Заземление нейтрали трансформатора 110 кв

Режимы работы нейтралей трансформаторов системы электроснабжения

Трансформаторы имеют нейтрали, режим работы или способ рабочего заземления которых обусловлен:

  • требованиями техники безопасности и охраны труда персонала,
  • допустимыми токами замыкания на землю,
  • перенапряжениями, возникающими при замыканиях на землю, а также рабочим напряжением неповрежденных фаз электроустановки по отношению к земле, определяющих уровень изоляции электротехнических устройств,
  • необходимостью обеспечения надежной работы релейной защиты от замыкания на землю,
  • возможностью применения простейших схем электрических сетей.

При однофазном замыкании на землю нарушается симметрия электрической системы: изменяются напряжения фаз относительно земли, появляются токи замыкания на землю, возникают перенапряжения в сетях. Степень изменения симметрии зависит от режима нейтрали .

Режим нейтрали оказывает существенное влияние на режимы работы электроприемников, схемные решения системы электроснабжения, параметры выбираемого оборудования.

Нейтраль сети — это совокупность соединенных между собой нейтральных точек и проводников, которая может быть изолирована от сети либо соединена с землей через малые или большие сопротивления.

Используются следующие режимы нейтрали:

эффективно заземленная нейтраль.

Выбор режима нейтрали в электрических сетях определяется бесперебойностью электроснабжения потребителей, надёжностью работы, безопасностью обслуживающего персонала и экономичностью электроустановок.

Нейтрали трансформаторов трёхфазных электрических установок, к обмоткам которых подключены электрические сети, могут быть заземлены непосредственно, либо через индуктивные или активные сопротивления, либо изолированы от земли.

Если нейтраль обмотки трансформатора присоединена к заземляющему устройству непосредственно или через малое сопротивление, то такая нейтраль называется глухозаземлённой , а сети, подсоединённые к ней, соответственно, — сетями с глухозаземлённой нейтралью .

Нейтраль, не соединённая с заземляющим устройством называется изолированной нейтралью .

Сети, нейтраль которых соединена с заземляющим устройством через реактор (индуктивное сопротивление), компенсирующий ёмкостной ток сети, называются сетями с резонанснозаземлённой либо компенсированной нейтралью .

Сети, нейтраль которых заземлена через резистор (активное сопротивление) называется сеть с резистивнозаземлённой нейтралью .

Электрическая сеть, напряжением выше 1 кВ, в которой коэффициент замыкания на землю не превышает 1,4 (коэффициент замыкания на землю – отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания ) называется сеть с эффективнозаземлённой нейтралью .

Электроустановки в зависимости от мер электробезопасности разделяются на 4 группы:

  • электроустановки напряжением выше 1 кВ в сетях с эффективнозаземленной нейтралью (с большими токами замыкания на землю),
  • электроустановки напряжением выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю),
  • электроустановки напряжением до 1 кВ с глухозаземленной нейтралью,
  • электроустановки напряжением до 1 кВ с изолированной нейтралью.

Режимы нейтрали трехфазных систем

Напряжение, кВ Режим нейтрали Примечание
0,23 Глухозаземленная нейтраль Требования техники безопасности. Заземляются все корпуса электрооборудования
0,4
0,69 Изолированная нейтраль Для повышения надежности электроснабжения
3,3
6
10
20
35
110 Эффективно заземленная нейтраль Для снижения напряжения незамкнутых фаз относительно земли при замыкании одной фазы на землю и снижения расчетного напряжения изоляции
220
330
500
750
1150

Системы с глухозаземленной нейтралью — это системы с большим током короткого замыкания на землю. При коротком замыкании место замыкания отключается автоматически. В системах 0,23 кВ и 0,4 кВ это отключение диктуется требованиями техники безопасности. Одновременно заземляются все корпуса оборудования.

Системы 110 и 220 кВ и выше выполняются с эффективно заземленной нейтралью . При коротком замыкании место замыкания также отключается автоматически. Здесь заземление нейтрали приводит к снижению расчетного напряжения изоляции. Оно равно фазному напряжению неповрежденных фаз относительно земли. Для ограничения величины токов короткого замыкания на землю заземляются не все нейтрали трансформаторов (эффективное заземление).

Режимы нейтрали трехфазных систем: а — заземленная нейтраль, б — изолированная нейтраль

Изолированной нейтралью называется нейтраль, не присоединенная к заземляющему устройству или присоединенная через аппараты, компенсирующие емкостный ток в сети, трансформаторы напряжения и другие аппараты, имеющие большое сопротивление.

