Как происходит гашение дуги в масляном выключателе?

Гашение дуги в масляных выключателях.

В масляных выключателях контакты размыкаются в масле, однако вследствие высокой температуры дуги, образующей­ся между контактами, масло разлагается и дуговой разряд происходит в газовой среде. Приблизительно половину этого газа (по объему) составляют пары масла. Остальная часть состоит из водорода (70%) и углеводородов различного состава. Газы эти горючи, однако в масле горение невозможно из-за отсутствия кислорода. Количество масла, разлагаемого дугой, невелико, но объем обра­зующихся газов велик. Один грамм масла дает приблизительно 1500 см 3 газа, приведенного к комнатной температуре и атмосферному давлению.

Гашение дуги в масляных выклю­чателях происходит наиболее эффективно при применении гасительных камер, которые ограничивают зону дуги, спо­собствуют повышению давления в этой зоне и образованию газового дутья сквозь дуговой столб.

Гашение дуги в элегазовых выключателях

Элегаз (SFg — шестифтористая сера) представляет собой инертный газ, плот­ность которого превышает плотность воздуха в 5 раз. Электрическая проч­ность элегаза в 2—3 раза выше проч­ности воздуха; при давлении 0,2 МПа электрическая прочность элегаза сравни­ма с прочностью масла.

В элегазе при атмосферном давлении может быть погашена дуга с током, который в 100 раз превышает ток, отключаемый в воздухе при тех же условиях. Способность элегаза гасить дугу объясняется тем. что его молекулы улавливают электро­ны дугового столба и образуют отно­сительно неподвижные отрицательные ионы. Потеря электронов делает дугу неустойчивой, и она легко гаснет. В струе элегаза поглощение электронов из дугового столба происходит еще интенсивнее.

В элегазовых выключателях приме­няют автопневматические дугогасительные устройства, в которых газ в про­цессе отключения сжимается поршне­вым устройством и направляется в зо­ну дуги. Элегазовый выключатель представляет собой замкнутую систему без выброса газа наружу.

Гашение дуги в вакуумных выключателях

Электрическая прочность вакуумного промежутка во много раз боль­ше, чем воздушного промежутка при атмосферном давлении. Это свойство используется в вакуумных дугогасительных камерах. Ра­бочие контакты имеют вид полых усеченных конусов с радиальными прорезями. Такая форма контактов при размыкании создает радиальное электродинамическое усилие, действующее на возникающую дугу и застав­ляющее перемещаться ее через зазоры на дугогасительные контакты. Контакты представляют собой диски, разрезанные спиральными прорезя­ми на три сектора, по которым движется дуга. Материал контактов по­добран так, чтобы уменьшить количество испаряющегося металла. Вслед­ствие глубокого вакуумапроисходит быстрая диффузия заряженных частиц в окружающее про­странство и при первом переходе тока через нуль дуга гаснет.Подвод тока к контактам осуществляется с помощью медных стержней. Подвижный контакт крепится к верхнему фланцу с помощью сильфона из нержавеющей стали. Сильфон служит для обеспечения герметичности вакумной камеры. Металлическиеэкраны служат для выравнивания электрического поля и для защиты керамического корпуса от попадания паров металла, образующихся при гашении дуги.

2. Основные системы, обеспечивающие работу генераторов и синхронных компенсаторов.

3. Практическое задание

4. Задача.

Билет №21

1 .Векторные диаграммы вторичных токов трансформаторов тока при соединении вторичных обмоток в неполную звезду.

ТТ устанавливаются в две фазы и соединяются анологично схеме звезды.

Режим Описание Токи в фазах Векторная диаграмма Коэфициент схемы
Нормальный режим в реле проходят токи фаз, а в нулевом проводе их геометрическая сумма . Iр=Iф Ксх=1
Трехфазное КЗ токи проходят по обоим реле и в обратном проводе.
Двухфазное КЗ в зависимости от того, какие фазы повреждены токи проходят в одном или двух реле. Ток в обратном проводе при 2-х к.з. между фазами А и С, в которых установлены ТТ, с учетом Ia=-Ic, равен нулю, а при замыканиях между фазами АВ и ВС он соответственно равен Iоб=Ia и Iоб=Ic
Однофазное КЗ Схема реагирует на однофазные к.з. лиш в тех фазах в которых установлены ТТ. В следствии этого для защит от однофазных к.з. не применяяется

2 . Релейная защита ЛЭП напряжением 110 кВ и выше. Схема МТЗ с дешунтированием отключающей катушки привода выключателя. Особенности выбора тока срабатывания защиты.

