Из каких частей состоит электрическая дуга?
Что такое электрическая дуга, как она возникает и где применяется?
Наблюдать искровые разряды приходилось каждому, в том числе и людям, далёким от познаний в электротехнике. Гигантскими искровыми разрядами сопровождаются грозы. Высвобождение огромной энергии, сконцентрированной в электрическом разряде молнии (см. рис. 1), сопровождается ослепительной вспышкой раскалённого ствола. Одним из видов искровых разрядов, созданных человечеством, является дуговой разряд, или попросту, электрическая дуга.
На сегодняшний день причины возникновение и свойства электрической дуги детально изучено наукой. Физики установили, что в области её горения возникает огромная концентрация зарядов, которые образуют плазму ствола. Температуры столба достигает нескольких тысяч градусов.
Что такое электрическая дуга?
Это загадочное явление впервые описал русский учёный В. Петров. Он создавал электрическую дугу, используя батарею, состоящую из тысяч медных и цинковых пластин. Изучая процесс зажигания дуги постоянным током, учёный пришёл к выводу, что воздушный промежуток между электродами при определённых условиях приобретает электропроводимость.
Одним из условий возникновения электрического пробоя является достаточно высокая разность потенциалов на концах электродов. Чем выше напряжение, тем больший газовый промежуток может преодолеть разряд. При этом образуется электропроводный газовый столб, который сильно разогревается во время горения дуги.
Возникает резонный вопрос: «Почему воздух, являющийся отличным изолятором в обычном состоянии, вдруг становится проводником?».
Объяснение может быть только одно – в стволе дуги образуются носители зарядов, способные перемещаться под действием электрического поля. Поскольку в воздухе, в отличие от металлов, нет свободных электронов, то вывод напрашивается только один – ионизация газов (см. рис. 3). То есть, запуск процесса насыщения газа ионами, являющимися носителями электрического заряда.
Рис. 3. Физика электрической дуги
Ионизация воздуха происходит под действием различного вида излучений, включая рентгеновское и космическое облучение. Поэтому в воздухе всегда находятся небольшое количество ионов. Но поскольку ионы почти сразу рекомбинируются (превращаются в нейтральные атомы и молекулы), то концентрация заряженных частиц всегда мизерная. Получить вспышку дуги при такой концентрации невозможно.
Для возникновения дугового разряда нужен лавинообразный процесс ионизации. Его можно вызвать путём сильного нагревания газа, которое происходит при зажигании.
При размыкании контактов происходит эмиссия электронов, скапливающихся на очень маленьком пространстве. Под действием напряжённости электрического поля отрицательные заряды устремляются к электроду с положительным знаком.
При достижении напряжения пробоя, между электродами возникает искровой разряд, разогревающий область между электродами. Если ток достаточно большой, то количество тепла будет достаточно для запуска лавинообразного процесса ионизации воздуха.
На участке, который называют дуговым промежутком, образуется ствол, называемый столбом дуги и состоящий из горячей проводимой плазмы. По этому стволу протекает ток, поддерживающий разогревание плазмы. Так происходит процесс зажигания дугового разряда.
Насыщение плазменного ствола ионами разных знаков приводит к значительному увеличению плотности тока, а также к рекомбинации части ионов. Разогревание плазмы приводит также к увеличению давления в стволе. Поэтому часть ионов улетучивает в окружающее пространство.
Если не поддерживать образование новых зарядов, то произойдёт гашение дуги. Как мы уже выяснили, устойчивому горению сопутствуют 2 фактора: наличие напряжения между электродами и поддержание высокой температуры плазмы. Исключение одного из них, приведёт к гашению дуги.
Таким образом, можем сформулировать определение электрической дуги. А именно электрическая дуга — это вид искрового разряда, сопровождающегося большой плотностью тока, длительностью горения, малым падением напряжения на промежутке ствола, характеризующегося повышенным давлением газа, в котором поддерживается высокая температура.
Электрическая дуга отличается от обычного разряда большей длительностью горения.
Строение
Электрическая дуга состоит из трёх основных зон:
- катодной;
- анодной;
- плазменного столба.
