Как получить электричество из воздуха?

Бесплатное электричество: как получить электрический ток из земли и воздуха своими руками

Поиски новых источников энергии постоянно ведутся в современной науке. Статическое электричество, присутствующее в воздухе, могло бы стать одним из них. В настоящее время это стало реальностью.

Известны два способа: ветряные генераторы и атмосферные поля. Не менее интересна энергия Земли. Добытое из нее «вечное» электричество помогло бы экономить обычную электроэнергию, стоимость которой увеличивается. Иногда необходимо получение даже мизерных его количеств.

Добыча из воздуха

Атмосферное электричество вполне может быть использовано. Многих привлекает возможность поставить себе на службу природную стихию во время грозы.

В атмосфере также присутствуют волны от поля планеты. Оказывается, электричество можно добыть из воздуха своими силами, не применяя сверхсложные устройства.

Некоторые способы следующие:

  • грозовые батареи используют свойство электрического потенциала накапливаться;
  • ветрогенератор преобразовывает в электричество силу ветра, работая долгое время;
  • ионизатор (люстра Чижевского) — популярный бытовой прибор;
  • генератор TPU (тороидального) электричества Стивена Марка;
  • генератор Капанадзе — бестопливный энергетический источник.

Рассмотрим подробно некоторые из устройств.

Ветрогенераторы

Популярный и всеобще известный источник энергии, получаемой с помощью ветра — ветрогенератор. Подобные устройства давно применяются во многих странах.

Установка в единственном числе ограниченно обеспечивает нужды электропитания. Поэтому приходится добавлять генераторы, если нужно обеспечить энергией крупное предприятие. В Европе существуют целые поля с ветряными установками, абсолютно не наносящими вреда природе.

[advice]Стоит отметить: недостатком может считаться невозможность рассчитать заранее величины напряжения и тока. Следовательно, нельзя сказать, сколько накопится электричества, так как действие ветра не всегда предсказуемо.[/advice]

Грозовые батареи

Устройство, накапливающее потенциал с использованием атмосферных разрядов, называется грозовой батареей.

Схема прибора включает лишь антенну из металла и заземление, не имея сложных преобразовывающих и накапливающих компонентов.

Между частями прибора появляется потенциал, который затем накапливается. Воздействие природной стихии не подлежит точному предварительному расчету и данная величина также непредсказуема.

[warning]Важно знать: это свойство довольно опасно при реализации схемы своими руками, так как создавшийся контур притягивает молнии с напряжением до 2000 Вольт.[/warning]

Тороидальный генератор С. Марка

Устройство, изобретенное С. Марком, способно вырабатывать электричество через некоторое время после его включения.

Генератор TPU (тороидальный) может питать бытовые приборы.

Конструкция состоит из трех катушек: внутренней, внешней и управляющей. Он действует из-за появляющихся резонансных частот и магнитного вихря, способствующих образованию тока. Правильно составив схему, подобный прибор можно сделать самому.

Генератор Капанадзе

Изобретатель Капанадзе (Грузия) воспроизвел генератор свободной энергии, в основе разработки которого лежал загадочный трансформатор Н. Тесла, дающий гораздо большую выходную мощность, чем в токе контура.

Генератор Капанадзе — бестопливное устройство, являющееся примером новых технологий.

Запуск осуществляется от аккумулятора, но дальнейшая работа продолжается автономно. В корпусе осуществляется концентрация энергии, добываемая из пространства, динамики эфира. Технология запатентована и не разглашается. Это практически новая теория электричества и распространения волн, когда энергия передается от одной частицы среды к другой.

Добыча из Земли

Невзирая на то, что запас энергии Земли очень большой, добыть ее весьма трудно. Нереально это сделать своими руками, если речь идет о достаточном количестве для промышленных целей.

Но электричество из планеты, ее магнитного поля возможно получить собственными силами в небольших порциях, достаточных для зажигания фонарика на светодиодах, неполной зарядки телефона. Можно надеяться, что возможность взять эти небольшие порции не нанесет вреда земному шару.