Система с изолированной нейтралью применяется для повышения надежности электроснабжения. Характеризуется тем, что при замыкании одной фазы на землю возрастает напряжение фазных проводов относительно земли до линейного напряжения, и симметрия напряжений нарушается. Между линией и нейтралью протекает емкостной ток. Если он меньше 5А, то допускается продолжение работы до 2 ч для турбогенераторов мощностью до 150 МВт и для гидрогенераторов — до 50 МВт. Если установлено, что замыкание произошло не в обмотке генератора, а в сети, то допускается работа в течение 6 ч.

Сети от 1 до 10 кВ — это сети генераторного напряжения электрических станций и местные распределительные сети. При замыкании на землю одной фазы в такой системе напряжение неповрежденных фаз относительно земли возрастает до величины линейного напряжения. Поэтому изоляция должна быть рассчитана на это напряжение.

Основное преимущество режима изолированной нейтрали — способность подавать энергию электроприемникам и потребителям при однофазном замыкании на землю.

Недостатком этого режима являются трудности о обнаружении места замыкания на землю.

Повышенная надежность режима (т.е. возможность нормальной работы при однофазных замыканиях на землю, которые составляют значительную часть повреждений электрооборудования) изолированной нейтрали обуславливает обязательное его применение при напряжении выше 1 кВ до 35 кВ включительно, поскольку эти сети питают большие группы электроприемников и потребителей.

С напряжения 110 кВ и выше применение режима изолированной нейтрали становится экономически невыгодным, так как повышение напряжения относительно земли с фазного до линейного требует существенного усиления фазной изоляции. Применение режима изолированной нейтрали до 1 кВ допускается и оправданно при повышенных требованиях к электробезопасности.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Назначение, конструкция и особенности ЗОН трансформатора

ЗОН трансформатора – это заземлитель нейтрали трансформатора. На электростанциях используются заземлители ЗОН-110. Расшифровка их названия – однополюсный заземлитель наружной установки. Цифрами после названия обозначается напряжение. Существует много разновидностей заземлителей. Но, прежде чем ознакомиться с ними, необходимо понять, для чего нужен ЗОН трансформатора на 110 кВ.

  1. Назначение ЗОН-110
  2. Конструкция ЗОН-110
  3. Как подготовить ЗОН к монтажу
  4. Монтаж
  5. Разновидности ЗОН-110
  6. Условия эксплуатации заземлителя ЗОН
  7. Что такое нейтраль трансформатора
  8. Принцип работы
  9. Заземление нейтрали
  10. Защита трансформатора

Назначение ЗОН-110

Заземление трансформатора называется заземление этого электрического устройства с прибором заземления.

Рабочим заземлением называется соединение какой-либо точки токопроводящих проводов с заземлительным устройством. Рабочее заземление соединяется с экранами кабелей, которые подают заряд в землю. Примером такого типа заземления является электростанция, на которой и источник тока и поглотитель энергии находятся в земле. Из-за такой установки потенциал между устройствами всегда один и тот же.

Имеет ЗОН трансформатора назначение весьма серьезное. Он служит для заземления нейтрали трансформаторов.

  • Заземление необходимо для обеспечения бесперебойной работы электрической установки.
  • Кроме того, оно обеспечивает защиту работников подстанций от поражения током.
  • Заземлению на подстанциях должны подвергаться абсолютно все детали из металла.
  • Основные металлоконструкции также необходимо включать в систему заземления.
  • Также заземление служит бесперебойным регулятором автоматизированной работы подстанции.

Конструкция ЗОН-110

Конструкция ЗОНа состоит из цилиндра, на которое крепится основание. Основание-это небольшая деталь в виде угла, на котором закреплена вся конструкция. К нему присоединен статический контакт с устройством, состоящим из трубы (в основном алюминиевая) на которую крепится круглая пластинка с валом. Такое устройство называется ножом заземления. Нож соединен с фазным проводом линии, который входит в фазу заземления вторым концом.

Давление всей установки устанавливается и регулируется стальной пружиной. Вентильные разрядники, устройства защищающие установку от перенапряжения. Берут весь удар на себя во время грозы. Внешний вид напоминает металлическую гусеницу. Включается ЗОН 110кВ между нулевой точкой напряжения и землёй, либо напрямую через трансформатор со вторичной обмоткой.