Рассмотрим защиты, используемые для ЛЭП (линий электропередач) 110 — 220 кВ, а также для коротких ЛЭП 330 кВ, переходные процессы в которых не отличаются от переходных процессов в ЛЭП 220 кВ.

— Максимальная токовая защита (МТЗ) используется для защиты радиальных линий.

— Токовая отсечка (ТО) действует при междуфазных, двухфазных и трехфазных КЗ. Она используется в дистанционной защите при близких КЗ как вспомогательная,

когда у реле сопротивления есть проблема мертвой зоны.

Мертвая зона дистанционной защиты – близкое К (3) , когда

где – сопротивление системы, – напряжение реле.

При дальних КЗ получаем:

— Токовая защита нулевой последовательности (ТЗНП). Направленная защита. При К (1) реагирует на направление тока нулевой последовательности.

ШДЭ 2801 – ступенчатая защита для реализации функций резервных защит при наличие основной быстродействующей.

ШДЭ 2802 – два комплекта ступенчатых защит.

ПДЭ 2802 – направленная ВЧ защита, используется в качестве основной.

Защита лэп 500 кВ и выше.

Для ВЛ 500 кВ и выше выпускают следующие устройства Р.З. и автоматики в составе:

ПДЭ 2001 – дистанционная трехступенчатая защита;

ПДЭ 2002 – токовая направленная четырехступенчатая защита нулевой последовательности, токовая отсечка от межфазных К.З. и защита от неполнофазных режимов;

ПДЭ 2003 – направленная и дифференциально-фазная ВЧ защита;

ПДЭ 2004.01 – устройство одно и трехфазного АПВ;

ПДЭ 2004.02 – устройство трехфазного АПВ на три присоединения;

ПДЭ 2006 – защита шин.

Проблемы резервирования

При выполнении релейной защиты электрических систем приходится считаться с возможностью отказа в действии защиты или выключателя поврежденного элемента. Резервирование выполняется с точки зрения надежности электроснабжения потребителей.

1). Используются разные типы защит для земляных и между фазных КЗ: однофазные КЗ на землю – направленная токовая защита нулевой последовательности (НТЗНП), междуфазные КЗ – дистанционная защита.

2). На ответственных транзитных магистральных ЛЭП применяются защиты с абсолютной и относительной селективностью.

3). Основная защита трансформатора — дифференциальная (S≥6.3 МВ∙А), резервная – МТЗ, ТО, токовая защита с пуском по напряжению, газовая защита трансформатора.

Возможны два основных, принципиально различных способа резервирования: дальнее, выполняемое защитами с относительной селективностью смежных элементов, и ближнее, выполняемое защитами установки (станции или подстанции), на которой произошел отказ. В случае отказа выключателя поврежденного элемента все его защиты действуют через специальное устройство резервирования при отказе выключателя (УРОВ).

Пример. Если выключатель В5 не сработал, то необходимо отключить выключатели В7 и В4. Если есть линия с источником С5 (обозначена пунктиром), то необходимо отключить В8, т.к. идет подпитка места КЗ. У каждого выключателя свой источник питания.

На подстанции имеются:

· — шины сигнализации EN, ENR и др. Сигнализация может быть местной и центральной, осуществляется лампочками (световая), блинкерами, звуком.

· — шины управления ЕС.

· — шины питания соленоидов, выключателей. Питание: постоянный оперативный ток ±220; ±110; ±48 В; переменный оперативный ток (используется на подстанциях 6-35 кВ).

В соответствии с условиями резервирования по выполняемым функциям различают:

1. Основной называется защита, предназначенная для действия при всех или части видов повреждений в пределах всего элемента, например всей длины участка линии, с временем, меньшим, чем у других защит этого элемента.

2. Резервной называется защита, предусматриваемая для действия вместо основной в случаях, если последняя отказала или была выведена из работы, а также вместо отказавших защит смежных элементов или в случаях отказов их выключателей.

3. Вспомогательной называется защита, выполняющая некоторые дополнительные функции, например защиту мертвых зон, определяемых направленными элементами основных и резервных защит, ускорение отключения КЗ и т.п.

В распределительных сетях напряжением до 110 кВ обычно применяется дальнее резервирование. В системах более высоких напряжений, обычно имеющих более сложные схемы и оборудованных воздушными выключателями и выносными ТТ, преимущественно используется сочетание ближнего и дальнего резервирования, иногда с добавлением защит, устанавливаемых на шиносоединительных и секционных выключателях.

3. Практическое задание

Задача.