Гальванический способ (с двумя стержнями)

Известен способ получения электричества, основанный на взаимодействии двух стержней в растворе соли (гальваника).

Между стержнями из разных металлов в электролите появляется разность потенциалов.

Такие же детали (из алюминия и меди) можно погрузить в землю на 0,5 метров, полив пространство между ними раствором соли (электролитом). Это способ получения некоторого количество бесплатного электричества.

От заземления

Другой способ позволяет собрать электроэнергию от заземления при использовании ее различными потребителями.

Например, в частном доме электроснабжение оснащено заземляющим контуром, на который при включенной нагрузке стекает какая-то часть электричества. Конкретно, переменный ток идет по проводам: «фаза» и «ноль», второй из которых заземляется и чаще всего не опасен. А удар током можно получить из фазового провода.

[advice]Примите во внимание: не стоит пробовать получить электроэнергию подобным способом в домашних условиях при недостатке знаний. Если перепутать «фазовый» провод заземления с «нулевым», с которого можно получить данную энергию, токовый удар придется по всему зданию.[/advice]

Количество электричества, взятое из нулевого провода, гораздо меньше чем от солнечной батареи. (От редакции: экспериментировать с данным методом чрезвычайно опасно и категорически не рекомендуется).

Другие способы

Халявное электричество требуется и на садовом участке, в связи с чем один из умельцев утверждает: его добыча возможна, если применить наполовину мистические способы. А именно: даром его могут дать самодельные пирамиды.

Начитавшись о необычных свойствах этих конструкций, он соорудил пирамиду 3 на 3 метра и начал делать реальные испытания. То есть — пробовать доказать: невозможно получить энергию из «ничего», ограниченного пространства либо из космоса.

Возможно с юмором, но, по словам частного дачника, смонтированный из алюминиевой фольги и гелевого аккумулятора (накопителя энергии) генератор питал светильники на участке. Одним словом, из пирамиды потекла дармовая (вернее — дешевая) электрическая энергия, ток.

Далее дачник уверяет, что строительством подобных конструкций из дерева или других изоляционных материалов заинтересовалась вся деревня. Якобы, есть реальная возможность взять энергию из пирамиды на халяву.

Однако, ведутся серьезные научные изыскания в области получения малого электричества из продуктов жизнедеятельности растений, переходящих в землю.

Такие источники, дающие вечное электричество, то есть — работающие с восполнением энергии, используют в системах контроля за влажность. Судя по тому, что эксперименты проводятся на горшечных растениях, подобные приборы можно делать и испытывать самостоятельно.

Из глубин Земли успешно идет добыча тепла станциями геотермальной энергии в Калифорнии, Исландии. Недра, вулканы используются для выработки сотен МВт электроэнергии также, как это делается посредством солнца и ветра.

На практике своими руками жители районов с вулканической деятельностью могут самостоятельно сделать, например, геотермальный насос для отопления. А тепло известными способами можно превратить в электричество.

Множество ученых и изобретателей ищут путь к энергетической независимости, будь то свет, тепло, атмосферные явления или холодный фотосинтез. При повышающихся ценах на электроэнергию это вполне уместно. Некоторые способы давно стали реальностью и помогают получать энергию даже в значительных масштабах.

Изобретатели и ученые разрабатывают проекты на основе токов в земной мантии, потока частиц в виде солнечного ветра. Считается, что планета представляет собой большой сферический конденсатор. Но до сих пор не удалось выяснить, как восполняется его заряд.

Во всяком случае, человек не имеет права значительно вмешиваться в природу, пытаясь разрядить этот запас энергии, не изучив процесс досконально с учетом последствий.

Смотрите видео, в котором пользователь разъясняет, как без особых затрат сделать ветрогенератор и получить желаемое бесплатное электричество:

Как получить электричество из воздуха своими руками

Что такое атмосферное электричество

Первым всерьез занялся проблемой гениальный Никола Тесла. Источником появления свободной электрической энергии Тесла считал энергию Солнца. Созданный им прибор получал электроэнергию из воздуха и земли. Тесла планировал разработку способа передачи полученной энергии на большие расстояния. Патент на изобретение описывал предложенный прибор, как использующий энергию излучения.

