Для чего нужен резистор в электрической цепи?

Что такое резистор и для чего он нужен?

Резисторы относятся к наиболее широко используемым в электронике элементам. Это название давно вышло из узких рамок терминологии радиолюбителей. И для каждого, кто хоть немного интересуется электроникой, термин не должен вызывать непонимание.

Что такое резистор

Наиболее простое определение выглядит так: резистор — это элемент электрической цепи, оказывающий сопротивление протекающему через него току. Название элемента происходит от латинского слова «resisto» — «сопротивляюсь», радиолюбители эту деталь часто так и называют — сопротивление.

Рассмотрим, что такое резисторы, для чего нужны резисторы. Ответы на эти вопросы подразумевают знакомство с физическим смыслом основных понятий электротехники.

Для разъяснения принципа работы резистора можно использовать аналогию с водопроводными трубами. Если каким-либо образом затруднить протекание воды в трубе (например, уменьшив ее диаметр), произойдет повышение внутреннего давления. Убирая преграду, мы снижаем давление. В электротехнике этому давлению соответствует напряжение — затрудняя протекание электрического тока, мы повышаем напряжение в цепи, снижая сопротивление, понижаем и напряжение.

Изменяя диаметр трубы, можно менять скорость потока воды, в электрических цепях путем изменения сопротивления можно регулировать силу тока. Величина сопротивления обратно пропорциональна проводимости элемента.

Свойства резистивных элементов можно использовать в следующих целях:

  • преобразование силы тока в напряжение и наоборот;
  • ограничение протекающего тока с получением его заданной величины;
  • создание делителей напряжения (например, в измерительных приборах);
  • решение других специальных задач (например, уменьшение радиопомех).

Пояснить, что такое резистор и для чего он нужен, можно на следующем примере. Свечение знакомого всем светодиода происходит при малой силе тока, но его собственное сопротивление настолько мало, что если светодиод поместить в цепь напрямую, то даже при напряжении 5 В текущий через него ток превысит допустимые параметры детали. От такой нагрузки светодиод сразу выйдет из строя. Поэтому в схему включают резистор, назначение которого в данном случае — ограничение тока заданным значением.

Все резистивные элементы относятся к пассивным компонентам электрических цепей, в отличие от активных они не отдают энергию в систему, а лишь потребляют ее.

Разобравшись, что такое резисторы, необходимо рассмотреть их виды, обозначение и маркировку.

Виды резисторов

Виды резисторов можно разбить на следующие категории:

  1. Нерегулируемые (постоянные) — проволочные, композитные, пленочные, угольные и др.
  2. Регулируемые (переменные и подстроечные). Подстроечные резисторы предназначены для настройки электрических цепей. Элементы с переменным сопротивлением (потенциометры) применяются для регулировки уровней сигнала.

Отдельную группу представляют полупроводниковые резистивные элементы (терморезисторы, фоторезисторы, варисторы и пр.)

Характеристики резисторов определяются их назначением и задаются при изготовлении. Среди ключевых параметров:

  1. Номинальное сопротивление. Это главная характеристика элемента, измеряется в омах (Ом, кОм, МОм).
  2. Допустимое отклонение в процентах от указанного номинального сопротивления. Означает возможный разброс показателя, определяемый технологией изготовления.
  3. Рассеиваемая мощность — предельная мощность, которую резистор может рассеивать при долговременной нагрузке.
  4. Температурный коэффициент сопротивления — величина, показывающая относительное изменение сопротивления резистора при изменении температуры на 1°С.
  5. Предельное рабочее напряжение (электрическая прочность). Это максимальное напряжение, при котором деталь сохраняет заявленные параметры.
  6. Шумовая характеристика — степень вносимых резистором искажений в сигнал.
  7. Влагостойкость и термостойкость — максимальные значения влажности и температуры, превышение которых может привести к выходу детали из строя.
  8. Коэффициент напряжения. Величина, учитывающая зависимость сопротивления от приложенного напряжения.

Применение резисторов в области сверхвысоких частот придает важность дополнительным характеристикам: паразитной емкости и индуктивности.

Полупроводниковые резисторы

Это полупроводниковые приборы с двумя выводами, обладающие зависимостью электрического сопротивления от параметров среды — температуры, освещенности, напряжения и др. Для изготовления таких деталей используют полупроводниковые материалы, легированные примесями, тип которых определяет зависимость проводимости от внешнего воздействия.