Как подготовить ЗОН к монтажу

Важный этап монтажа ЗОНа – предварительная подготовка. При подготовке важно следовать мерам предосторожности, а именно:

  1. Монтаж осуществляется только руками профессионалов согласно правилам технической эксплуатации электрических установок.
  2. При контакте с ножом и замере его покрытия напряжение должно отсутствовать.
  3. Наладка и эксплуатация заземлителя производится ТОЛЬКО при наличии защитного заземления.
  4. Во время подготовки категорически запрещается использовать неинверторные рукоятки.
  5. При работе с заземлителем необходимо обеспечить сохранность изоляторов от механических повреждений.

Подготовка ЗОНа к монтажу состоит из нескольких этапов:

  1. Осторожно распаковать заземлительное устройство.
  2. Тщательно проверить оборудование на наличие дефектов и деформаций. При обнаружении недочётов следует обратиться к заводу изготовителю.
  3. На заводские изделия наносится консервационная смазка, которую необходимо удалить перед монтажом. Для очистки деталей используют бензин или керосин.
  4. Затем нужно проверить исправность работы механизмов.
  5. После проверки заново нанести смазку.

Монтаж

Монтаж на электростанциях, независимо от видов ЗОНа, производится по следующему алгоритму:

  1. Подготовка плоскостей конструкций для установки опоры. Они должны быть ровными, так как небольшая неровность увеличивает риски возникновения сбоев в работе.
  2. Затем происходит установка заземлителя на подготовленную ранее поверхность.
  3. Крепежные элементы должны быть установлены плотно в специальных отверстиях.
  4. После этого их необходимо крепко затянуть.
  5. Затем происходит установка привода. Он присоединяется к ЗОНу трансформатора посредством сварки концов тяги с осью и вставкой.
  6. Отрегулировать тягой изоляционное расстояние. Оно должно быть равно 8,9 см и более.
  7. Произвести пробный запуск заземлителя.
  8. Соединить подводящую шину с выводом заземлителя.
  9. Затем необходимо удалить пыль с изолятора. Для этого нередко используют обычный растворитель для краски.
  10. После завершения монтажа производится шлифовка и окраска монтажных швов.
  11. Затем все соединения обрабатывают смазкой.

Разновидности ЗОН-110

Существуют разные виды заземлителей ЗОН. Так, для заземления нейтралей силовых трансформаторов с защитой от замыканий на землю применяются:

  • ЗОН-110М-I УХЛ1
  • ЗОН-110Б-I УXЛ1
  • ЗОН-110-I T1

Все эти заземлители устанавливаются на трансформаторных станциях переменного тока. Они также обеспечивают механическое включение и выключение в сочетании с приводами ПР-01 и ПРГ-00.

Для заземления нейтралей трансформаторов без защиты от замыканий на землю используются:

  • ЗОН-110М- II УХЛ1
  • 30Н-110Б-II УХЛ1
  • ЗОН-110-II Т1

Чаще заземлители таких типов встречаются на стационарных трансформаторных подстанциях, они устанавливаются на напряжение 110 кВ.

Условия эксплуатации заземлителя ЗОН

Использование заземлителей всегда основывается на основных условиях эксплуатации. К ним относятся:

  • Температура окружающей среды от 40 градусов выше нуля и до 60 градусов ниже нулевого уровня
  • Расположение установки- 1000 м над уровнем моря
  • Толщина ледяной корки – до 2 см
  • Скорость ветра: без гололеда – не выше 15 м/с, с гололедом- не выше 40 м/с

Категория размещения заземлителя должна быть УХЛ1 или Т1.

Что такое нейтраль трансформатора

Нейтраль представляет собой несколько соединенных точек или проводников, которые либо не подключены к сети напряжений, либо имеют контакт с землёй путём преодоления больших сопротивлений.

Заземление нейтралей необходимо по следующим причинам:

  • Правила техники безопасности;
  • Автономная бесперебойная работа защиты по замыканию на землю;
  • Возможность использования простых схем цепей.

При изменении напряжения относительно земли, создаются токи замыкания на землю, и появляется перенапряжение. Это происходит из-за нарушения симметрии системы. Нейтраль может иметь разные режимы, которые зависят от степени изменения симметрии. Так, в зависимости от режимов, нейтраль может быть:

  • Глухозаземленная. Нейтраль, присоединенная к заземлителю через малое сопротивление.
  • Изолированная. Не соединенная с заземлителем нейтраль.
  • Резонансно-заземленная. Нейтраль, соединенная с заземлителем с помощью реактора.
  • Резистивно-заземленная. Заземленная через резистор нейтраль.