В сварочных дугах размеры катодной и анодной зоны незначительные, по сравнению с длиной столба. Толщина этих зон составляет тысячные доли миллиметра. В зоне катодного падения напряжения (на конце отрицательного электрода) наблюдается наличие катодных пятен, которые образуются в результате сильного нагревания.
На рисунке 4 изображена схема строения дуги, создаваемой сварочным аппаратом.
Рис. 4. Строение сварочной дуги
Обратите внимание: с целью достижения наглядности, на картинке сильно преувеличены электродные зоны. В действительности их толщина измеряется в микронах.
Свойства
Высокая плотность тока в стволе электрической дуги определяет её главные свойства:
- Чрезвычайно высокую температуру плазменного ствола и околоэлектродных зон.
- Длительное горение, при поддержании условий образования ионов.
Эти свойства необходимо учитывать при борьбе с возникновением электрической дуги, так и при её применении в некоторых сферах.
Полезное применение
Как это ни странно, но физики нашли применение этому электрическому явлению ещё на этапе развития науки об электричестве. Пример тому – лампочка Яблочкова. Она состояла из двух угольных электродов, между которыми зажигалась электрическая дуга.
У этой лампы были два недостатка. Электроды быстро изнашивались (выгорали), а спектр света смещался в ультрафиолетовую зону, что негативно влияло на зрение. По этим причинам дуговые лампы не нашли широкого применения и их быстро вытеснили лампы накаливания, существующие до сегодняшнего дня.
Исключение составляют дугоразрядные лампы, а также мощные прожектора, используемые преимущественно в военных целях.
Дуговой разряд стал массово применяться на практике с момента изобретения сварочного аппарата. Дуговую сварку применяют для сварки металлов. (см. рис. 5)
Рис. 5. Дуговая сварка
Используя проводимость плазмы, включая в сварочную цепь специальные сварочные электроды, достигают высокой температуры в сосредоточенном пятне. Регулируя сварочный ток, сварщик имеет возможность настроить аппарат на нужную температуру дугового разряда. Для защиты ствола от тепловых потерь, металлические электроды покрыты специальной смесью, обеспечивающей стабильность горения.
Электрическую дугу применяют в доменных печах для плавки металлов. Дуговая плавка удобна тем, что можно регулировать её температуру путём изменения параметров тока.
Наряду с полезным применением, в электротехнике часто приходится бороться с дуговыми разрядами. Не контролированный дуговой разряд может нанести существенный вред на линиях электропередач, в промышленных и бытовых сетях.
Рис. 6. Дуговой разряд на ЛЭП
Причины возникновения
Исходя из определения, можем назвать условия возникновения электрической дуги:
- наличие разнополярных электродов с большими токами;
- создание искрового разряда;
- поддержание напряжения на электродах;
- обеспечение условий для сохранения температуры ствола.
Искровой разряд возникает в двух случаях: при кратковременном соприкосновении электродов или при приближении к параметрам пробоя. Мощный электрический пробой всегда зажигает ствол.
При сохранении оптимальной длины дуги температура плазмы поддерживается самостоятельно. Однако, с увеличением промежутка между электродами, происходит интенсивный теплообмен ствола с окружающим воздухом. В конце концов, в стволе, вследствие падения температуры, образование ионов лавинообразно прекратится, в результате чего произойдёт гашение пламени.
Пробои часто случаются на высоковольтных ЛЭП. Они могут привести к разрушению изоляторов и к другим негативным последствиям. Длинная электрическая дуга довольно быстро гаснет, но даже за короткое время горения её разрушительная сила огромна.
Дуга имеет склонность к образованию при размыкании контактов. При этом контакты выключателя быстро выгорают, электрическая цепь остаётся замкнутой до момента исчезновения ствола. Это опасно не только для сетей, но и для человека.
Способы гашения
Следует отметить, что гашение дуги происходит и по разным причинам. Например, в результате остывания столба, падения напряжения или когда воздух между электродами вытесняется сторонними испарениями, препятствующими ионизации.