Существуют следующие типы полупроводниковых резистивных элементов:

  1. Линейный резистор. Изготовленный из слаболегированного материала, этот элемент имеет малую зависимость сопротивления от внешнего воздействия в широком диапазоне напряжений и токов, чаще всего он применяется в производстве интегральных микросхем.
  2. Варистор — элемент, сопротивление которого зависит от напряженности электрического поля. Такое свойство варистора определяет сферу его применения: для стабилизации и регулирования электрических параметров устройств, для защиты от перенапряжения, в других целях.
  3. Терморезистор. Эта разновидность нелинейных резистивных элементов обладает способностью изменять свое сопротивление в зависимости от температуры. Существует два типа терморезисторов: термистор, сопротивление которого падает с ростом температуры, и позистор, чье сопротивление растет вместе с температурой. Терморезисторы применяются там, где важен постоянный контроль над температурным процессом.
  4. Фоторезистор. Сопротивление этого прибора меняется под воздействием светового потока и не зависит от приложенного напряжения. При изготовлении используется свинец и кадмий, в ряде стран это послужило поводом для отказа от применения этих деталей по экологическим соображениям. Сегодня фоторезисторы уступают по востребованности фотодиодам и фототранзисторам, применяемым в аналогичных узлах.
  5. Тензорезистор. Этот элемент устроен так, что способен менять свое сопротивление в зависимости от внешнего механического воздействия (деформации). Используется в узлах, преобразующих механическое воздействие в электрические сигналы.

Такие полупроводниковые элементы, как линейные резисторы и варисторы, характеризуются слабой степенью зависимости от внешних факторов. Для тензорезисторов, терморезисторов и фоторезисторов зависимость характеристик от воздействия является сильной.

Полупроводниковые резисторы на схеме обозначаются интуитивно понятными символами.

Резистор в цепи

На российских схемах элементы с постоянным сопротивлением принято обозначать в виде белого прямоугольника, иногда с буквой R над ним. На зарубежных схемах можно встретить обозначение резистора в виде значка «зигзаг» с аналогичной буквой R сверху. Если для работы прибора важен какой-либо параметр детали, на схеме принято его указывать.

Мощность может обозначаться полосками на прямоугольнике:

  • 2 Вт — 2 вертикальные черты;
  • 1 Вт — 1 вертикальная черта;
  • 0,5 Вт — 1 продольная линия;
  • 0,25 Вт — одна косая линия;
  • 0,125 Вт — две косые линии.

Допустимо указание мощности на схеме римскими цифрами.

Обозначение переменных резисторов отличается наличием дополнительной над прямоугольником линии со стрелкой, символизирующей возможность регулировки, цифрами может быть указана нумерация выводов.

Полупроводниковые резисторы обозначаются тем же белым прямоугольником, но перечеркнутым косой линией (кроме фоторезисторов) с буквенным указанием типа управляющего воздействия (U — для варистора, P — для тензорезистора, t — для терморезистора). Фоторезистор обозначается прямоугольником в круге, к которому направлены две стрелки, символизирующие свет.

Параметры резистора не зависят от частоты протекающего тока, это означает, что данный элемент одинаково функционирует в цепях постоянного и переменного тока (как низкой, так и высокой частоты). Исключением являются проволочные резисторы, которым свойственна индуктивность и возможность потери энергии вследствие излучения на высоких и сверхвысоких частотах.

В зависимости от требований к свойствам электрической цепи резисторы могут соединяться параллельно и последовательно. Формулы для расчета общего сопротивления при разном соединении цепей существенно отличаются. При последовательном соединении итоговое сопротивление равно простой сумме значений входящих в цепь элементов: R = R1 + R2 +… + Rn.

При параллельном соединении для вычисления суммарного сопротивления необходимо сложить величины, обратные значениям элементов. При этом получится значение, также обратное итоговому: 1/R = 1/R1+ 1/R2 + … 1/Rn.

Общее сопротивление параллельно соединенных резисторов будет ниже наименьшего из них.

Что такое резистор

Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов.

В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии.

Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств.

Содержание статьи

  • Для чего нужен резистор в электрической цепи
  • Основные характеристики резисторов
  • Способ монтажа
    • Выводные резисторы
    • SMD-резисторы
  • Виды резисторов по характеру изменения сопротивления
  • Типы резисторов по характеру вольтамперной характеристики
  • Виды резисторов по назначению
  • Шумы резисторов и способы их уменьшения
  • Обозначение резисторов на схеме
  • Цветовая маркировка резисторов с проволочными выводами
  • Виды соединения резисторов в электроцепи
    • Последовательное соединение
    • Параллельное соединение
    • Смешанное соединение
    • Соединение нескольких резисторов в одной схеме
  • Видео: что такое резистор простым языком

Для чего нужен резистор в электрической цепи

Наглядный пример работы резистора

С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока.

Закон Ома выражается формулой U = I*R, в которой:

  • U – напряжение, В;
  • I – сила тока, А;
  • R – сопротивление, Ом.

Также резисторы работают как:

  • преобразователи тока в напряжение и наоборот;
  • делители напряжения, это свойство применяется в измерительных аппаратах;
  • элементы для снижения или полного удаления радиопомех.

Основные характеристики резисторов

Параметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:

  • Номинальное сопротивление. Эта величина измеряется в Ом, 1 кОм (1000 Ом), 1 МОм (1000 кОм), 1 ГОм (1000 МОм).
  • Максимальная рассеиваемая мощность — предельная мощность, которую способен рассеивать элемент при долговременном использовании. На схемах номинальную мощность рассеивания указывают только для мощных резюков. Чем выше мощность, тем больше размеры детали.
  • Класс точности. Определяет, на сколько фактическая величина сопротивления может отличаться от заявленной.

При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными.

Способ монтажа

По технологии монтажа резисторы разделяют на выводные и SMD.