Нейтрали трансформатора могут быть изолированы от земли или заземлены через активные сопротивления. Также сопротивления могут быть индуктивными. Изолированные нейтрали работают от 6 кВ до 35 кВ.

Принцип работы

Напряжение с трёхфазной электростанции поступает на линейный разъединитель. После этого оно попадается на отделитель 110кВ. Он является таким же линейным разъединителем, только выполняющий расширенные функции, а именно приём более большого напряжения. Затем напряжение передается силовому трансформатору со встречной обмоткой.

Обычно на участках электростанций устанавливаются железные помещения, в которых размещаются масляные выключатели. Именно туда напряжение попадает в последнюю очередь. После попадания в ячейки ввода, оно распределяется по фидерам (столбы с проводами). Они находятся рядом с электростанцией. В дальнейшем, электричество по проводам передаётся потребителям.

Также в систему электростанции входит короткозамыкатель 110 кВ, который защищает силовой трансформатор от перенапряжения и неисправностей. Если же в квартире при коротком замыкании вырубается щиток, то на электростанции при перенапряжении короткозамыкатель порождает ток короткого замыкания, вследствие действия которого трансформатор перестаёт работать. Также короткозамыкатель блокирует возгорание трансформатора путём отделения его от отделителя, к которому постоянно поступает напряжение от линий с электроэнергией.

Заземление нейтрали

Заземление нейтрали трансформатора служит для ограничения перенапряжения. На значения напряжения влияют ёмкости сети, в которую включён трансформатор. Поэтому необходим элемент, который будет приглушать их принудительно. Так ЗОН 110кВ с активным током, который по значению больше емкостного за определённый период времени будет разряжать ёмкостное сопротивление, что приведет к понижению напряжения или его распределению.

Однако у заземлителя есть один большой недостаток. Из-за того, что он перераспределяет напряжение, происходит огромное рассеивание мощности, подаваемой с электростанции.

На сегодняшний день, специалисты решили подавать напряжение, которое будет безопасно для использования. Также при установке заземлителя снижается риск возникновения феррорезонанса. Феррорезонанс – резонанс, встречающийся в электрических цепях при различных неисправностях и высоких напряжениях.

Защита трансформатора

Одной из главной защиты силового трансформатора является газовая защита. Она предотвращает повреждения внутри электрического устройства.

Газовое реле сигнализирует об отсутствии масла в нём, а следовательно, он перестанет работать. Это явление недопустимо на электростанции, потому что напряжению будет некуда идти и произойдёт возгорание. Однако реле работает по принципу, который делает работу системы безопасной. Оно устанавливается в топливный отсек в виде поплавка, соединяя контакты. В случае снижения топлива, он замкнёт контакты и отключит трансформатор от сети.

Дифференциальная защита также играет немалую роль в работе электростанции. Так принцип рассчитан на сравнении входящих в трансформатор токов. При нормальной работе ничего не происходит. Но как только возникает двухфазный или трёхфазный ток короткого замыкания, дифференциальное реле сразу выключает трансформатор из схемы, подавая всю энергию в землю.

Что такое эффективно заземленная нейтраль и в чем ее преимущества

Что собой представляет эффективно заземленная нейтраль, какой у нее принцип работы и область применения. Плюсы и минусы электрических сетей с эффективно заземленной нейтралью.

Для передачи электроэнергии на большие расстояния применяют сети высокого напряжения. Безопасная эксплуатация обеспечивается средствами защиты, которая для каждого напряжения своя. В зависимости питающего напряжения применяют различные виды заземления нейтрали. Согласно правилу эксплуатации электроустановок, в сетях до 0,4 КВ применяется глухозаземленная нейтраль. В сетях 0,6-35 кВ для увеличения надежности используется схема с изолированной нейтралью. Для исключения перенапряжения неповрежденных фаз при коротком замыкании одной фазы на землю в линиях 110-1150 кВ применяется эффективно заземленная нейтраль (ЭЗН). Что это такое и в чем особенность данной схемы, мы расскажем читателям сайта Сам Электрик в пределах этой статьи.

Определение эффективно заземленной нейтрали

ЭЗН применяется в высоковольтных сетях 110 кВ и более. В случае замыкания фазы на землю, представляет собой однофазное КЗ.

Оно сопровождается значительными токами в месте повреждения, в результате чего срабатывает система защиты с отключением напряжения. Дадим определение, что это такое.