Билет №22

1. Графики электрической загрузки потребителей и их характеристики.

Электрическая нагрузка отдельных потребителей, а следовательно, и суммарная их нагрузка, определяющая режим работы электростанций в энергосистеме, непрерывно меняется. Принято отражать этот факт графиком нагрузки, т.е. диаграммой изменения мощности (тока) электроустановки во времени.

По виду фиксируемого параметра различают графики активной Р, реактивной Q, полной (кажущейся) S мощностей и тока I электроустановки.

Как правило, графики отражают изменение нагрузки за определенный период времени. По этому признаку их подразделяют на суточные (24 ч), сезонные, годовые и т.п.

По месту изучения или элементу энергосистемы, к которому они относятся, графики можно разделить на следующие группы:

· графики нагрузки потребителей, определяемые на шинах подстанций;

· сетевые графики нагрузки — на шинах районных и узловых подстанций;

· графики нагрузки энергосистемы, характеризующие результирующую нагрузку энергосистемы;

· графики нагрузки электростанций.

Графики нагрузки используют для анализа работы электроустановок, для проектирования системы электроснабжения, для составления прогнозов электропотребления, планирования ремонтов оборудования, а также в процессе эксплуатации для ведения нормального режима работы.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Гашение дуги в масле. Конструкция дугогасительных камер масляных выключателей

3 – изоляционные входы

4 – привод выключателя

5 – трансформаторное масло

6 — буфферное прост-во

7 – подвижные контакты

8 – неподвижные контакты

9 – траверса привода

10 — электрическая дуга

При отключении эл . цепи траверса с подвижными контактами с помощью привода перемещается вниз . При размыкании контактов между ними возникает эл .дуга .

Гашение дуги происходит следующим образом. Под действием высокой температуры масло в дуговом промежутке разлагается и превращается в газ. Этот газ состоит примерно из 70% водорода, 20% этилена и 10% метана. Газ образует газовый пузырь окружающий газовую дугу.

Интенсивная деионизация происходит благодаря водородной среде, выс. давлению в газ. пузыре и вихревому движению масла вокруг газ. пузыря , что способствует его интенсивному охлаждению.

Давление масла передается на стенки бака, вызывая повышение уровня масла. С увеличением расстояния между подвижными и неподвижными контактами увеличивается длина дуги и соответственно площадь её сопротивления с газ. пузырём.

Все эти факторы способствуют быстрому восстановлению эл . прочности между контактами. Если при 1-ом переходе кривой тока через 0 и при следующем нарастании напряжения между контактами эл . прочность между контактами будет недостаточна , то дуга загорится вновь, однако при следующем прохождении через 0 расстояние между контактами будет весьма значительным и дуга погаснет.

Буферное пространство в масленых выключателях играет, существенную большую, роль. При слишком большом уровне масла внутри баковое давление при разрыве дуги может оказаться слишком большим и разорвет бак, а при слишком малом уровне масла теплоёмкости масла может быть недостаточно, охлаждение дуги будет недостаточным и ее не удастся погасить.

Дугогасительная камера выключателя МКП-100

1 – бакелитовый корпус;

2 – неподвижные контакты ;

3 –подвижные контакты;

6 – траверса привода;

Выкл МКП-110 –масляный камерный подстанционный на напряжение 110 кВ. Он представляет конструкцию из 3 баков, заполненных маслом, для каждой фазы. В каждом баке установлены 2 дугогасительные камеры. ДК представляет из себя корпус из изоляционного материала (бакалит).В корпусе дугогасительной камеры размещены неподвижные и подвижные контакты . Все контакты включены последовательно. Пружина обеспечивает необходимое контактное нажатие. В каждой паре контактов находятся выхлопные отверстия, обрамленные втулками из термостойкого материала.

Гашение дуги происходит следующим образом: При перемещении привода вниз подвижные контакты опускаются и между ними возникает эл. дуга. В камере возникает 4 дуги . Назначение этих дуг различно. Дуги возникающие возле выхлопных отверстий называются гасимыми. 2 другие — генерирующие. Контактные группы отрегулированы таким образом, что сначала возникают гасимые дуги, а примерно через полпериода генерирующие дуги. Между контактами образуются газовые пузыри, что приводит к повышению давления в нутрии стакана дугогасительной камеры. При этом масло из стакана через выхлопные отверстия устремляется наружу, увлекая за собой гасимую дугу. Дуга растягивается и охлаждается в большом объеме масла вне дугогасительной камеры. Генерирующая дуга , создаёт это избыточное давление и обеспечивает поперечное масленое дутье

Дугогасительная камера выключателя МКП-35

2) Неподвижный контакт

3) Подвижный контакт

5) Выхлопные диффузоры

6) Буферное пространство

III- масляные каналы

ДК размещается в баке выключателя (в фазе), каждую фазу приходится 2 последовательно включенных дугогасящих камеры, аналогично МКП- 110 кВ.