Выводные резисторы

Радиальный выводной резистор

Аксиальный выводной резистор

Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно.

Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными.

Из чего состоит резистор проволочного типа

В проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам.

Чем отличается металлопленочный резистор от проволочного

У металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина.

SMD-резисторы

SMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа.

SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента.

Из чего делают чип-резисторы

Тонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута.

Виды резисторов по характеру изменения сопротивления

Резисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима.

В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный.

Что делают подстроечные резисторы

Они созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000.

Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов.

Типы резисторов по характеру вольтамперной характеристики

По ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках.

Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля.

Виды резисторов по назначению

Резисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:

  • Высокочастотные. Для чего нужны такие резисторы в электроцепях: благодаря низким собственным емкостям и индуктивностям, высокочастотные резисторы могут применяться в схемах, в которых частота достигает сотни мегагерц, они выполняют в них функции балластных или оконечных нагрузок.
  • Высокоомные. Величина сопротивления находится в диапазоне от нескольких десятков МОм до ТОм, величина напряжения небольшая – до 400 В. Высокоомные элементы работают в ненагруженном состоянии, поэтому большая мощность им не нужна. Их мощность рассеивания не превышает 0,5 Вт. Высокоомные резисторы служат для ограничения тока в дозиметрах, приборах ночного видения и других приборах с малыми токами.
  • Прецизионные и сверхпрецизионные. Эти устройства имеют высокий класс точности: допустимое значение сопротивления составляет 1% от номинального и менее. Для сравнения: у обычных резисторов допустимый диапазон составляет 5% и более. Прецизионные устройства используются в основном в приборах измерения высокой точности.

Шумы резисторов и способы их уменьшения

Собственные шумы резистивных элементов состоят из тепловых и токовых шумов. Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды. При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.

Способы борьбы с шумами:

  • Применение в схеме типов резисторов, в которых шумы невелики, благодаря технологии изготовления.
  • Переменные резисторы шумят больше постоянных, поэтому в схеме стараются использовать элементы с переменным сопротивлением минимального номинала или не применять их вообще.
  • Использование резюков с бОльшей мощностью, чем требуется по технологии.
  • Принудительное охлаждение элемента путем установки поблизости вентилятора.

Обозначение резисторов на схеме

Обозначение по ГОСТ 2.728-74 Описание
Постоянный резистор без указания номинальной мощности рассеивания
Постоянный резистор номинальной мощностью рассеивания 0,05 Вт
Постоянный резистор номинальной мощностью рассеивания 0,125 Вт
Постоянный резистор номинальной мощностью рассеивания 0,25 Вт
Постоянный резистор номинальной мощностью рассеивания 0,5 Вт
Постоянный резистор номинальной мощностью рассеивания 1 Вт
Постоянный резистор номинальной мощностью рассеивания 2 Вт
Постоянный резистор номинальной мощностью рассеивания 5 Вт

Обозначение переменных, подстроечных и нелинейных резисторов на схемах:

Условное обозначение резистора на схеме – прямоугольник размерами 4х10 мм. На схемах значение сопротивления постоянного резюка менее кОма проставляется рядом с его условным обозначением числом без единицы измерения. При номинале от одного кОм до 999 кОм рядом с числом ставят букву «К», от одного МОм – букву «М». Характеристики резисторов указывают на их поверхности, для чего применяют буквенно-цифровой код или группу цветных полосок.

Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:

  • 25 Ом – 25 R;
  • 25 кОм – 25 K;
  • 25 МОм – 25 M.

Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:

  • 0,25 Ом – R 25;
  • 0,25 кОм – K 25;
  • 0,25 МОм – M 25.

Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:

  • 2,5 Ом – 2R5;
  • 2,5 кОм – 2K5;
  • 2,5 МОм – 2M5.

Производители в силу несовершенства производственной технологии не в состоянии на 100% гарантировать соответствие заявленного значения сопротивления фактическому. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±5%, ±10%, ±20%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.

Резистор — что это такое и для чего нужен

В электрических цепях важную роль играет проводник. Для чего нужен резистор и что это такое стоит разобраться подробнее. Он способен поделить напряжение и ограничить ток, измерить его и создать цепь обратной связи. Основная задача маленькой детали создать необходимое сопротивление для электрического тока.

Резисторы бывают различных цветов, форм и размеров

Что такое резистор

Резистор – это сопротивление. Он является пассивным элементом в цепи и способен только уменьшать ток. Происхождение названия идет от латинского «resisto», что дословно на русском языке означает «сопротивляюсь».

Предназначен проводник для того, чтобы преобразовывать напряжение в силу тока и наоборот, он поглощает часть энергии и ограничивает ток. Основное применение приходится на электрические и электронные устройства.

Справка! Соединение проводников может быть последовательным, параллельным или смешанным.

Также есть два вида полупроводников:

  • линейные, сопротивление у которых от тока и напряжения не зависит;
  • нелинейные, способные изменить сопротивление в зависимости от значений протекающего тока и напряжения.

Основным параметром резисторов является номинальное напряжение.