С целью недопущения образования дуг на высоковольтных проводах ЛЭП, их разносят на большое расстояние, что исключает вероятность пробоя. Если же пробой между проводами всё-таки случится, то длинный ствол быстро охладится и произойдёт гашение.
Для охлаждения ствола его иногда разбивают на несколько составляющих. Данный принцип часто используют в конструкциях воздушных выключателей, рассчитанных на напряжения до 1кВ.
Некоторые модели выключателей состоят из множества дугогасительных камер, способствующих быстрому охлаждению.
Быстрой ионизации можно достигнуть путём испарения некоторых материалов, окружающих пространство подвижных ножей. Испарение под высоким давлением сдувает плазму ствола, что приводит к гашению.
Существуют и другие способы: помещение контактов в масло, автодутьё, применение электромагнитного гашения и др.
Воздействие на человека и электрооборудование
Электрическая дуга представляет опасность для человека своим термическим воздействием, а также ультрафиолетовым действием излучающего света. Огромную опасность таит в себе высокое напряжение переменных токов. Если незащищённый человек окажется на критически близком расстоянии от токоведущих частей приборов, может произойти пробой электричества с образованием дуги. Тогда на тело, кроме воздействия тока, окажет действие термической составляющей.
Распространение дугового разряда по конструктивным частям оборудования грозит выжиганием электронных элементов, плат и соединений.
Электрическая дуга
Структура и характеристики электрической дуги
Электрическая сварочная дуга – это длительный электрический разряд в плазме, которая представляет собой смесь ионизированных газов и паров компонентов защитной атмосферы, присадочного и основного металла.
Дуга получила свое название от характерной формы, которую она принимает при горении между двумя горизонтально расположенными электродами; нагретые газы стремятся подняться вверх и этот электрический разряд изгибается, принимая форму арки или дуги.
С практической точки зрения дугу можно рассматривать как газовый проводник, который преобразует электрическую энергию в тепловую. Она обеспечивает высокую интенсивность нагрева и легко управляема посредством электрических параметров.
Общей характеристикой газов является то, что они в нормальных условиях не являются проводниками электрического тока. Однако, при благоприятных условиях (высокая температура и наличие внешнего электрического поля высокой напряженности) газы могут ионизироваться, т.е. их атомы или молекулы могут освобождать или, для электроотрицательных элементов наоборот, захватывать электроны, превращаясь соответственно в положительные или отрицательные ионы. Благодаря этим изменениям газы переходят в четвертое состояние вещества называемого плазмой, которая является электропроводной.
Возбуждение сварочной дуги происходит в несколько этапов. Например, при сварке МИГ/МАГ, при соприкосновении конца электрода и свариваемой детали возникает контакт между микро выступами их поверхностей. Высокая плотность тока способствует быстрому расплавлению этих выступов и образованию прослойки жидкого металла, которая постоянно увеличивается в сторону электрода, и в конце концов разрывается.
В момент разрыва перемычки происходит быстрое испарение металла, и разрядный промежуток заполняется ионами и электронами возникающими при этом. Благодаря тому, что к электроду и изделию приложено напряжение электроны и ионы начинают двигаться: электроны и отрицательно заряженные ионы — к аноду, а положительно заряженные ионы – к катоду, и таким образом возбуждается сварочная дуга. После возбуждения дуги концентрация свободных электронов и положительных ионов в дуговом промежутке продолжает увеличиваться, так как электроны на своем пути сталкиваются с атомами и молекулами и «выбивают» из них еще больше электронов (при этом атомы, потерявшие один и более электронов, становятся положительно заряженными ионами). Происходит интенсивная ионизация газа дугового промежутка и дуга приобретает характер устойчивого дугового разряда.
Через несколько долей секунды после возбуждения дуги на основном металле начинает формироваться сварочная ванна, а на торце электрода – капля металла. И спустя еще примерно 50 – 100 миллисекунд устанавливается устойчивый перенос металла с торца электродной проволоки в сварочную ванну. Он может осуществляться либо каплями, свободно перелетающими дуговой промежуток, либо каплями, которые сначала образуют короткое замыкание, а затем перетекают в сварочную ванну.