При размыкании контактов между ними возникает эл. дуга и образуется газовый пузырь и в камерах I и II создается избыточное давление . Если коммутационный ток не превышает несколько десятков ампер, то дуга гаснет вследствие деионизации в газовом пузыре .

Если токи коммутации значительны, то дуга не может погаснуть, но при дальнейшем движении контакта вниз, открываются дугогасительные каналы, по которым дуга впоследствии избыточного давления масла в камере II выдувается через диффузоры во внешние слои масла где она охлаждается, деонизируется и гаснет. В МКП — 35 используется поперечное масленое дутье.

Дата добавления: 2018-05-13 ; просмотров: 1612 ; Мы поможем в написании вашей работы!

ГАШЕНИЕ ЭЛЕКТРИЧЕСКОЙ ДУГИ В МАСЛЕ

Этот способ гашения нашел широкое применение в выключателях перемен­ного тока на высокое напряжение.

Контакты выключателя погружаются в масло. Возникающая при разрыве дуга приводит к очень интенсивному испарению окружающего ее масла с диссоциацией его паров. Вокруг дуги образуется газовая оболочка (рис 6-17) — газовый пузырь, состоящий в основном из водорода (70—80% газов пузыря) и паров масла. При этом водород, обладающий наивысшими среди всех газов дугогасящими свой­ствами, наиболее тесно соприкасается со стволом дуги. Выделяемые с громадной скоростью газы проникают непосредственно в зону ствола дуги, вызывают пере­мешивание холодного и горячего газа в пузыре, создают интенсивное охлаждение и деионизацию дугового промежутка, особенно в момент прохождения тока через свой естественный нуль.

Быстрое (взрывное) разложение масла приводит к повышению давления внутри пузыря, что также способствует гашению дуги. В обычных конструкциях масляных выключателей давление в газовом пузыре повышается до 0,5-1 МПа, а в выклю­чателях с дугогасительными камерами — еще больше.

Следует отметить, что сам процесс разложения масла с образованием газо­паровой смеси связан с отбором от дуги большого количества энергии (30—35 %), что также благоприятно влияет на ее гашение.

Процесс гашения в масле происходит тем интенсивнее, чем ближе соприка­сается дуга с маслом и чем быстрее движется масло по отношению к дуге. При простом разрыве дуги в масле дуга окружена пузырем, заполненным парами масла и газа, находящимися в относительно спо­койном состоянии.

Рисунок 25 — Электрическая дуга в сфере газового пузыря в масле при простом однократном разрыве

1-неподвижный контакт; 2 — подвижный контакт;5- стенка бака 4-масло; А -ствол дуги: Б—водороданая оболочка В — зона распада; Г — зона газа; Д—зона пара; Е-зона испа­рения

Воздействие самого масла на дугу относительно мало. Воздействие масла на дугу существенно увеличивается, если дуговой раз­рыв ограничить каким-либо замкнутым изоляцион­ным устройством, так называемым дугогасительным устройством (камерой). В дугогасительных камерах создается более тесное соприкосновение масла с дугой, а также интенсивное обдувание дуги потоками газов, паров масла и самим маслом, в результат чего значительно возрастает продольный градиент напряжения, ускоряется про­цесс деионизации, сокращается время горения дуги, уменьшается ход контактов по сравнению с простым разрывом в масле.

В случае когда дуга горит в газовом пузыре, объем которого не ограничи­вается стенками, средняя температура газопаровой смеси находится в пределах 800- 1000 К, а в случае горения дуги в узком, ограниченном объеме при боль­ших токах средняя температура газопаровой смеси достигает 2000—2500 К, т.е. отвод энергии от дуги здесь значительно больший.

Дугогасительные устройства современных масляных выключателей по принципу действия могут быть разделены на три основные группы:

1. Дугогасительные устройства с автодутьем, в которых дутье газопаровой смеси и масла в зону гашения дуги создается за счет энергии, выделяющейся в самой дуге.

2. Дугогасительные устройства с принудительным (импульсным) масляным дутьем, в которых масло в зону гашения дуги (к месту разрыва) подается с помощью специальных нагнетающих гидравлических механизмов за счет по­стороннего источника энергии.