Как выглядит

Элементы могут быть проволочные и непроволочные. Последние отлично выполнят свою функцию в высокочастотной цепи, внешний вид и процесс их изготовления отличаются. Различают резисторы общего применения и специального. Первые не превышают 10 мегаом, а вторые способны работать под напряжением 600 вольт и выше. Внешним видом они тоже отличаются. На фото ниже легко увидеть разницу и понять, как выглядит резистор.

Разница во внешнем виде и размерах

Из чего состоит

Намотав проволоку на каркас из керамики или прессованного порошка получится проволочный резистор. При этом сама проволока должна быть из нихрома, константана или манганина. Так получится создать полупроводник с высоким удельным сопротивлением.

Непроволочные элементы изготовлены на основе диэлектрика из проводящих смесей и пленок. Разделяют тонкослойные и композиционные, но все они имеют повышенную точность и стабильность в работе.

Регулировочные и подстроечные элементы представляют собой кольцевую резистивную пластину по которой движется бегунок. Он скользит по кругу, меняя расстояние точек на резистивном слое, в результате сопротивление меняется. Следует понять, что же делает резистор для прибора.

Для чего используется

Для чего нужен резистор? При помощи этой детали в электрической цепи можно ограничить количество проводимого тока, в результате правильно подобранной детали легко получить необходимую величину. Чем выше сопротивление, тем ниже будет на выходе сила тока, при условии стабильного напряжения.

Как работают резисторы понять легко, они могут использоваться в качестве преобразователя напряжения в ток и наоборот, в измерительных аппаратах их применяют для деления напряжения, а также они могут понизить или полностью устранить радиопомехи.

Обозначение на схемах

В России и Европе резистор на схеме обозначаются прямоугольником, размерами 4*10мм. Для определения значений сопротивления есть условные обозначения. Постоянный элемент на схеме обозначается следующим образом:

Обозночения постоянных элементов на схеме

Переменные, в том числе подстроечные, а также нелинейные следующим образом:

Обозначения переменных проводников

Важно! Всегда есть погрешность в заявленном производителем сопротивлении, она обозначается с помощью букв и цифр в процентном выражении.

Принцип работы резистора

В основе работы проводников лежит закон Ома, согласно которому напряжение зависит от величины тока и напряжения. Различные номиналы деталей помогут изменить ток и напряжение на необходимую величину. Суть заключается в том, что ток, движущейся по цепи, попадает в деталь и снижает свое продвижение.

Пример схемы

Резисторы могут соединяться параллельно и последовательно, на схемах также часто встречаются смешанные варианты. На фото ниже можно увидеть отличия в обозначениях деталей на схемах.

Обозначения элементов на схемах

Типы резисторов

К типам резисторов общего применения относят постоянные, сопротивление которых невозможно изменить и переменные, когда допустимо его менять в пределах допустимых значений. Мощность рассеивания при этом будет в пределах 0,125-100 Вт, а сопротивление не превысит 10 мегаом.

Постоянные

Отличаются постоянные проводники наличием только двух выводов и постоянным сопротивлением. Поскольку этот вид предназначен только для уменьшения силы тока, то он отлично справляется со своей задачей в различных электрических приборах. Постоянные элементы делятся на общего и специального назначения.

Переменные

Переменные имеют три вывода, а на схеме можно увидеть пограничные значения рабочего режима. Поменять сопротивление поможет бегунок, который движется по резистивному слою. Во время движения сопротивление падает между средним и одним из боковых выводов, соответственно в другой стороне увеличивается. Переменные резисторы делятся на подстроечные и регулировочные.

Классификация резисторов

Резисторы отличаются не только возможностью регулировать сопротивление. Они могут изготавливаться из разных резистивных материалов, иметь различное количество контактов и иметь другие особенности.

По типу резистивного материала

Элементы могут быть проволочными, непроволочными или металлофольговыми. Высокоомная проволока является признаком проволочного элемента, для ее изготовления используют такие сплавы, как нихром, константан или никелин. Пленки с повышенным удельным сопротивлением являются основой непроволочных элементов. В металлофольговых используется специальная фольга. Теперь выясним из чего состоят резисторы.

Конструкция полупроводника

Непроволочные делятся на тонкослойные и композиционные, толщина первых измеряется в нанометрах, а вторых – в долях миллиметра. Тонкослойные делятся на:

  • металлоокисные;
  • металлизированные;
  • бороуглеродистые;
  • металлодиэлектрические;
  • углеродистые.

Композиционные в свою очередь подразделяются на объемные и пленочные. Последние могут быть с органическим или неорганическим диэлектриком. Чтобы понять есть ли полярность у резистора следует знать, что стороны у них идентичны.

По назначению сопротивления

Постоянные и переменные полупроводники также имеют некоторые различия в характеристиках. Постоянные делятся на проводники общего и специального назначения. Последние могут быть:

  • высокочастотными;
  • высоковольтными;
  • высокомегаомными;
  • прецизионными.

Такие детали используются в точных измерительных приборах, они выделяются особой стабильностью.

Переменные резисторы можно разделить на подстроечные и регулировочные. Последние могут быть с линейной или нелинейной функциональной характеристикой.