Эффективно заземленная нейтраль — это заземленная нейтраль в сетях трехфазного напряжения выше 1000 В, коэффициент замыкания на землю которой ≤ 1,4.

На ниже приведенном рисунке представлена схема ЭЗН:

Это значит, что при однофазном замыкании на землю, напряжение других, не поврежденных фаз, увеличится на величину, не превышающую значения 1,4.

И рассчитывается по нижеприведенной формуле:

Это имеет большое значение для высоковольтных сетей. Т.к. при такой схеме напряжение неповрежденных фаз не значительно превышает номинальное. А это значит, что нет необходимости увеличивать изоляцию сетей и оборудования.

Эксплуатация сетей с ЭЗН будет обходиться значительно дешевле. При этом следует учитывать, что экономия увеличивается по мере возрастания напряжения в линии.

Требования ПУЭ к сетям

Для сетей с эффективно изолированной нейтралью ПУЭ регламентирует максимальное сопротивление заземления, не превышающего 0,5 Ом. При этом учитывается естественное заземление. А сопротивление искусственных заземлителей не должно быть более 1 Ом.

Это справедливо для установок свыше 1000 В, режим токов КЗ на землю у которых равен или превышает значения 500 А. При этом следует учитывать, что ЭИН и глухозаземленная нейтраль имеют аналогичные схемы без существенных отличий. Такая схема показана на рисунке снизу.

Эффективно заземления нейтраль и глухозаземленная схема заземления позволяют предупредить дуговые перенапряжения. Однако, они относятся к системам с большими токами короткого замыкания на землю (больше или равно 500А).

Для уменьшения токов КЗ используют искусственное увеличение нулевой последовательности. Для этого на подстанции заземляется только часть нейтралей трансформаторов, или нейтрали заземляются через резистор.

В результате увеличивается напряжение на неповрежденных проводниках. К наиболее тяжелым авариям относят межфазное короткое замыкание. При этом, напряжение и токи короткого замыкания будут меньше, чем при однофазном КЗ.

Поэтому расчеты выполняются на основании больших значений, т.е. однофазного короткого замыкания.

Как выглядит однофазное КЗ на рисунке снизу:

Эффективно заземленная нейтраль предназначена для высоковольтных сетей 110 кВ и более. Но допускается использовать такую схему и для напряжения менее 1 000 В. Ее применяют там, где отсутствуют и не предвидится монтаж электроустановок, в которых может возникнуть пожар или устройства, которые могут выйти из строя или взорваться.

Другими словами, ЭЗН применяется в сетях с напряжением менее 1000 В, при условии отсутствия взрыво- и пожароопасных приборов.

Эффективно используются в городских электрических сетях. Особенность работы таких линий заключается в том, что при коэффициенте замыкания на землю менее единицы, можно применить кабель, рассчитанный на напряжение 6 кВ в сетях с напряжением 10 кВ.

Это позволяет передавать большую мощность с коэффициентом 1,73. При этом замена кабеля и коммутационной аппаратуры не требуется.

Достоинства и недостатки

Эффективно заземленная нейтраль применяется в сетях 110 кВ и выше. Она обладает рядом преимуществ.

Главным назначением таких схем являются:

  • В схемах с ЭЗН происходит стабилизация потенциала нейтрали и исключение вероятности возникновения устойчивых заземляющих дуг и последствий возникающих вследствие КЗ.
  • При КЗ на землю и переходных процессах, на изоляцию не воздействуют большие напряжения. Что дает возможность применить изоляцию с меньшим запасом прочности. А это в свою очередь дает значительный экономический эффект от применения менее дорогостоящей изоляции, что снижает эксплуатационные затраты сетей.
  • Применение быстродействующей селективной автоматики. Мгновенная работа защиты не позволяет усугубить возникшую неисправность.

Кроме очевидных достоинств, сети имеют и недостатки.