3. Дугогасительные устройства с магнитным гашением дуги в масле, в которых ствол дуги под влиянием поперечного магнитного поля перемещается в узкие, заполненные маслом каналы и щели, образованные стенками из изоляционного материала.

Наибольшее распространение находят дугогасительные устройства первой группы, так как обеспечивают большую эффективность гашения при сравнитель­но несложных конструкциях.

Принципиальные схемы работы простейших дугогасительных камер с авто­дутьем приведены на рис. 6-18. Газовый пузырь, образующийся вокруг дуги при размыкании контактов, приводит к существенному повышению давления в ограниченном объеме камеры (положение 1). Масло и продукты его разложения, стремясь выйти через отверстия в камере, создают интенсивное обдувание дуги потоками газопаровой смеси и масла вдоль дуги (продольное дутье -рис. 6-18,а) при выходе подвижной контакт-детали из камеры (положение //) или поперек дуги (поперечное дутье— рис. 6-18,6) при наличии выхлопного отверстия, расположенного против места разрыва (положение //). После гашения дуги камера наполняется маслом (положение ///). Современные масляные выключатели снабжены более сложными камерами, в которых используются указанные принципы в различных комбинациях с одним, двумя и большим числом разрывов.

Рисунок 26 — Схемы процесса гашения электрической дуги в камерах с автодутьем а — камера продольного дутья; б- камера поперечной) дутья

1-масло; 2 — неподвижный контакт; 3 -клапан; 4 — дуга 5-гаэовый пузырь; 6 — камера; 7- подвижный контакт

Процесс образования электрической дуги и способы ее гашения

При размыкании электрической цепи возникает электрический разряд в виде электрической дуги. Для появления электрической дуги достаточно, чтобы напряжение на контактах было выше 10 В при токе в цепи порядка 0,1А и более. При значительных напряжениях и токах температура внутри дуги может достигать 3 — 15 тыс. °С, в результате чего плавятся контакты и токоведущие части.

При напряжениях 110 кВ и выше длина дуги может достигать нескольких метров. Поэтому электрическая дуга, особенно в мощных силовых цепях, на напряжение выше 1 кВ представляет собой большую опасность, хотя серьезные последствия могут быть и в установках на напряжение ниже 1 кВ. Вследствие этого электрическую дугу необходимо максимально ограничить и быстро погасить в цепях на напряжение как выше, так и ниже 1 кВ.

Причины возникновения электрический дуги

Процесс образования электрической дуги может быть упрощенно представлен следующим образом. При расхождении контактов вначале уменьшается контактное давление и соответственно контактная поверхность, увеличиваются переходное сопротивление ( плотность тока и температура — начинаются местные (на отдельных участках площади контактов) перегревы, которые в дальнейшем способствуют термоэлектронной эмиссии, когда под воздействием высокой температуры увеличивается скорость движения электронов и они вырываются с поверхности электрода.

В момент расхождения контактов, то есть разрыва цепи, на контактном промежутке быстро восстанавливается напряжение. Поскольку при этом расстояние между контактами мало, возникает электрическое поле высокой напряженности, под воздействием которого с поверхности электрода вырываются электроны. Они разгоняются в электрическом поле и при ударе в нейтральный атом отдают ему свою кинетическую энергию. Если этой энергии достаточно, чтобы оторвать хотя бы один электрон с оболочки нейтрального атома, то происходит процесс ионизации.

Образовавшиеся свободные электроны и ионы составляют плазму ствола дуги, то есть ионизированного канала, в котором горит дуга и обеспечивается непрерывное движение частиц. При этом отрицательно заряженные частицы, в первую очередь электроны, движутся в одном направлении (к аноду), а атомы и молекулы газов, лишенные одного или нескольких электронов, — положительно заряженные частицы — в противоположном направлении (к катоду). Проводимость плазмы близка к проводимости металлов.

В стволе дуги проходит большой ток и создается высокая температура. Такая температура ствола дуги приводит к термоионизации — процессу образования ионов вследствие соударения молекул и атомов, обладающих большой кинетической энергией при высоких скоростях их движения (молекулы и атомы среды, где горит дуга, распадаются на электроны и положительно заряженные ионы). Интенсивная термоионизация поддерживает высокую проводимость плазмы. Поэтому падение напряжения по длине дуги невелико.

В электрической дуге непрерывно протекают два процесса: кроме ионизации, также деионизация атомов и молекул. Последняя происходит в основном путем диффузии, то есть переноса заряженных частиц в окружающую среду, и рекомбинации электронов и положительно заряженных ионов, которые воссоединяются в нейтральные частицы с отдачей энергии, затраченной на их распад. При этом происходит теплоотвод в окружающую среду.