Электрические свойства дуги определяются процессами, протекающими в ее трех характерных зонах – столбе, а также в приэлектродных областях дуги (катодной и анодной), которые находятся между столбом дуги с одной стороны и электродом и изделием с другой.
Для поддержания плазмы дуги при сварке плавящимся электродом достаточно обеспечить ток от 10 до 1000 ампер и приложить между электродом и изделием электрическое напряжение порядка 15 – 40 вольт. При этом падение напряжения на собственно столбе дуги не превысит нескольких вольт. Остальное напряжение падает на катодной и анодной областях дуги. Длина столба дуги в среднем достигает 10 мм, что соответствует примерно 99% длины дуги. Таким образом, напряженность электрического поля в столбе дуги лежит в пределах от0,1 до 1,0 В/мм. Катодная и анодная области, напротив, характеризуются очень короткой протяженностью (около 0.0001 мм для катодной области, что соответствует длине свободного пробега иона, и 0.001 мм для анодной, что соответствует длине свободного пробега электрона). Соответственно, эти области имеют очень высокую напряженность электрического поля (до 104 В/мм для катодной области и до 103 В/мм для анодной).
Экспериментально установлено, что для случая сварки плавящимся электродом падение напряжения в катодной области превышает падение напряжения в анодной области: 12 – 20 В и 2 – 8 В соответственно. Учитывая то, что выделение тепла на объектах электрической цепи зависит от тока и напряжения, то становится понятным, что при сварке плавящимся электродом больше тепла выделяется, в той области, на которой падает больше напряжения, т.е. в катодной. Поэтому при сварке плавящимся электродом используется, в основном, обратная полярность подключения тока сварки, когда катодом служит изделие для обеспечения глубокого проплавления основного металла (при этом положительный полюс источника питания подключают к электроду). Прямую полярность используют иногда при выполнении наплавок (когда проплавление основного металла, напротив, желательно чтобы было минимальным).
В условиях сварки ТИГ (сварка неплавящимся электродом) катодное падение напряжения, напротив, значительно ниже анодного падения напряжения и, соответственно, в этих условиях больше тепла выделяется уже на аноде. Поэтому при сварке неплавящимся электродом для обеспечения глубокого проплавления основного металла изделие подключают к положительной клемме источника питания (и оно становится анодом), а электрод подключают к отрицательной клемме (таким образом, обеспечивая еще и защиту электрода от перегрева).
При этом, независимо от типа электрода (плавящийся или неплавящийся) тепло выделяется, в основном, в активных областях дуги (катодной и анодной), а не в столбе дуги. Это свойство дуги используется для того, чтобы плавить только те участки основного металла, на которые направляется дуга.
Те части электродов, через которые проходит ток дуги, называют активными пятнами (на положительном электроде – анодным, а на отрицательном – катодным пятном). Катодное пятно является источником свободных электронов, которые способствуют ионизации дугового промежутка. В то же время к катоду устремляются потоки положительных ионов, которые его бомбардируют и передают ему свою кинетическую энергию. Температура на поверхности катода в области активного пятна при сварке плавящимся электродом достигает 2500 … 3000 °С.
Строение дуги
Lк — катодная область; Lа — анодная область (Lа = Lк = 10 -5 -10 -3 см); Lст — столб дуги; Lд — длина дуги; Lд = Lк + Lа + Lст
К анодному пятну устремляются потоки электронов и отрицательно заряженных ионов, которые передают ему свою кинетическую энергию. Температура на поверхности анода в области активного пятна при сварке плавящимся электродом достигает 2500 … 4000°С. Температура столба дуги при сварке плавящимся электродом составляет от 7 000 до 18 000°С (для сравнения: температура плавления стали равна примерно 1500°С).
Влияние на дугу магнитных полей
При выполнении сварки на постоянном токе часто наблюдается такое явление как магнитное. Оно характеризуется следующими признаками:
— столб сварочной дуги резко откланяется от нормального положения;
— дуга горит неустойчиво, часто обрывается;
— изменяется звук горения дуги — появляются хлопки.