К ним относятся:

  • При любом КЗ на землю происходит обесточивание неисправного участка. При этом релейные системы защиты оборудуются средствами автоматического повторного включения. При отключении напряжения средствами автоматики, происходит нарушение бесперебойной подачи напряжения, что негативно сказывается на потребителях. А в некоторых случаях, ответственные потребители, вынуждены устанавливать устройства подачи бесперебойного напряжения.
  • В момент короткого замыкания возникает повышенный электромагнитный импульс. Он отрицательно влияет на средства связи. Их приходится дополнительно экранировать.
  • Применение сложных быстродействующих средств защиты.
  • Выход генератора из синхронизма при значительных токах короткого замыкания. Т.е. в момент КЗ происходит «притормаживание» генератора.
  • Значительные токи короткого замыкания могу вызвать повреждение кабеля с повреждением изоляции, механическое разрушение изоляторов на ЛЭП, повреждение железа статора генератора в случае пробоя изоляции на землю и т.п.
  • Возникает опасность поражения людей электрическим током вследствие повышенного и шагового напряжения при коротком замыкании на землю.
  • Изготовление заземляющих устройств. Отсутствие дублирующего заземления может оставить оборудование без защиты, если произойдет обрыв нейтрального провода.

Заключение

Принцип работы сетей с эффективно заземленной нейтралью можно кратко описать так. Основная часть замыканий на землю сопровождающаяся большими токами КЗ, самоустраняется после отключения напряжения. После автоматического повторного включения напряжения в ЛЭП, режим работы линии восстанавливается.

Заземление только части трансформаторов позволяет уменьшить токи КЗ. Так, если на подстанции смонтированы два трансформатора, то к заземляющему устройству подключают только один.

Режимы работы нейтрали трансформатора, разновидности, достоинства и недостатки.

В высоковольтных сетях возможны следующие виды заземления нейтрали трансформатора:

  1. изолированная;
  2. компенсированная;
  3. высокоомное резистивное заземление;
  4. низкоомное резистивное заземление;
  5. эффективное заземление нейтрали.

Также возможны комбинации из нескольких способов соединения с землей, реализуемых поочередно в комплексе. Рассмотрим по очереди все эти способы, их достоинства и недостатки и показания к применению.

  1. Изолированная нейтраль
  2. Режимы работы нейтрали по уровню напряжения
  3. Компенсированная нейтраль
  4. Высокоомное резистивное заземление нейтрали
  5. Низкоомное заземление нейтрали
  6. Эффективно заземленная нейтраль

Изолированная нейтраль

Это некогда еще самый распространенный способ заземления нейтрали, применяемый в сетях 6-35 кВ. Сейчас он понемногу вытесняется другими способами.

Достоинство изолированной нейтрали – наличие небольших токов однофазного замыкания на землю (ОЗЗ), с которыми сеть может работать некоторое время, необходимое для поиска и устранения повреждения.

Ток замыкания носит емкостной характер. Он обусловлен наличием емкостной связи между электрооборудованием, кабельными и воздушными линиями и землей. Активная составляющая тока почти отсутствует, так как резистивной связи между нейтралью и землей нет. Но недостатки таких сетей пересиливают ее достоинство.

При достаточной разветвленности сети емкостные токи увеличиваются, так как увеличивается количество одновременно подключенного к ней электрооборудования. Настает момент, когда ток становится настолько ощутимым, что все равно и почти сразу приводит к перерастанию ОЗЗ в междуфазное.

Режимы работы нейтрали по уровню напряжения

К тому же при ОЗЗ резко повышается напряжение на неповрежденных фазах. Особенно это проявляется при замыканиях с перемежающейся дугой, погасающей при прохождении синусоидального напряжения в месте КЗ через ноль. При повторном нарастании напряжения дуга загорается вновь.

При резком погасании дуги осуществляется зарядка емкостей фаз, на которых ОЗЗ нет, до напряжения, выше номинального рабочего. Последующее зажигание дуги дает толчок к их дополнительному заряду и так далее. Результат грозит пробоем изоляции в других местах сети, имеющих ослабленную изоляцию. Дополнительно возникает риск возникновения резонансных явлений в сердечниках трансформаторов напряжения.

Это явление, называемое феррорезонансом, гарантированно выводит из строя их первичные обмотки.

Работу трансформаторов, у которых нейтраль изолирована, целесообразно использовать в неразветвленных сетях малой протяженности.

Компенсированная нейтраль

Большие емкостные токи ОЗЗ приходится снижать. Для этого сеть с изолированной нейтралью дополняется установкой компенсации. В состав ее входит силовой трансформатор с первичной обмоткой, соединенной в звезду и имеющей вывод нейтрали. Вторичная обмотка его иногда не используется, а может питать какую либо нагрузку.

Нейтраль трансформатора установки компенсации заземляется через дугогасящую катушку (катушку Петерсона), представляющую собой реактор с изменяемой индуктивностью.