По количеству контактов

В зависимости от назначения резистора у него может быть один, два и более контактов. Сами контакты также отличаются, например, у SMD-резисторов это контактная площадка, у проволочных – особого состава проволока. Есть резисторы металлопленочные, с квантовыми точечными контактами, а в переменных они подвижные.

Разное количество контактов на элементах

Другие

Отличаются резисторы формой и типом сопротивления, а также характером зависимости величины сопротивления от напряжения. Описание зависимости величины может быть линейной или нелинейной. Использование элемента простое, емкость указывается на корпусе, минус и плюс не отличаются.

Резисторы могут быть защищены от влаги или нет, корпус может быть лакированным, вакуумным, герметичным, впрессованным в пластик или компаундированным. Нелинейные подразделяются на:

  • варисторы;
  • магниторезисторы;
  • фоторезисторы;
  • позисторы;
  • тензорезисторы;
  • терморезисторы.

Все они выполняют свою определенную функцию, одни меняют сопротивление от температуры, другие от напряжения, третьи от лучистой энергии.

Основные характеристики и параметры резисторов

Характерны для полупроводников такие параметры, как номинальное значение сопротивления, его допустимое отклонение. Мощность рассеяния также определяется номинальным и допустимым значениями. Элементы различны по максимальному рабочему напряжению и коэффициентом температуры сопротивления, а также шумами.

Виды соединения резисторов

Различают три типа соединения резисторов:

  • параллельное;
  • последовательное;
  • смешанное.

Для последовательного соединения конец одного резистора нужно паять с началом другого и далее по цепочке. Так компоненты соединяются друг за другом и пропускают общий ток, проводник нужно правильно припаять. Количество таким образом соединенных проводников будет влиять на протекающий ток и оказывать общее сопротивление.

Параллельное соединение элементов отличается тем. Что все они сходятся в одной общей точке в начале и в другой точке в конце. В этом случае через каждый элемент течет свой ток, а значит сопротивление снижается. Смешанное соединение объединяет в себе оба предыдущих варианта, а расчет итогового сопротивления подсчитывают разбив схему на простые участки.

Какими могут быть номиналы резисторов

Номиналы резисторов четко определены и имеют показатели от нуля и до десяти. При этом всегда учитывается допустимое отклонение, а потому производители выпускают элементы с определенным шагом. Шагами при 10% отклонения будут: 100, 120, 150, 180, 220 и далее по схеме. Полупроводники отличаются разновидностью сборки, своими свойствами.

Как маркируются резисторы

В основном для таких элементов используется цветовая маркировка, но SMD-резисторы имеют буквенную. Цветовая включает от 4 до 6 полос, несущих определенную информацию. Две первые цифры покажут номинальное сопротивление, а третья число, на которое умножаются первые два, в результате получается величина сопротивления. Четвертая говорит о точности проводника. Если полос больше, то меняется только первый показатель на одну цифру.

Цветовое обозначение на элементах

Внимание! Первой полосой считается та, которая ближе других расположена к краю элемента.

Чем отличается резистор от реостата, транзистора

Реостат является электрическим аппаратом. Который способен регулировать ток и напряжение в электрической цепи. В общем это аналог переменного резистора. Он включает проводящий элемент и регулятор сопротивления. Влиять на изменение показателя можно плавно, а при желании это можно сделать ступенчато. В стандартизации реостатом называют резисторы переменные, регулировочные и подстроечные.

Транзистор является прибором для управления электрическим током. По сути он усиливает ток и может им управлять, а проводник регулирует сопротивление в сети. Внешне два элемента значительно отличаются друг от друга. Резистор имеет цилиндрическую форму и цветную окраску, а транзистор облачен в пластиковый или металлический квадратный корпус.

Важно! Резистор способен работать при любом токе, а транзистор только при постоянном.

Выводы: проводники имеют одинаковую функциональность, а у транзистора разную. Также транзистор – это полярный элемент, а резистор – неполярный. По этой причине перепутать два элемента можно только в том случае, если человек совершенно далек от электротехники и радиоэлектроники.

Резистор необходимый элемент во всех микросхемах современных электроприборах. Оказывая сопротивление в цепи, полупроводник делит или уменьшает напряжение, благодаря чему, различные приборы могут работать от сети. Сопротивление тока измеряется в Омах, а грамотный подбор полупроводника обеспечит продолжительную работу любого электроприбора. Так мы выяснили, что такое резистор и для чего он нужен, чем отличается от реостата и транзистора и как обозначается на схемах.

Что такое резистор и для чего он нужен в электрической цепи

Один самых часто используемых элементов в электронике – это резистор. Простым языком его называют «сопротивление». С его помощью можно ограничивать ток или измерять его, делить напряжение, создавать цепи обратной связи. Без сопротивлений не обходится ни одна схема. В этой статьи мы расскажем о том, что такое резистор, какой у него принцип работы, а также для чего нужен этот элемент электрической цепи.

Определение

Резистор происходит от английского «resistor» и от латинского «resisto», что в переводе на русский язык звучит как «сопротивляюсь». В русскоязычной литературе наравне со словом «резистор» используют слово «сопротивление». Из названия ясна основная задача этого элемента – оказывать сопротивление электрическому току.