Магнитное дутье нарушает формирование шва и может способствовать появлению в шве таких дефектов как непровары и несплавления. Причиной возникновения магнитного дутья является взаимодействие магнитного поля сварочной дуги с другими расположенными близко магнитными полями или ферромагнитными массами.
Столб сварочной дуги можно рассматривать как часть сварочной цепи в виде гибкого проводника, вокруг которого существует магнитное поле.
В результате взаимодействия магнитного поля дуги и магнитного поля, возникающего в свариваемой детали при прохождении тока, сварочная дуга отклоняется в сторону противоположную месту подключению токопровода.
Влияние ферромагнитных масс на отклонение дуги обусловлено тем, что вследствие большой разницы в сопротивлении прохождению магнитных силовых линий поля дуги через воздух и через ферромагнитные материалы (железо и его сплавы) магнитное поле оказывается более сгущенным со стороны противоположной расположению массы, поэтому столб дуги смещается в сторону ферромагнитного тела.
Магнитное поле сварочной дуги увеличивается с увеличением сварочного тока. Поэтому действие магнитного дутья чаще проявляется при сварке на повышенных режимах.
Уменьшить влияние магнитного дутья на сварочный процесс можно:
— выполнением сварки короткой дугой;
— наклоном электрода таким образом, чтобы его торец был направлен в сторону действия магнитного дутья;
— подведением токоподвода ближе к дуге.
Уменьшить эффект магнитного дутья можно также заменой постоянного сварочного тока на переменный, при котором магнитное дутье проявляется значительно меньше. Однако необходимо помнить, что дуга переменного тока менее стабильна, так как из-за смены полярности она погасает и зажигается вновь 100 раз в секунду. Для того, чтобы дуга переменного тока горела стабильно необходимо использовать стабилизаторы дуги (легкоионизируемые элементы), которые вводят, например, в покрытие электродов или во флюс.
Cварочная электрическая дуга
Содержание:
- Виды сварочной электрической дуги.
- Электропитание для сварочной электродуги.
- Значения плотности тока для сварочной дуги.
- Как возникает сварочная дуга?
Дуговая сварка, будь то ручная или механизированная, осуществляется благодаря электрической дуге, которая, по сути, является электроразрядом. Сварочная электрическая дуга характеризуется выделением большого количества тепла и света. Отметим, что температура дуги может достигать до 6 000 градусов по Цельсию.
Стоит обратить внимание на то, что выделяемые дугой свет и тепло может нанести вред здоровью человека. Поэтому все сварочные работы методом дуговой сварки осуществляются исключительно в спецодежде и в маске или очках, защищающих глаза сварщика.
Сварочная электрическая дуга не всегда одинакова, существуют несколько ее видов, которые зависят от среды, где проводятся сварочные работы, от металлоизделия и прочих факторов.
Виды сварочной электрической дуги.
Если говорить о зависимости среды и дуги, то можно выделить такие виды электрического разряда:
- Открытая электродуга. Сваривание металлоизделия производится на открытом воздухе, без использования специальных газов для защиты. Дуга горит в среде, которую образуют окружающий воздух и пары, появляющиеся в ходе сваривания металлоизделия, плавления электрода либо проволоки, их покрытий.
- Закрытая электродуга. Этот вид дуги образовывается при сварке под флюсом. Защищает дугу при сваривании газовая смесь, которая образовывается в результате смешивания паров от свариваемого металлоизделия, плавящегося электрода и, собственно, флюса.
- Дуга в среде защитных газов. В данном случае речь идет о сварке в среде, так называемых, защитных газов: инертных либо активных, (используются как чистые газы, так и их смеси). В результате сваривания образовывается газовая среда, состоящая из защитного газа, паров металла и электрода.
Электропитание для сварочной электродуги.
Сварочная дуга образовывается когда подается электрический ток. Отметим, что питаться дуга может как от источников с переменным током, так и с постоянным током. Разные источники питания дают разные виды дуг.