Таким образом, можно различить три стадии рассматриваемого процесса: зажигание дуги, когда вследствие ударной ионизации и эмиссии электронов с катода начинается дуговой разряд и интенсивность ионизации выше, чем деионизации, устойчивое горение дуги, поддерживаемое термоионизацией в стволе дуги, когда интенсивность ионизации и деионизации одинакова, погасание дуги, когда интенсивность деионизации выше, чем ионизации.

Способы гашения дуги в коммутационных электрических аппаратах

Для того чтобы отключить элементы электрической цепи и исключить при этом повреждение коммутационного аппарата, необходимо не только разомкнуть его контакты, но и погасить появляющуюся между ними дугу. Процессы гашения дуги, так же как и горения, при переменном и постоянном токе различны. Это определяется тем, что в первом случае ток в дуге каждый полупериод проходит через нуль. В эти моменты выделение энергии в дуге прекращается и дуга каждый раз самопроизвольно гаснет, а затем снова загорается.

Практически ток в дуге становится близким нулю несколько раньше перехода через нуль, так как при снижении тока энергия, подводимая к дуге, уменьшается, соответственно снижается температура дуги и прекращается термоионизация. При этом в дуговом промежутке интенсивно идет процесс деионизации. Если в данный момент разомкнуть и быстро развести контакты, то последующий электрический пробой может не произойти и цепь будет отключена без возникновения дуги. Однако практически это сделать крайне сложно, и поэтому принимают специальные меры ускоренного гашения дуги, обеспечивающие охлаждение дугового пространства и уменьшение числа заряженных частиц.

В результате деионизации постепенно увеличивается электрическая прочность промежутка и одновременно растет восстанавливающееся напряжение на нем. От соотношения этих величин и зависит, загорится ли на очередную половину периода дуга или нет. Если электрическая прочность промежутка возрастает быстрее и оказывается больше восстанавливающего напряжения, дуга больше не загорится, в противном же случае будет обеспечено устойчивое горение дуги. Первое условие и определяет задачу гашения дуги.

В коммутационных аппаратах используют различные способы гашения дуги.

При расхождении контактов в процессе отключения электрической цепи возникшая дуга растягивается. При этом улучшаются условия охлаждения дуги, так как увеличивается ее поверхность и для горения требуется большее напряжение.

Деление длинной дуги на ряд коротких дуг

Если дугу, образовавшуюся при размыкании контактов, разделить на К коротких дуг, например затянув ее в металлическую решетку, то она погаснет. Дуга обычно затягивается в металлическую решетку под воздействием электромагнитного поля, наводимого в пластинах решетки вихревыми токами. Этот способ гашения дуги широко используется в коммутационных аппаратах на напряжение ниже 1 кВ, в частности в автоматических воздушных выключателях.

Охлаждение дуги в узких щелях

Гашение дуги в малом объеме облегчается. Поэтому в коммутационных аппаратах широко используют дугогасительные камеры с продольными щелями (ось такой щели совпадает по направлению с осью ствола дуги). Такая щель обычно образуется в камерах из изоляционных дугостойких материалов. Благодаря соприкосновению дуги с холодными поверхностями происходят ее интенсивное охлаждение, диффузия заряженных частиц в окружающую среду и соответственно быстрая деионизация.

Кроме щелей с плоскопараллельными стенками, применяют также щели с ребрами, выступами, расширениями (карманами). Все это приводит к деформации ствола дуги и способствует увеличению площади соприкосновения ее с холодными стенками камеры.

Втягивание дуги в узкие щели обычно происходит под действием магнитного поля, взаимодействующего с дугой, которая может рассматриваться как проводник с током.

Внешнее магнитное поле для перемещения дуги наиболее часто обеспечивают за счет катушки, включаемой последовательно с контактами, между которыми возникает дуга. Гашение дуги в узких щелях используют в аппаратах на все напряжения.

Гашение дуги высоким давлением

При неизменной температуре степень ионизации газа падает с ростом давления, при этом возрастает теплопроводность газа. При прочих равных условиях это приводит к усиленному охлаждению дуги. Гашение дуги при помощи высокого давления, создаваемого самой же дугой в плотно закрытых камерах, широко используется в плавких предохранителях и ряде других аппаратов.