Он относится к группе пассивных элементов, потому что в результате его работы ток может только понижаться, то есть в отличие от активных элементов – пассивные сами по себе не могут усиливать сигнал. Что из второго закона Кирхгофа и закона Ома значит, что при протекании тока на резисторе падает напряжение, величина которого равна величине протекающего тока, умноженного на величину сопротивления. Ниже вы видите, как обозначается сопротивление на схеме:

Условное обозначение на схеме легко запомнить – это прямоугольник, по ГОСТ 2.728-74 его размеры равны 4х10 мм. Существуют варианты обозначений для резисторов разной мощности рассеивания.

Классификация резисторов происходит по ряду критериев. Если говорить о дискретных компонентах, то по методу монтажа их делят на:

  • Выводные. Используются для монтажа сквозь печатную плату. У таких элементов есть выводы, расположенные радиально или аксиально. В народе выводы называют ножками. Этот вид резисторов активно использовался во всех старых устройствах (20 и боле лет назад) – старых телевизорах, приёмниках, в общем везде, и сейчас используется в простых устройствах, а также там, где использование SMD компонентов по какой-то причине затруднено либо невозможно.
  • SMD. Это элементы, у которых нет ножек. Выводы для подключения расположены на поверхности корпуса, незначительно выступая над ней. Они монтируются непосредственно на поверхность печатной платы. Преимуществом таких резисторов является простота и дешевизна сборки на автоматизированных линиях, экономия места на печатной плате.

Внешний вид элементов двух типов вы видите на рисунке ниже:

Мы уже знаем, как выглядит этот компонент, теперь следует узнать о классификации по технологии изготовления. Выводные резисторы бывают:

  • Проволочными. В качестве резистивного компонента используют проволоку, намотанную на сердечнике, для снижения паразитной индуктивности используют бифилярную намотку. Проволоку выбирают из металла с низким температурным коэффициентом сопротивления и низким удельным сопротивлением.
  • Металлопленочные и композитные. Как можно догадаться, здесь в качестве резистивного элемента используют пленки из металлического сплава.

Так как резистор состоит из резистивного материала, в роли последнего может выступать проволока или плёнка с высоким удельным сопротивлением. Что это такое? Такие материалы как:

  • манганин;
  • константан;
  • нихром;
  • никелин;
  • металлодиэлектрики;
  • оксиды металлов;
  • углерод и прочие.

SMD или чип-резисторы бывают тонкопленочными и толстопленочными, в качестве резистивного материала используют:

Материал Особенности, где используется
Никель-хром (нихром, NiCr) в тонкоплёночных, которые устойчивы к высокой влажности (moisture-resistant)
Нитрид дитантала (Ta2N). TCR составляет 25 ppm/0С (-55…+1250С);
Диоксид рутения (RuO2) в толстоплёночных
Рутенит свинца (Pb2Ru2O6) в толстоплёночных
Рутенит висмута (Bi2Ru2O7) в толстоплёночных
Диоксиды рутения, легированные ванадием (Ru0,8V0,2O2, Ru0,9V0,1O2, Ru0,67V0,33O2)
Оксид свинца (PbO)
Висмут иридий (Bi2Ir2O7)
Сплав никеля В низкоомных (0,03…10 Ом) тонкоплёночных изделиях

На рисунке ниже изображено, из чего состоит резистор:

По конструкции различают:

  • Постоянные. У них два вывода, а сопротивление вы изменять не можете – оно постоянно.
  • Переменные. Это потенциометры и подстроечные резисторы, принцип действия которых основан на перемещении скользящего контакта (бегунка) по резистивному слою.
  • Нелинейные. Сопротивление компонентов этого типа изменяется под воздействием температуры (терморезисторы), светового излучения (фоторезисторы), напряжения (варисторы) и других величин.

А также по назначению – общего и специального. Последние подразделяются на:

  • Высокоомные (диапазон сопротивлений десятки МОм — единицы ТОм, при рабочих напряжениях до 400В).
  • Высоковольтные (рассчитаны на работу в цепях с напряжением до десятков кВ).
  • Высокочастотные (особенностью работы на высокой частоте является требование к низким собственным индуктивностям и ёмкостям. Такие изделия могут работать в цепях с частотой сигнала в сотни МГц).
  • Прецизионные и сверхпрецизионные (это изделия с высоким классом точности. У них допуск по отклонению от номинального сопротивления 0,001 — 1 %, в то время как у обычных допуск может быть и 5% и 10% и больше).

Принцип работы

Резистор устанавливается в электрической цепи для ограничения тока, протекающего через цепь. Величина напряжения, которая на нем упадет, рассчитывается просто – по закону Ома:

Падением напряжения называется то количество Вольт, которые появляются на выводах резистора, когда через него протекает ток. Соответственно, если на резисторе у нас упало напряжение, и через него протекает ток – значит на нём выделяется в тепло определенная мощность. В физике есть известная всем формула для нахождения мощности:

Или для ускорения расчетов иногда удобно пользоваться формулой мощности через сопротивление:

Как работает резистор? У каждого проводника есть определенная внутренняя структура. При протекании электрического тока электроны (носители зарядов) сталкиваются с различными неоднородностями структуры вещества и теряют энергию, она то и выделяется в виде тепла. Если вам сложно понять, то принцип работы сопротивления простыми словами можно сказать так:

Это величина, которая показывает насколько сложно протекать электрическому току через вещество. Она зависит от самого вещества – его удельного сопротивления.