Устройство Теслы было революционным для своего времени, но объем получаемой им электроэнергии был небольшим, и рассматривать атмосферное электричество как альтернативный источник энергии, было неверно. Совсем недавно изобретатель Стивен Марк запатентовал прибор, производящий электричество в больших объемах. Его тороидальный генератор может подавать электричество для ламп накаливания и более сложных бытовых приборов. Он работает длительное время, не требуя внешней подпитки. Работа этого прибора основана на резонансных частотах, магнитных вихрях и токовых ударах в металле.


На фото рабочий образец тороидального генератора Стивена Марка

Как получить электричество из воздуха в домашних условиях

Опыты Николы Тесла показали, что получать электричество из воздуха своими руками можно без особого труда. В наше время, когда атмосфера пронизана различными энергетическими полями, эта задача упростилась. Все, что производит излучения (теле- и радиовышки, ЛЭП и т. п.) создает энергетические поля.

Принцип получения электричества из воздуха очень прост: над землей поднимается пластина из металла, которая играет роль антенны. Между землей и пластиной возникает статическое электричество, которое, со временем накапливается. Через определенные временные интервалы происходят электрические разряды. Таким образом генерируется, а затем используется атмосферное электричество.


Схема получения атмосферного электричества своими руками

Такая схема достаточно проста ‑ для генерации потребуется только металлическая антенна и земля. Потенциал, который устанавливается между проводниками, со временем накапливается, хотя рассчитать его силу невозможно. При достижении определенного максимального значения потенциала происходит разряд тока, подобный молнии.

Достоинства

  • Простота. Принцип легко можно апробировать дома;
  • Доступность. Не нужны никакие приборы и сложные приспособления – достаточно токопроводящей пластинки.

Недостатки

  • Невозможность просчитать силу тока, что может быть опасно;
  • К образованному при работе открытому контуру заземления притягиваются молнии. Удар молнии может достигать напряжения 2000 вольт, а это очень опасно. Именно поэтому способ не получил широкого распространения.

Где уже используют атмосферное электричество

Тем не менее, есть примеры использования приборов, работающих по описанному принципу — ионизатор люстра Чижевского уже не первое десятилетие продается и успешно работает.

Еще одной рабочей схемой получения электроэнергии из воздуха является генератор TPU Стивена Марка. Устройство позволяет получить электроэнергию без внешней подпитки. Многими учеными эта схема апробирована, но широкого применения пока не нашла из-за своих особенностей. Принцип действия этой схемы в создании резонанса токов и магнитных вихрей, которые способствуют возникновению токовых ударов.

В настоящее время в Грузии тестируется генератор Капанадзе. Этот источник энергии также работает без внешней подпитки и добывает электричество из воздуха без дополнительных ресурсов.


На фото готовый к работе генератор Капанадзе

Выводы

Новые способы получения дешевой энергии у многих ученых вызывают опасения из-за вмешательства в процессы атмосферы и ионосферы. Их влияние на возникновение и течение жизни на Земле изучено слабо, поэтому воздействие может пагубно отразиться на состоянии планеты.

Но лично я считаю, что технология атмосферного элекричества тормозится умышленно. Более того, существует факт масштабного использования электричества из воздуха до 1917 года. На видео ниже вы сами можете убедиться в существовании электроэнергии даже в 17 веке.

Как получить электричество из воздуха


Ну не совсем из воздуха, а из той энергии, которой пронизан современный мир.
В этой статье представлены две работы авторов harshithar76 и vidyashree.2105. В этих работах авторы расскажут о своих работах по «сбору» радиочастотного излучения и преобразованию его в электричество для практических целей. Работы объединены в одну статью, потому что авторы работали в рамках одного проекта.