Гашение дуги в масле

Если контакты выключателя помещены в масло, то возникающая при их размыкании дуга приводит к интенсивному испарению масла. В результате вокруг дуги образуется газовый пузырь (оболочка), состоящий в основном из водорода (70. 80 %), а также паров масла. Выделяемые газы с большой скоростью проникают непосредственно в зону ствола дуги, вызывают перемешивание холодного и горячего газа в пузыре, обеспечивают интенсивное охлаждение и соответственно деионизацию дугового промежутка. Кроме того, деионизирующую способность газов повышает создаваемое при быстром разложении масла давление внутри пузыря.

Интенсивность процесса гашения дуги в масле тем выше, чем ближе соприкасается дуга с маслом и быстрее движется масло по отношению к дуге. Учитывая это, дуговой разрыв ограничивают замкнутым изоляционным устройством — дугогасительной камерой . В этих камерах создается более тесное соприкосновение масла с дугой, а при помощи изоляционных пластин и выхлопных отверстий образуются рабочие каналы, по которым происходит движение масла и газов, обеспечивая интенсивное обдувание (дутье) дуги.

Дугогасительные камеры по принципу действия разделяют на три основные группы: с автодутьем, когда высокие давление и скорость движения газа в зоне дуги создаются за счет выделяющейся в дуге энергии, с принудительным масляным дутьем при помощи специальных нагнетающих гидравлических механизмов, с магнитным гашением в масле, когда дуга под действием магнитного поля перемещается в узкие щели.

Наиболее эффективны и просты дугогасительные камеры с автодутьем . В зависимости от расположения каналов и выхлопных отверстий различают камеры, в которых обеспечивается интенсивное обдувание потоками газопаровой смеси и масла вдоль дуги (продольное дутье) или поперек дуги (поперечное дутье). Рассмотренные способы гашения дуги широко используются в выключателях на напряжение выше 1 кВ.

Другие способы гашения дуги в аппаратах на напряжение выше 1 кВ

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Устройство и принцип действия масляных выключателей

Масляный выключатель предназначен для включения и отключения силовых электрических цепей в рабочем режиме (под нагрузкой), перегрузках, а также в случаях коротких замыканий на линии.

Масляные выключатели могут включаться и отключаться как вручную, так и в автоматическом режиме под управлением аппаратов защиты и управления.

Главным элементом масляного выключателя является контактная система, погруженная в трансформаторное масло, в которой происходит гашение электрической дуги, образующейся при разрыве цепи высокого напряжения.

Исследования показали, что в момент расхождения контактов между ними образуется электрическая дуга, которая держится несколько периодов. По мере увеличения расстояния между контактами дуга гаснет, а протекание тока в цепи прекращается. Физическая сущность данного явления заключается в следующем. При исчезновении тока магнитная энергия, запасенная в выключаемой цепи, превращается в электростатическую. Это можно выразить формулой баланса энергии:

Где L – индуктивность, а С – емкость коммутируемой цепи.

Отсюда можно выразить:

Отношение называют волновым сопротивлением, оно составляет для воздушных линий 400 – 500 Ом, а для кабельных линий 30 – 50 Ом.

Если отключение происходит в момент прохождения тока через максимум, то напряжение в цепи может повыситься во много раз по сравнению с номинальным. Особенно это опасно для изоляции электроустановки в случае отключения токов короткого замыкания. Но если процесс отключения происходит в момент прохождения тока через ноль, то величина напряжения оказывается небольшой и не поддерживает процесс горения электрической дуги. Именно в этот момент масляный выключатель и должен обеспечить окончательный разрыв электрической дуги.

Процесс выключения тока в масле происходит при интенсивном образовании в области дуги паров масла, так как температура во время процесса отключения может достигать порядка 6000 0 С.

При достижении определенного расстояния между размыкающимися контактами, в момент прохождения тока через нулевое значение, напряжение снижается и оказывается недостаточным для пробоя газового промежутка между контактами, электрическая дуга разрывается и процесс отключения заканчивается. Также быстрому гашению электрической дуги способствует высокое давление газов, выделяющихся вследствие частичного разложения масла в области образования дуги.

Если величина тока не зависит от конструкции масляного выключателя, то напряжение на дуге и время ее разрыва зависит не только от параметров электрической цепи, но и от конструкции выключателя.

Таким образом, гашение электрической дуги в масляных выключателях основано на быстром расхождении контактов и интенсивном охлаждении электрической дуги.

Кроме того, в некоторых конструкциях выключателей применяют расщепление электрической дуги на ряд параллельных дуг меньшего сечения и разделение электрической дуги на ряд коротких дуг.

Быстрое расхождение контактов масляного выключателя достигается путем применения специальных пружин.