При использовании постоянного тока можно получить дугу двух видов: сварщики используют как дугу прямой полярности, так и обратной. Разница этих двух видов заключается в подключении питания. Так, при прямой полярности подается минус непосредственно на электрод, а плюс на металлоизделие, которое будет свариваться. При обратной полярности подключение происходит наоборот: плюс подается на электрод, тогда как минус на свариваемое металлоизделие.
Отметим также, что свариваемое металлоизделие иногда не включается в электрическую цепь. В таких случаях говорят о том, что используется дуга косвенного действия, то есть ток подается только на электрод. Если же к источнику питания подключают и электрод, и металлоизделие, то в этом случае говорят о дуге прямого действия. Стоит заметить, что чаще всего применяется именно эта электродуга, Дугу косвенного действия сварщики используют крайне редко.
Значения плотности тока для сварочной дуги.
При сваривании металлоизделий электрической дугой большую роль играет и показатель плотности тока. В режиме обычной ручной дуговой сварки плотность тока стандартная, а именно 10-20 А/мм 2 . Это же значение сварщики выставляют и при сваривании в среде определенных газов. Большая плотность тока, а именно 80-120 А/мм 2 , а также выше, используется при полуавтоматической или других видах сварки, осуществляемой под защитой газов или флюса.
Плотность тока влияет на напряжение дуги. Эту зависимость принято называть статической характеристикой дуги (она изображается графически). Отметим, что если плотность тока небольшая, то эта характеристика бывает падающей: то есть происходит падение напряжения, когда ток, наоборот, увеличивается. Такое явление обуславливается тем, что при увеличении значения тока проводимость электричества возрастает, так же как и площадь сечения столба дуги, тогда как плотность тока уменьшается.
Когда используется обычная для ручной сварки плотность тока, то напряжение теряет зависимость от величины тока. При этом площадь столба растет пропорционально току. Отметим также, что электропроводность практически не изменяется, также постоянной остается и плотность тока в столбе.
Как возникает сварочная дуга?
Сварочная дуга возникает только при условии, когда газовый столб, расположенный между металлоизделием и электродом достаточно ионизирован (то есть имеет нужное количество электронов и ионов). Для достижения нормального уровня ионизации молекулам газа передается электроэнергия. В результате этого процесса начинают выделяться электроны. По сути, среда дуги – это газовый проводник тока, он имеет кругло-цилиндрическую форму.
Отметим, что собственно электрическая дуга состоит из 3 составляющих:
- анодной части;
- столба электродуги;
- катодной части.
На показатель устойчивости электродуги в процессе сваривания влияют многие факторы, среди них напряжение холостого хода, род электрического тока, его величина, полярность и прочее. В процессе сварки за всеми этими показателями надо тщательно следить и правильно выставлять режим сварки при разных способах и для разных металлоизделий.
Электрическая дуга
Электрическая дуга — явление электрического разряда в газе (газовой среде). Электрический ток, протекающий по ионизированному каналу в газе (воздухе).
- Образование электрической дуги в воздухе
- Строение электрической дуги
- Влияние электрической дуги на электрооборудование
- Механизм возникновения дуги
- Методы борьбы с электрической дугой
- Примечания
Образование электрической дуги в воздухе
При увеличении напряжения между двумя электродами до уровня электрического пробоя в воздухе между ними возникает электрическая дуга. Напряжение электрического пробоя зависит от расстояния между электродами, давления окружающего газа, температуры окружающей среды, влажности и других факторов, потенциально сказывающихся на начало развития процесса.. Потенциал ионизации первого электрона атомов металлов составляет приблизительно 4,5 — 5 В, а напряжение дугообразования — в два раза больше (9 — 10 В). Требуется затратить энергию на выход электрона из атома металла одного электрода и на ионизацию атома второго электрода. Процесс приводит к образованию плазмы между электродами и горению дуги (для сравнения: минимальное напряжение для образования искрового разряда немногим превышает потенциал выхода электрона — до 6 В).
Для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.
Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения в воздушном промежутке образуется достаточное количество плазмы для значительного падения напряжения пробоя или сопротивления воздушного промежутка. При этом искровые разряды превращаются в дуговой разряд — плазменный шнур между электродами, являющийся плазменным тоннелем. Возникающая дуга является, по сути, проводником и замыкает электрическую цепь между электродами. В результате средний ток увеличивается ещё больше, нагревая дугу до 4700-49700 С. При этом считается, что поджиг дуги завершён. После поджига устойчивое горение дуги обеспечивается термоэлектронной эмиссией с катода, разогреваемого током и ионной бомбардировкой.
Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.
После поджига дуга может оставаться устойчивой при разведении электрических контактов до некоторого расстояния.
При эксплуатации высоковольтных электроустановок, в которых неизбежно появление электрической дуги, борьба с ней осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами. Среди других способов известны использование вакуумных, воздушных, элегазовых и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.
Строение электрической дуги
Электрическая дуга состоит из катодной и анодной областей, столба дуги, переходных областей. Толщина анодной области составляет 0,001 мм, катодной области — около 0,0001 мм.
Температура в анодной области при сварке плавящимся электродом составляет около 2500 … 4000°С, температура в столбе дуги — от 7 000 до 18 000°С, в области катода — 9000 — 12000°С.
Столб дуги электрически нейтрален. В любом его сечении находятся одинаковое количество заряженных частиц противоположных знаков. Падение напряжения в столбе дуги пропорционально его длине.
Влияние электрической дуги на электрооборудование
В ряде устройств явление электрической дуги является вредным. Это в первую очередь контактные коммутационные устройства, используемые в электроснабжении и электроприводе: высоковольтные выключатели, автоматические выключатели, контакторы, секционные изоляторы на контактной сети электрифицированных железных дорог и городского электротранспорта. При отключении нагрузок вышеуказанными аппаратами между размыкающимися контактами возникает дуга.
Механизм возникновения дуги
- Уменьшение контактного давления — количество контактных точек уменьшается, растёт сопротивление в контактном узле;
- Начало расхождения контактов — образование «мостиков» из расплавленного металла контактов (в местах последних контактных точек);
- Разрыв и испарение «мостиков» из расплавленного металла;
- Образование электрической дуги в парах металла (что способствует большей ионизации контактного промежутка и трудности при гашении дуги);
- Устойчивое горение дуги с быстрым выгоранием контактов.
Для минимального повреждения контактов необходимо погасить дугу в минимальное время, прилагая все усилия по недопущению нахождения дуги на одном месте (при движении дуги теплота, выделяющаяся в ней будет равномерно распределяться по телу контакта).
Электрическая дуга
Электрическая дуга (Вольтова дуга, Дуговой разряд) — физическое явление, один из видов электрического разряда в газе.
Впервые была описана в 1802 году русским учёным В. В. Петровым, однако большой вклад в развитие данного раздела внес ученый Никола Тесла. Электрическая дуга является частным случаем четвёртой формы состояния вещества — плазмы — и состоит из ионизированного, электрически квазинейтрального газа. Присутствие свободных электрических зарядов обеспечивает проводимость электрической дуги.
Электрическая дуга между двумя электродами в воздухе при атмосферном давлении образуется следующим образом:
При увеличении напряжения между двумя электродами до определённого уровня в воздухе между электродами возникает электрический пробой. Напряжение электрического пробоя зависит от расстояния между электродами и пр. Зачастую, для инициирования пробоя при имеющемся напряжении электроды приближают друг к другу. Во время пробоя между электродами обычно возникает искровой разряд, импульсно замыкая электрическую цепь.
Электроны в искровых разрядах ионизируют молекулы в воздушном промежутке между электродами. При достаточной мощности источника напряжения, в воздушном промежутке образуется достаточное количество плазмы для того, чтобы напряжение пробоя (или сопротивление воздушного промежутка) в этом месте значительно упало. При этом искровые разряды превращаются в дуговой разряд — плазменный шнур между электродами, являющийся плазменным тоннелем. Эта дуга является по сути проводником, и замыкает электрическую цепь между электродами, средний ток увеличивается ещё больше нагревая дугу до 5000–50000 K. При этом считается, что поджиг дуги завершён.
Взаимодействие электродов с плазмой дуги приводит к их нагреву, частичному расплавлению, испарению, окислению и другим видам коррозии.