Итак, начнем с первой схемы автора harshithar76.
Статья мастера демонстрирует прототип, который собирает энергию из окружающей среды через антенну. Схема работает, когда она находится рядом с источниками радиочастотного излучения, такими как Wi-Fi, сотовый телефон и т. д., Устройство собирает радиочастотную энергию из своего окружения, преобразует ее в постоянный ток и заряжает им суперконденсатор.

Шаг второй: проектирование патч-антенны с использованием программного обеспечения HFSS

С использованием программного обеспечения HFSS (High Frequency Structure Simulator), была разработана антенна со встроенным питанием, работающую на частоте 2,4 ГГц.

Чтобы спроектировать антенну в симуляторе, очень важно знать ее характеристики в соответствии с требованиями. При проектировании и изготовлении антенны необходимо учитывать несколько параметров.

Характеристики антенны:
Подложка : эпоксидная смола FR4 с относительной диэлектрической проницаемостью 4,4, тангенс угла потерь 0,009 и толщиной 1,6 мм.
Импеданс : 50 Ом
Размеры: Lg = 38.52 мм, Wg = 47.01 , Lp = 28.92 , Lg = 37.41 , a = 3 мм, b = 19 мм.
Для большего понимания можно посмотреть видео о разработке патч-антенны, ниже.




Шаг третий: моделирование схемы согласования импеданса с помощью программного обеспечения Multisim
Следующим шагом является моделирование схемы согласования импеданса.

Согласование импеданса необходимо для передачи максимальной мощности между антенной и преобразователем RF-DC. Эта схема используется в этом проекте, чтобы иметь минимальные возвратные потери и улучшить производительность системы.
Мастер выбрал схему T-match из-за ее высокой добротности и низкого коэффициента пульсации.

Схема согласования T спроектирована и смоделирована с использованием программного обеспечения Multisim.
Выходной сигнал этой схемы отмечается и сравнивается с практическим выходом.

Шаг пятый: изготовление антенны
Дальше мастер переходит к изготовлению антенны в соответствии с проектом.
Во-первых, нужно подготовить пластину с использованием процесса химического травления.
Затем правильно установить и припаять разъем SMA.

И наконец, подключить коаксиальный кабель с сопротивлением 50 Ом к антенне, как показано на рисунке ниже.



Шаг седьмой: тестирование
Теперь можно проверить схему.
Как видно на осциллографе, конечный результат, т.е. полученное среднеквадратичное значение, выражается в милливольтах, что приблизительно равно значениям, полученным при моделировании.

Этот показатель не является постоянным, поскольку он полностью зависит от энергии RF. Результат может быть в милливольтах, а иногда и в вольтах, в зависимости от интенсивности радиочастотных энергетических волн.

Выходное напряжение постоянного тока может быть усилено путем добавления большего количества каскадов цепи удвоителя напряжения к преобразователю ВЧ-постоянный ток.

Этот результат был получен, когда цепь была размещена рядом с парой сотовых телефонов.

Шаг восьмой: вторая схема
Теперь переходим к другой работе, автора vidyashree.2105. Работа небольшая, поэтому уместим ее в один шаг.
Эта схема предназначена для сбора свободной энергии, т.е. радиочастотной энергии, поступающей от маршрутизаторов Wi-Fi, Bluetooth и т. д.
Радиочастотный сигнал сам по себе является сигналом с низкой энергией, поэтому захваченный выходной сигнал будет низким и будет изменяться в зависимости от окружающей среды.

Для схемы мастер использует следующие материалы:
Конденсаторы: 470 мкФ, 25В1 мкФ, 50 В
Стабилитрон: 1N4148
Перемычка- FM (для антенны)
Медный провод (SWG26)

Электричество из воздуха

Недавно я обратил внимание на интересное явление: дуб и елка посаженные рядом обогнали своих ровесников, посаженных отдельно.

А не в электричестве ли здесь дело?
Елка с ее острыми иголками выполняет роль антены, а дуб с его мощными корнями является хорошим заземлением.