Обмотка его находится на магнитопроводе и помещена в бак с маслом, как у обычного трансформатора. Регулировка индуктивности осуществляется либо переключением отводов, либо путем изменения зазора в магнитопроводе. В сетях 35кВ распространен способ подключения катушки непосредственно к нейтрали силового трансформатора. Настройка катушки возможна в резонанс с емкостью сети, но тогда ток ОЗЗ исчезает совсем. Его не зафиксировать стандартными элементами защиты, состоящими из ТТНП и токового реле, реагирующего на ток нулевой последовательности.

Чтобы защита работала, используют режим работы катушки с перекомпенсацией. Но использование компенсированного заземления не избавляет сеть от опасных перенапряжений, не устраняет проблему ферромагнитного резонанса. Оно всего лишь снижает токи ОЗЗ.

Про ферромагнитный резонанс смотрите в видео ниже:

Но и это может обратиться во вред: неразвившееся повреждение в кабельной линии в дальнейшем сложнее найти.

Тем не менее, установки компенсации встраиваются во все разветвленные и протяженные сети 6-35 кВ РФ.

Высокоомное резистивное заземление нейтрали

Парадокс в том, что многие основные руководящие документы в РФ, в том числе ПУЭ, ПТЭЭС и ПТЭЭП, не слишком подробно повествуют о резистивном заземлении нейтрали. Хотя польза от него очень ощутима. Есть два случая высокоомного заземления:

  1. Первый – установка резистора в нейтраль трансформатора, аналогично дугогасящему реактору.
  2. Второй – использование для этой цели обмотки, соединенной в разомкнутый треугольник.

Высокоомным заземление называется потому, что сопротивление резистора выбирается из соображений возможности длительной работы сети с ОЗЗ.

Но при этом сохраняются достоинства сети с изолированной нейтралью: есть время на поиск повреждения. Но при этом снижаются величины перенапряжений путем шунтирования емкостей фаз сети резистором.

Что приводит к ускорению их разряда при погасании дуги, что в свою очередь снижает потолочное значение, до которого они успевают зарядиться. В итоге минимизируется риск выхода из строя изоляции электрооборудования от перенапряжений, а также – уменьшается до минимума вероятность возникновения феррорезонансных явлений.

Про резистивное заземление нейтрали можно посмотреть в видео ниже:

Низкоомное заземление нейтрали

Уменьшение сопротивления резистора необходимо в случае, если требуется обеспечить быстродействующее отключение присоединения с ОЗЗ релейной защитой.

При этом еще больше снижается величина перенапряжений, что приводит к повышению степени безаварийности работы электрооборудования.

Увеличение тока КЗ через низкоомный резистор приводит к необходимости увеличения его способности отводить тепло. Если это невозможно, то предусматривается ограничение длительности протекания тока с помощью устройств РЗА. При срабатывании защиты резистор отключается, и нейтраль переводится в изолированный режим работы.

Есть и второй вариант: перевод нейтрали через заранее установленное время, необходимое для ликвидации повреждения в ней устройствами РЗА, с низкоомного заземления на высокоомное. Режим низкоомного заземления иногда применяется в комбинации с установками компенсации емкостных токов. В случае фиксации ОЗЗ к сети кратковременно подключается резистор, помогающий срабатывать устройствам защиты.

Эффективно заземленная нейтраль

Схемы непосредственного заземления нейтралей трансформаторов используются в сетях 110 кВ и выше.

Главная задача при таком режиме работы – получение сравнительно больших токов ОЗЗ для облегчения их фиксации и отключения релейной защитой. Однако при этом увеличиваются капиталовложения на обустройство контуров заземления, по сравнению с электроустановками, имеющими изолированную нейтраль.

А при питании повреждения от нескольких источников одновременно величина тока КЗ в месте ОЗЗ значительно превышает их величины при междуфазных КЗ.

Для исключения этого недостатка нейтрали трансформаторов, подключенных к линии с нескольких сторон, не соединяют с землей одновременно: соединение выполняется на одном из них. За этим следят оперативные работники, занятые эксплуатацией сетей.

Чем называют эффективно заземленную нейтраль?

Высоковольтные линии электропередач предназначены для передачи энергии на большие расстояния. Для обеспечения безопасной работы энергосистемы используются средства защиты. Для чего применяются различные виды заземления нейтрали. Схема подключения заземлителя зависит от питающего напряжения:

Для исключения перенапряжения неповрежденных фаз при возникновении однофазного замыкания на землю.