После поджига, дуга может быть устойчива при разведении электрических контактов до некоторого расстояния.
При эксплуатации высоковольтных электроустановок, в которых неизбежно появление электрической дуги, борьба с электрической дугой осуществляется при помощи электромагнитных катушек, совмещённых с дугогасительными камерами. Среди других способов известны использование вакуумных и масляных выключателей, а также методы отвода тока на временную нагрузку, самостоятельно разрывающую электрическую цепь.
Электрическая дуга используется при электросварке металлов, для выплавки стали (Дуговая сталеплавильная печь) и в освещении (в дуговых лампах).
См. также
- Дуговой разряд с накалённым катодом
- Сварка
- Электросварка
- Дуговая сварка
- Свойства электрической (сварочной) дуги.
Литература
- Дуга электрическая — статья из Большой советской энциклопедии
- Искровой разряд — статья из Большой советской энциклопедии
- Райзер Ю. П. Физика газового разряда. — 2-е изд. — М .: Наука, 1992. — 536 с. — ISBN 5-02014615-3
Wikimedia Foundation . 2010 .
- Каратегин
- Демарш
Смотреть что такое «Электрическая дуга» в других словарях:
ЭЛЕКТРИЧЕСКАЯ ДУГА — (вольтова дуга) электрический разряд в газе в виде яркосветящегося плазменного шнура. Впервые наблюдалась В. В. Петровым в 1802. Применяется для плавки и сварки металлов, для освещения и других целей. Электрическая дуга, возникающая при разрыве… … Большой Энциклопедический словарь
Электрическая дуга — ДУГА, и, мн. дуги, дуг, дугам, ж. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова
ЭЛЕКТРИЧЕСКАЯ ДУГА — (вольтова дуга) один из видов продолжительного самостоятельного дугового разряда (см. (3, а)) в любом газе при давлениях, близких к атмосферному и выше. При этом разрядные явления сосредоточены в узком, ярко светящемся высокотемпературном… … Большая политехническая энциклопедия
Электрическая дуга — Электрическая дуга: электрический разряд в газовой среде между контактами, возникающий при размыкании электрического контакта или при нестабильности переходного сопротивления контактов (искрение). Источник: ГОСТ Р 12.1.019 2009. Национальный… … Официальная терминология
электрическая дуга — [Интент] EN (electric) arc self maintained gas conduction for which most of the charge carriers are electrons supplied by primary‑electron emission [IEV ref 121 13 12] FR arc (électrique), m conduction gazeuse autonome dans laquelle la… … Справочник технического переводчика
электрическая дуга — [Интент] EN (electric) arc self maintained gas conduction for which most of the charge carriers are electrons supplied by primary‑electron emission [IEV ref 121 13 12] FR arc (électrique), m conduction gazeuse autonome dans laquelle la… … Справочник технического переводчика
электрическая дуга — (вольтова дуга), электрический разряд в газе в виде ярко светящегося плазменного шнура. Впервые наблюдалась В. В. Петровым в 1802. Применяется для плавки и сварки металлов, для освещения и других целей. Электрическая дуга, возникающая при разрыве … Энциклопедический словарь
ЭЛЕКТРИЧЕСКАЯ ДУГА — вольтова дуга, один из видов дугового разряда, представляющий собой ярко светящийся плазменный шнур. При горизонтальном расположении электродов этот шнур под действием восходящих потоков нагретого разрядом газа принимает форму дуги. Э. д. может… … Большой энциклопедический политехнический словарь
электрическая дуга — [electric arc] один из типов самостоятельного электрического разряда в газах или парах, используемых для плавки металлов (дуговая печь) и восстановления их из руд (рудновосстановительная печь). Явление открыто в 1802 г. русским ученым В. В.… … Энциклопедический словарь по металлургии
Электрическая дуга — 7 Электрическая дуга Электрический разряд в газовой среде между контактами, возникающий при размыкании электрического контакта или при нестабильности переходного сопротивления контактов (искрение) Источник: ГОСТ Р 12.1.009 2009: Система… … Словарь-справочник терминов нормативно-технической документации