Елка конденсирует влагу и накапливает электрический заряд в своем смолистом стволе, являющимся электртом, а дуб, с его помощью своими корнями тянет из земли электролит — питательные вещества.

Называется такое явление електроосмосом, таким образом дуб и елка осуществляют электромелиорацию.

То, что деревья делают миллионы лет, недавно начал делать и человек.

Все началось со знаменитого опыта Бенджамина Франклина в июне 1752 года, когда он поднял воздушного змея перед грозовым облаком, и экспериментально доказал, что грозовые явления имеют электрическую природу (чудо, что он остался жив!).

Он же изобрел громоотвод, конструкция которого практически не изменилась до наших дней, и ряд электростатических моторов.

Источник атмосферного электричества — Солнце. Его излучение ионизирует верхние слои атмосферы Земли, ионосферу. Оно же посылает к Земле «солнечный ветер» — поток положительно заряженных частиц, главным образом, ядер водорода — протонов. Они создают положительный заряд ионосферы, а поверхность земли вследствие электростатической индукции приобретает отрицательный заряд. Потенциал ионосферы относительно поверхности Земли приближается к полумиллиону вольт!

В нижних слоях атмосферы Земли идут интенсивные процессы испарения, переноса тепла и влаги, образования облаков, сопровождающиеся явлениями электризации (вспомните летнюю грозу). Молнии и осадки также переносят к земле отрицательный заряд. В результате, у поверхности Земли градиент потенциала (или напряженность электростатического поля, что то же самое) достигает 100…150 В/м летом и до 300 В/м зимой, значительно изменяясь от погодных условий. Перед грозой регистрируют напряженность поля до десятков киловольт на метр и выше! Мы почти не чувствуем этого поля просто потому, что воздух — хороший изолятор.

Тем не менее, и в воздухе содержится некоторое число ионов (заряженных атомов, молекул и частиц), обуславливающих слабую его проводимость. Плотность ионного тока у поверхности земли составляет несколько пикоампер на квадратный метр, но по всей поверхности Земли этот ток достигает тысяч ампер!

В 19-м столетии довольно много исследователей предпринимали попытки получить электричество из воздуха в достаточных для практики масштабах. В 1850-х …1860-х годах получили патенты Лумис (Mahlon Lumis) и Уард (William H. Ward) в США, Вийон (Hippolyte Charles Vion) во Франции.

Man with a plan: Loomis (left) drew his wireless setup.Мелон Лумис использовал атмосферное электричество для питания длинных (400…600 миль) телеграфных линий и для первых опытов по беспроводной связи, кстати, вполне успешных. В Библиотеке Конгресса США сохранились документы и свидетельства о связи телеграфом между холмами Западной Вирджинии на расстоянии 18 миль (1868 г).

Антенны Лумис поднимал воздушными змеями с вершин холмов на высоту около 200 м. Еще интереснее его проект извлечения атмосферного электричества горелками, поднятыми на змеях, аэростатах или высоких мачтах.

На рубеже 19-го и 20-го веков появилось немало исследователей атмосферного электричества, предложивших практические конструкции. Это Пеннок (Walter Pennock) и Девей (M. W. Dewey) в США, Паленксар (Andor Palencsar) в Венгрии, Рудольф (Heinrich Rudolph) в Германии.

В 1898 г. Рудольф описал интересную конструкцию аэростата в форме эллипса с малым сопротивлением ветру. Решетка по периметру баллона, металлизированная ткань на баллоне и система проводов-растяжек служат для сбора атмосферного электричества.

Иллюстрация из патента Пеннока. Два аэростата вытянутой формы 1 поднимают металлическую сеть 40, собирающую электричество. Стекая по тросам 6, оно заряжает батарею лейденских банок (конденсаторов) 50. Закрылки 4 увеличивают подъемную силу, а рули 3 ориентируют аэростаты по ветру, снижая сопротивление.