В электросетях с напряжением 110 КВ и выше выполняется система с эффективно заземленной нейтралью. Она представляет собой разновидность сети с глухозаземленной нейтралью. И предназначена для уменьшения коммутационного перенапряжения сети. Что уменьшает требования к изоляции. А это существенно снижает стоимость электросетей.

Позволяет применить быстродействующую защиту от коротких замыканий на землю. Что, в свою очередь, уменьшает вероятность сложных трехфазных замыканий, но в тоже время при замыкании на землю возникают большие токи.

Эффективно заземленная нейтраль

Что же такое эффективно заземленная нейтраль – это трехфазная сеть с коэффициентом замыкания на землю, который эквивалентен значению меньше или равному 1,4 в системах с питающим напряжением свыше 1000 В. И рассчитывается по формуле:

Эффективное заземление нейтрали применяется в сетях напряжением 110 КВ и выше. Применение такой схемы обусловлено стоимостью изоляции.

При использовании такой электросхемы во время замыкания одной фазы на землю, потенциал на остальных не превышает значения равного межфазному напряжению, умноженному на коэффициент 0,8. Что позволяет производить расчет изоляции на это значение. В отличие от сетей с изолированной или компенсированной нейтралью, где расчет производится на полное межфазное напряжение.

Требования к сетям, согласно нормативу

Правилами эксплуатации электроустановок потребителями предъявляются требования к заземляющему устройству, сопротивление которого не должно превышать 0,5 Ом в схеме, где применена эффективно заземленная нейтраль. При этом должно учитываться значение искусственного заземляющего устройства, сопротивление которого не должно превышать значения 1 Ом. Что справедливо для сетей с потенциалом выше 1000 В и током короткого замыкания на землю более 500 А.

Эти требования к заземляющему устройству предъявляются при возникновении КЗ фазы на землю, что является однофазным замыканием в схеме, где присутствует заземленная нейтраль, чтобы немедленно и эффективно произошло отключение.

К сложным аварийным ситуациям относятся замыкания двух или трех фаз на землю. Однако, в этом случае напряжение на неповрежденных фазах и токи замыкания будут существенно ниже, чем при однофазном.

Поэтому при расчетах принимают большие значения, а напряжение и токи двух и трехфазных замыканий не используются.

Такое подключение эффективно при аварии и служит для понижения потенциала между не отказавшей фазой и землей в сетях, где применяется заземленная нейтраль, что позволяет не допустить превышение шагового напряжения. А также не ограничивает вынос потенциала за пределы подстанции и уменьшает риск поражения электрическим током обслуживающего персонала.

Большая часть замыканий после снятия напряжения исчезает, а автоматика (АПВ) включает подачу электропитания в ЛЭП. Для уменьшения токов в аварийной ситуации заземляют не все трансформаторы, а только часть. Так, при смонтированных на подстанции двух силовых трансформаторов подключают только один. Такая система называется электросетью с эффективно заземленной нейтралью.

Преимущества и недостатки системы

Главным достоинством таких систем можно отметить ограничение потенциала в системах напряжением 110 КВ и более в неповрежденных линиях при возникновении аварийной ситуации, что оказывает существенное значение для материалов изоляции. А также применение относительно несложных устройств релейной защиты от однофазных коротких замыканий на землю.

Недостатками подобных электросетей, касательно к сетям с изолированной нейтралью, можно отнести высокие токи КЗ, что требует моментального отключения напряжения. Если этого не произойдет, то возникает опасность серьезного повреждения линии, а также возрастает вероятность поражения электрическим током обслуживающего персонала.

И велико возникновение пожара и даже взрыва. Высокие токи КЗ предъявляют особые требования к устройствам защиты, она должна срабатывать мгновенно, а это усложняет приборы защиты.

Использование в сетях ниже тысячи вольт

Эффективно заземленная нейтраль применяется в основном в сетях с напряжением в 110 В. и более. Однако, допустимо применять в сетях ниже тысячи вольт, где нет, и не предвидится применение приборов, у которых имеется опасность возникновения пожара. Или отсутствуют устройства, у которых может повредиться электрооборудование или возникнуть взрыв.

В последнее время такие электросхемы получили распространение в городских электросетях. Что имеет смысл при коэффициенте тока короткого замыкания на землю меньше единицы. Это дает возможность использовать кабель, рассчитанный на напряжение 6 КВ использовать в сети 10 КВ. Что позволяет увеличить передаваемую мощность на величину 1,73 без замены кабеля и коммутационной аппаратуры.