Где: р – удельное сопротивление, l – длина проводника, S – площадь поперечного сечения.

Основные характеристики

Чтобы правильно выбрать резистор важно знать, на какие характеристики нужно смотреть при выборе. К его основным параметрам относится:

  • Номинальное сопротивление.
  • Максимальная рассеиваемая мощность.
  • Допуск или класс точности. От него зависит, насколько процентов сопротивление деталей из этого класса может отличаться от заявленного.

    В большинстве случае этих сведений достаточно. Новички часто забывают о допустимой мощности резистора, и они у них перегорают. Вы можете рассчитать сколько Ватт выделяется на резисторе по формуле, указанной в предыдущем разделе статьи. Покупайте резисторы с запасом по мощности в 20-30%, больше – лучше, меньше – не нужно!

    Где и для чего применяется

    Мы уже рассмотрели, что резистор предназначен для ограничения тока в цепи, теперь мы рассмотрим несколько практических примеров, где используется резистор в электротехнике.

    Первая область применения — ограничение тока, например, для питания светодиодов. Принцип действия и расчета такой цепи заключается в том, что из напряжения источника питания вычитают номинальное рабочее напряжение светодиода, сумму делят на номинальный (или желаемый) ток через светодиод. В результате вы получаете номинал ограничительного сопротивления.

    Второе — это делитель напряжения. Здесь выходное напряжение рассчитывают по формуле:

    Также резистор нашел применение для задания тока транзисторам. В сущности, та же схема ограничителя, рассмотренная выше.

    Мы рассмотрели, какие бывают резисторы, их назначение и принцип работы. Это важный элемент, с которого следует начать изучение электротехники. Для расчетов цепей с ним используют закон Ома и активной мощности, а в высокочастотных цепях учитывают и реактивные параметры – паразитную ёмкость и индуктивность. Надеемся, предоставленная информация была для вас полезной и интересной!

    Резистор — что это такое и для чего нужен

    Резистор это один из наиболее распространенных электрических элементов, широко используемых в радиоэлектронике. Любой, кто имеет дело с электросхемами или монтажом радиодеталей на печатную плату, должен знать, для чего нужен резистор, как отличить его от других деталей (например, светодиодов), как эти компоненты ведут себя в электрических цепях.

    Что такое резистор

    Резистор что это такое? Основным свойством данного типа радиоэлементов является наличие активного сопротивления электротоку. В отличие от реактивного, оно не скапливает энергию внутри, а передает ее в окружающее пространство. Это свойство и обусловливает принцип работы резистора. В некоторых источниках и схемах слово «сопротивление» применяется в качестве наименования этой детали.

    Из чего состоит резистор? Устройство этого элемента довольно простое. Основной составляющей является проволочный или пленочный компонент с большим показателем удельного сопротивления. В его роли могут выступать металлические оксиды, никелин, нихром и некоторые другие материалы.

    Принцип работы

    Приобретая деталь, нужно понимать, как именно работает резистор. Любой проводниковый компонент имеет определенные особенности, обусловленные его внутренним строением. Когда электроток идет по проводнику, заряженные частицы, проходя через его структуру, теряют энергетический запас, отдавая его наружу и нагревая вещество. Известно, что величина напряжения равна произведению проходящего по проводнику тока и сопротивления материала, из которого он изготовлен. Что же делает резистор? Поскольку он содержит в себе компонент с очень высокой сопротивляемостью току, при прохождении последнего на элементе понижается напряжение, и происходит выделение некоторой части мощности в виде теплоты.

    Виды резисторов

    При выборе подходящей детали нужно не только знать, для чего нужны в цепи резисторы, но и иметь представление о типах этих компонентов. Помимо переменных и постоянных, существуют также нелинейные приборы, чей основной параметр – сопротивление (параметр нестабилен и меняется под действием некоторого фактора внешней среды, к примеру, лучей света, температуры или напряжения).

    Постоянные резисторы

    Эти компоненты характеризуются неизменным значением показателя сопротивления. В отношении вариантов исполнения эти изделия бывают разными: от крупногабаритных, рассеивающих значительную мощность, до миниатюрных smd-компонентов, но все их объединяет константность сопротивления.

    Переменные резисторы

    Здесь, напротив, значение сопротивления вариативно. В эту группу входят реостаты, регулирующие силу тока, и потенциометры, осуществляющие контроль напряжения. Также сюда относятся подстраивающиеся компоненты, снабженные специальными пазами. Для регуляции сопротивления в пазах надлежит проделывать манипуляции ключом, прилагающимся к прибору.