Однако лидером явился, безусловно, доктор Герман Плаусон, эстонец по происхождению, но живший и работавший в Германии и Швейцарии. В Финляндии он провел эксперименты с аэростатами, изготовленными из тонких листов магниево-алюминиевого сплава, покрытого очень острыми, электролитическим способом изготовленными иглами. Иглы могли содержать также примесь радия, чтобы увеличить местную ионизацию воздуха. В то время еще плохо знали о радиоактивной опасности, и широко использовали, например, часы со стрелками, покрашенными радиоактивными составами и светящимися в темноте. Поверхность аэростата также красили цинковой амальгамой, которая в солнечную погоду давала дополнительный ток вследствие фотоэффекта.

Плаусон получил мощность 0,72 кВт от одного аэростата и 3,4 кВт от двух, поднятых на высоту всего лишь 300 м. На свои устройства он в 1920-х годах получил патенты США, Великобритании и Германии. Его книга «Gewinnung und Verwertung der Atmosph?rischen Elektrizit?t» («Получение и применение атмосферного электричества») содержит детальное описание всей технологии.

Проекты Плаусона. Слева — свободно стоящая изолированная мачта для сбора атмосферного электричества, в центре — система аэростатов, справа внизу — конвертер Плаусона. Рисунок из журнала «Наука и изобретение» 1922 года.

Устройства для сбора электричества из атмосферы, как правило, дают высокое напряжение при весьма малом токе, поэтому необходимы преобразующие устройства для получения низкого напряжения при значительном токе. Это может сделать трансформатор, но он работает только на переменном токе, а ток из атмосферы — постоянный. Способ преобразования высокого постоянного напряжения в низкое переменное предложил еще Никола Тесла в 1890-х годах.

Идея сводилась к зарядке конденсатора, и разряду его через искровой промежуток на катушку с большим числом витков. Разряд носил колебательный характер, а катушка могла быть обмоткой понижающего трансформатора. Эту идею и развил Плаусон. В своем патенте он начинает с пояснения, как можно понизить напряжение обычной электростатической машины

От коллекторов (щеток) машины заряжаются имеющиеся в ней лейденские банки (конденсаторы) 5 и 6. Когда между шарами разрядника 7 и 8 проскакивает искра, замыкается цепь колебательного контура, образованного конденсаторами и катушкой 9. Тогда в катушке 10 со значительно меньшим числом витков индуцируется значительный ток при низком напряжении, и к выводам 11 и 12 можно подключить лампочку накаливания или электромотор.

Так и сделано в конвертере атмосферного электричества Плаусона. Разрядники a1, b1, c1 служат для цели безопасности. Они замыкают антенну 1 на землю при близком разряде молнии, например. В обычной же работе конвертера они не участвуют, а действует основной разрядник 7. Любопытно, что на этом рисунке показана метелочная антенна, содержащая пучок острых игл. С тех пор на радиосхемах любую антенну изображают именно так, совершенно позабыв о ее первоначальном предназначении!

В заключение заметим, что описанные грандиозные устройства так и не получили широкого практического применения ввиду их громоздкости, непрактичности, а самое главное, нестабильности снимаемой мощности, которая целиком зависит от «электрической погоды» в атмосфере.

Необходимо также предупредить, что эксперименты с атмосферным электричеством опасны, особенно при грозе и в предгрозовой обстановке. Сильная электризация наблюдается также во время метели и пыльных бурь. Прямое же попадание молнии неизбежно приводит к гибели установки, а возможно и находящихся рядом людей.

В настоящее время с атмосферным электричеством ведут борьбу, тщательно заземляя высокие мачты, антенны и прочие высокие предметы. Нередко на них устанавливают миниатюрные «метелочные антенны» — кисточки из острых проводов, облегчающие стекание заряда с элементов конструкции. Такие же кисточки можно увидеть и на кромках крыльев самолетов, для того, чтобы их корпуса не накапливали электрический заряд в полете.