Усиленное охлаждение электрической дуги достигается за счет высокой теплопроводности газов, образующихся при разложении масла, а также газового дутья, направленного вдоль или поперек дуги в зависимости от типа и конструкции масляного выключателя.

Высоковольтные выключатели подразделяют на масляные и воздушные. Масляные выключатели бывают баковые с большим объемом масла и горшковые с малым объемом масла. В баковых выключателях контакты всех трех фаз погружены в один закрытый бак, заполненный минеральным маслом.

В горшковых выключателях на каждой фазе имеется отдельный стальной цилиндр, заполненный маслом, в котором происходит разрыв контактов и гашение электрической дуги.

На рисунке ниже показано устройство многообъемного масляного выключателя типа ВМБ-10 на 10 кВ и 600 А, состоящего из следующий деталей:

Круглый бак со сферическим днищем 1. Бак внутри изолируется электрокартоном. Перегородки между фазами также выполняются из картона. Неподвижные медные контакты 2 выполнены в виде массивных колодок, к которым присоединены концы токоведущих стержней проходных изоляторов 3. Сферические подвижные контакты 4 привернуты к медной шине, прикрепленной к стальной траверсе 5. Надежный контакт при включении создается при помощи стальных пружин 6. Бак заполняется трансформаторным маслом.

Довольно распространенным в сетях 6 – 10 кВ малообъемным масляным выключателем горшкового типа является ВМГ-133, показанного на рисунке ниже:

Этот выключатель выполняется на номинальный ток до 1000 А и характерен, как и все другие малообъемные выключатели, весьма незначительным объемом масла (примерно 10 кг против 180 кг, заполняющих, например, бак масляного выключателя ВМ-22, который снят с производства, но кое-где его все же можно встретить). Это делает их непожаро- и невзрывоопасными и позволяет их устанавливать в открытых камерах распределительных устройств высокого напряжения.

Масляный выключатель ВМГ-133 имеет следующее устройство: на сварной раме 1 укреплено шесть опорных изоляторов 2 (по два изолятора на фазу). На изоляторах подвешены три стальных бачка 3, в которых размещается контактная система.

Контактная система состоит из розеточного неподвижного контакта, находящегося на дне цилиндра, токоведущего подвижного контакта стержня, контактной колодки в месте выхода токоведущего стержня и гибкой токоведущей связи для соединения с выводами. Розеточный контакт состоит из шести сегментов, сжимаемых к центру пружинами, что обеспечивает надежный контакт с токоведущими стержнями.

На двух чугунных подшипниках в верхней части расположен вал 4 с приваренными к нему рычагами 5 для привода. При включении выключателя вал поворачивается на угол 54 0 . К коротким плечам крайних рычагов вала прикреплены отключающие пружины 6, работающие на сжатие при отключении. С механизмом выключателя привод соединен валом 7.

Внутри стальных цилиндров выключателя помещаются бакелитовые изоляционные цилиндры. Дуга гасится в выключателе ВМГ-133 в специальной дугогасительной камере, находящейся в цилиндре в месте разрыва контактов. Камера изготавливается из гетинакса или фибры.

Дугогасительные камеры набираются из изоляционных перегородок, образующих три поперечные дутьевых щели, соединенные отдельными выходами с верхней частью цилиндра. При отключении под нагрузкой, под действием электрической дуги часть масла испаряется, при этом давление в нижней части цилиндра быстро растет, пары масла устремляются в дутьевые щели и создает поперечное дутье, способствующее быстрой деионизации и гашению дуги.

В рассматриваемом выключателе масло уже не служит для изоляции токоведущих частей между фазами и от земли, а предназначено лишь для гашения электрической дуги и изоляции промежутка между разомкнутыми контактами данной фазы.

К той же группе, что и описанный ВМГ-133, относится и выключатель ВМП-10 (рисунок ниже), имеющий меньшие габариты и вес:

Небольшой обзор устройства и принципа действия ВМПП-10:

Вес масла в нем составляет 4,5 кг. Выключатели ВМП-10 устанавливаются в комплектных ячейках типа КСО, а ВМП-10К – в малогабаритных комплексных распределительных устройствах с выкатными тележками типа КРУ.

Выключатель ВМП-10К имеет меньшую ширину, чем ВМП-10, что достигается сближением полюсов и установкой между ними изоляционных перегородок.

При использовании малообъемных выключателей значительно снижается стоимость распределительного устройства, повышается возможность индустриализации монтажа за счет применения комплектных ячеек с установленными в них горшковыми выключателями и прочим высоковольтным оборудованием.

Основные технические данные некоторых выключателей приведены в таблице ниже: