 г., и то не на родине, а в Америке (Патент США №1952281.)
Изготовление
Важно знать. Поскольку параметров мощности насоса как таковых не предусмотрено, параметры, о которых пойдет речь ниже будут приблизительными.
Для изготовления вихревого теплогенератора самостоятельно потребуется двигатель, мощность которого будет чем больше, тем лучше, ввиду того, что он сможет нагреть большее количество теплоносителя. Конечно, следует ориентироваться на напряжение в вашем доме или помещении. После того, как вы определились с двигателем, необходимо изготовить станину под двигатель. Станина будет иметь вид обычного железного каркаса, на котором будут использоваться обычные железные уголки.
Касаемо размеров станины, так это все зависит от размеров двигателя. При помощи турбинки нужно нарезать угольники нужной длины и сварить из них квадратную конструкцию, размеры которой должны позволять вместить все элементы. Далее нужно вырезать дополнительный уголок и прикрепить его к каркасу поперек, поскольку к нему нужно будет крепить электродвигатель. Далее следует покрасить станину и просверлить отверстия для крепежа, после чего закрепить электродвигатель.
Комплектация и принцип работы
Самой простой конструкцией обладает прибор, состоящий из следующих элементов:
- Ротора, выполненного из углеродистой стали;
- Статора (сварного или монолитного);
- Прижимной втулки с внутренним диаметром 28 мм;
- Стального кольца.
Принцип работы генератора рассмотрим на примере кавитационной модели. В нем вода поступает в кавитатор, после чего он раскручивается двигателем. В процессе работы узла происходит схлопывание пузырьков воздуха в теплоносителе. При этом попавшая в кавитатор жидкость разогревается.
Для работы кавитационного теплогенератора, собранного своими руками, используя найденные в сети чертежи устройства следует помнить, что ему требуется энергия, которая расходуется на преодоление силы трения в устройстве, образование звуковых колебаний, нагревание жидкости. Кроме того, прибор обладает практически 100% КПД.
Обратите внимание! Ввиду того, что не существует никакой информации касаемо характеристик устройства с точки зрения мощности насоса, все параметры, приведенные ниже, будут примерными.
Читайте так же про установку водяного насоса для отопления — тут
Самый простой вариант изготовить вихревой теплогенератор своими руками – использовать в работе стандартные детали. Нам может подойти практически любой двигатель, чем большую мощность он будет иметь, тем больше теплоносителя сможет нагреть. При выборе электродвигателя следует учесть, в первую очередь, напряжение в вашем доме. Следующий этап – создание станины под двигатель. Станина представляет собой обычный железный каркас, для которого лучше использовать железные уголки. Размеров никаких мы не скажем, так как они зависят от габаритов двигателя и определяются на месте.
- Нарезаем турбинкой угольники необходимой длины. Свариваем из них квадратную конструкцию таких размеров, чтобы все элементы туда поместились.
- Вырезаем дополнительный уголок и привариваем его к каркасу поперек таким образом, чтобы к нему можно было прикрепить электродвигатель.
- Красим станину, ждем, пока высохнет.
- Сверлим отверстия для крепежа, закрепляем электродвигатель.
Утепление генератора
Схема подключения теплогенератора к системе отопления.
Сначала надо сделать кожух утеплителя. Возьмите для этого лист оцинкованной жести или тонкого алюминия. Вырежьте из него два прямоугольника, если будете делать кожух из двух половинок. Или один прямоугольник, но с таким расчетом, что в нем после изготовления полностью поместится вихревой теплогенератор Потапова, который собрали своими руками.
Гнуть лист лучше всего на трубе большого диаметра или использовать поперечину. Положите на нее вырезанный лист и прижмите сверху рукой деревянный брусок. Второй рукой нажмите на лист жести так, чтобы образовался по всей длине небольшой изгиб. Продвиньте немного заготовку и снова повторите операцию. Делайте так до тех пор, пока не получится цилиндр.
- Соедините его при помощи замка, который используют жестянщики для водосточных труб.
- Сделайте крышки для кожуха, предусмотрев в них отверстия для подключения генератора.
- Обмотайте теплоизоляционным материалом устройство. При помощи проволоки или тонких полосок жести зафиксируйте изоляцию.
- Поместите устройство в кожух, закройте крышками.
Есть еще один способ увеличить производство тепла: для этого надо разобраться, как работает вихревой генератор Потапова, коэффициент полезного действия которого может приближаться к 100% и выше (нет единого мнения, почему так происходит).
Во время прохождения воды через сопло или жиклер на выходе создается мощный поток, который ударяется в противоположный конец устройства. Он закручивается, и за счет трения молекул происходит нагревание. Значит, поместив вовнутрь этого потока дополнительную преграду, можно увеличить перемешивание жидкости в устройстве.
Зная, как это работает, можно начать конструировать дополнительное усовершенствование. Это будет гаситель вихрей, сделанный из продольных пластин, расположенных внутри двух колец в виде стабилизатора авиационной бомбы.
Схема стационарного теплогенератора.
Инструменты: сварочный аппарат, угловая шлифовальная машинка.
Материалы: листовой металл или полосовое железо, толстостенная труба.
Сделайте из трубы меньшего диаметра, чем вихревой теплогенератор Потапова, два кольца шириной 4-5 см. Из полосового металла нарежьте одинаковые полоски. Длина их должна равняться четвертой части длины корпуса самого теплового генератора. Ширину подберите с таким расчетом, чтобы после сборки внутри оставалось свободное отверстие.
- Закрепите пластину в тисках. Повесьте на нее с одной и другой стороны кольца. Приварите к ним пластину.
- Выньте из зажима заготовку и переверните ее на 180 градусов. Поместите внутрь колец пластину и закрепите в зажиме так, чтобы пластины находились друг напротив друга. Закрепите таким образом на равном расстоянии 6 пластин.
- Соберите вихревой теплогенератор, вставив описанное устройство напротив сопла.
Наверное, можно и дальше усовершенствовать это изделие. Например, вместо параллельных пластин использовать стальную проволоку, смотав ее в воздушный клубок. Или на пластинах сделать отверстия разного диаметра. Об этом усовершенствовании нигде ничего не сказано, но это не значит, что делать этого не стоит.
Принцип работы
Процесс кавитации. (Для увеличения нажмите)
Теплоноситель (чаще всего используют воду) попадает в кавитатор, где установленный электродвигатель производит его раскручивание и рассечение винтом, в результате образуются пузырьки с парами (это же происходит, когда плывет подводная лодка и корабль, оставляя за собой специфический след).
Двигаясь по теплогенератору, они схлопываются, за счет чего выделяется тепловая энергия. Такой процесс и называется кавитацией.
Исходя из слов Потапова, создателя кавитационного теплогенератора, принцип работы данного типа устройства основан на возобновляемой энергии. За счет отсутствия дополнительного излучения, согласно теории, КПД такого агрегата может составлять около 100%, так как практически вся используемая энергия уходит на нагрев воды (теплоносителя).
Схемы изготовления теплогенератора кавитационного типа
Для того чтобы сделать действующий прибор своими руками, рассмотрим чертежи и схемы действующих устройств, эффективность которых установлена и документально зарегистрирована в патентных бюро.
Цифрой 1 обозначена вихревая форсунка, на которой смонтирована камера закрутки. С боку камеры закрутки можно видеть входной патрубок (3), который присоединён к центробежному насосу (4).
Цифрой 6 на схеме обозначены впускные патрубки для создания встречного возмущающего потока.
Особо важный элемент на схеме — это резонатор (7) выполненный в виде полой камеры, объем которой изменяется посредством поршня (9).
Один из резонаторов (15) выполнен в виде полой камеры, окружающей сопло, обозначенное цифрой 5. Второй резонатор (16) также выполнен в виде полой камеры и расположен с обратного торца устройства в непосредственной близости от входных патрубков (10) подающих возмущающие потоки.
В этой схеме вихревая форсунка (1) соплом (5) огибает выходное отверстие резонатора (21). Напротив, резонатора, отмеченного цифрой 19, вы можете видеть входное отверстие (22) резонатора под номером 20.
1 — корпус, который выполнен полым, и в котором располагаются все принципиально важные элементы;
2 — вал, на котором закреплен роторный диск;
3 — роторное кольцо;
5 — технологические отверстия проделанная в статоре;
6 — излучатели в виде стержней.
Основные трудности при изготовлении перечисленных элементов могут возникнуть при производстве полого корпуса, так как лучше всего его сделать литым.
Такой эффект будет возможен при условии, что в агрегате, собранном по предложенной схеме, все детали будут идеально подогнаны друг к другу