    Термисторы

    Данные компоненты имеют в себе полупроводниковые детали и отличаются зависимостью сопротивления от окружающей температуры. Эту зависимость характеризует тепловой коэффициент, демонстрирующий, насколько меняется сопротивление элемента при перепадах температуры. У обычных термисторных изделий оно снижается при потеплении, но есть еще позисторы, чья основная характеристика при увеличении температуры также повышается.

    Варисторы

    Благодаря зависимости от напряжения, их широко используют для защиты сети от резких перепадов и избыточных значений упомянутого параметра. Вследствие сильного снижения сопротивления при таком инциденте ток идет через него, обходя главную цепь и обеспечивая ей изоляцию.

    Важно! Из-за того, что элемент принимает на себя большую мощность, после инцидента он зачастую приходит в негодность.

    Фоторезисторы

    Такие компоненты меняют значение своего ключевого параметра, когда на них падает свет. Работает для этой цели, как свет солнца, так и искусственное освещение, к примеру, от фонаря.

    Тензорезисторы

    В них используются очень тонкие проводниковые компоненты, подвергающиеся растяжке, из-за чего их сопротивление повышается. Применяются в разного рода датчиках и электронных приборах для измерения массы.

    Полупроводниковые резисторы

    В таких изделиях эксплуатируются свойства тех или иных полупроводниковых материалов – менять сопротивление под действием механического давления, влажности, температуры, освещенности или иного фактора. Используемые полупроводниковые компоненты подвергаются равномерной легировке примесями. Отдельные виды последних также позволяют изготавливать разные типы изделий.

    Основные характеристики

    Зная, для чего в цепи нужно сопротивление, можно приступить к выбору подходящего изделия для конкретного случая. Надлежит обращать внимание на такие параметры, как номинал сопротивления и категория точности. Последняя демонстрирует процент, на который реальное сопротивление может отличаться от указанного в ту или другую сторону.

    Важно! Также нужно обращать внимание на показатели выделяемой на компоненте мощности. Целесообразно приобретать изделия с мощностным запасом не менее, чем в 20%.

    Где и для чего применяются

    Основная область применения резисторов – контроль показателя тока. Чтобы узнать показатель ограничительного сопротивления, пользуются формулой:

    где:

    • U1 – рабочий номинал контролируемого компонента,
    • U2 – напряжение на источнике питания,
    • I – номинал тока.

    Среди других областей можно отметить задание электротока транзисторам. Балластные резисторы используют для поглощения избытка напряжения.

    Резистор в цепи

    Детали с постоянным сопротивлениям в отечественной номенклатуре обозначаются прямоугольником, внутри которого находится определенное число черт, положение которых соответствует определенному номиналу. В зарубежных схемах их символ имеет зигзагообразную форму.

    Переменные варианты отличаются направляющейся к прямоугольнику сверху линией со стрелой. Она демонстрирует опцию регуляции сопротивления. Иногда выводы элемента нумеруют цифрами.

    Фоторезистор иллюстрируется прямоугольной фигурой, заключенной в круг, к которой направляется пара стрел, обозначающих световые лучи. Остальные полупроводниковые изделия символизируются зачеркнутым косой чертой прямоугольником. Буква показывает, от какого параметра зависит сопротивление (t – температура, U – напряжение и так далее).

    Важно! Несколько резисторных компонентов могут быть объединены в цепь параллельно или последовательно. В первом случае будет справедливым выражение: 1/R = 1/R1+ 1/R2 + … 1/Rn. Сопротивление такой композиции будет ниже, чем у элемента с самым низким номиналом. Во втором случае итоговый показатель для системы равен сумме сопротивлений всех входящих в нее элементов.

    Номиналы

    Типовые значения выпускаемых в продажу резисторных элементов подчиняются некоторому ряду номиналов, в основе которого лежит положение о том, что шаг между показателями закрывает разрешенную погрешность. Например, когда номинал изделия 10 Ом, а допустимая погрешность равна 10%, у резистора, идущего в ряду последующим, будет показатель в 12 Ом. Элементы объединяют в серии, для каждой из которых существует отдельный ряд номиналов.

    Маркировка

    Советские изделия маркируются буквами и цифрами. При этом небольшие номиналы (до ста Ом) демонстрируются буквами R или Е, а тысячи – буквой К. Например, 250R = 250 Ом, 2К3 = 2,3 кОм = 2300 Ом, К25 = 0,25 кОм = 250 Ом. Иногда цифробуквенные коды встречаются и на импортных изделиях, например, 4W – мощность в 4 ватта, 50R – сопротивление в 50 Ом. Все-таки чаще они маркируются цветными полосами.

    Цветовая маркировка

    Отдельные фирмы-производители располагают разными системами значений цветовых полос. Число таковых может быть от 3 до 6. Если под рукой нет инструкции от производителя, нужно посмотреть, сколько полос имеется на корпусе элемента, и по названию фирмы найти соответствующую таблицу в сети. Первой полосой нужно считать расположенную наиболее близко к выводу.

    Чтобы предохранить цепь от скачков напряжения, важно знать, что такое резистор, и уметь подбирать подходящий для конкретного случая элемент. Важно также уметь правильно рассчитать номиналы резисторов для последовательного подключения в цепь.

    Видео