Тем не менее, возрос интерес к исследованиям атмосферного электричества, и в самые недавние годы достигнуты значительные успехи. С помощью космической съемки обнаружено, например, что на каждые примерно 10 разрядов молний на землю приходится один разряд вверх, в ионосферу! Им дали романтические названия спрайтов, эльфов и джетов. Физические модели этих разрядов до сих пор еще остаются предметом научных дискуссий.

Снова появляются проекты получения атмосферного электричества уже не с помощью аэростатов, а с использованием мощного лазерного луча.

Луч синего, еще лучше ультрафиолетового лазера ионизирует воздух, образуя тонкий ионизированный, и, следовательно, проводящий шнур, уходящий в небо на значительную высоту. Сообщают, что таким способом японским ученым удалось разрядить грозовое облако, вызвав молнию, ударившую вдоль луча. Сам лазер был при этом надежно защищен мощной металлической заземленной решеткой, на которую и попал разряд. Людей рядом, конечно не было, и лазер наводили с помощью системы дистанционного управления.

Что тут добавить?
Если Челябинский метеор имел электрическую природу, то его можно было бы разрядить куда нибудь в заранее подготовленное безопасное место, где нагреть полученным током на сотни градусов участок почвы, после чего полученным теплом можно было бы долго отапливать какую нибудь теплицу или сушилку для сельхозпродукции.

Атмосферное электричество = бесплатная (халявная) энергия

Пост опубликован: 19 августа, 2019

Привет всем любителям получать электричество бесплатно! Сегодня мы поговорим о видах свободной энергии. А именно о атмосферном электричестве и радиоволнах.

Атмосферное электричество уже давно делает ученых весьма беспокойными. Каждый хочет найти источник внутренней и свободной энергии. Сегодня мы собираемся показать, как собирать минимум несколько ватт энергии.

Я протянул провод и прикрепил его к этой мачте, чтобы использовать атмосферное электричество. Теперь мы собираемся сделать тест.

Позвольте мне подключить его к мобильному телефону. И он заряжается ))

Провод служит не только для использования атмосферного электричества, но он также подходит для длинных волн. Например, телебашни, мачты и так далее. Их длинный список.

Теперь я расскажу вам, что такое атмосферное электричество. Ученые вдохновленные идеей преобразования энергии Теслы (статической электрической энергии, атмосферы в непрерывный ток низкого напряжения)

Провели всеобъемлющее исследования Земли и верхних слоев атмосферы. И пришли к выводу, что есть разность потенциалов между атмосферой и поверхностью Земли. Около 300 000 вольт.

Поверхность Земли заряжена отрицательно, а ионосфера заряжена положительно. Напряжение в облаках
может быть до 120-150 вольт на квадратный метр в сухую погоду. Но напряжение снижается, когда мы достигаем Поверхности Земли.

Мы можем назвать это нашим конденсатором земли, который несет 300 киловольт. Как и любой конденсатор, он может иметь утечку.
Около 1 800 ампер. Эксперименты по обнаружению электрического заряда в воздухе проводились с 19-го
века. Экспериментальные баллоны с водородом были подняты до высоты 300 метров. Они получили некоторые
важные результаты. 1.8 ампер тока и 400 вольт. Это 17. 5 ампер в день.

Может быть, воздушные шары, которые были подняты, помогли получить такие результаты. Они были сделаны из алюминиевых листов.

Конверты этих шаров были сделаны из внутренних алюминиевых ребер, а его поверхность была покрыта
иглы металлические точки. Все контактные элементы были изготовлены из алюминия с препаратом радия в качестве ионизатора.

Конечно, наш подход о котором мы поговорим дальше намного проще, а высота намного ниже.
Мы решили использовать уникальную технологию )) и просто вбили обгоревший ранее при пожаре столб в цементную основу, а еще прикрепили все это к изолятору.

Ионизирующий слой меняется. Это зависит от времени года, времени дня и погоды. Его эффект также меняется.

Это вызывает напряжение которого вполне достаточно, чтобы что-нибудь запитать.

Мы вытащили провод и заземлили стальной стержень. Попробуем применить ток к нему.

Это действительно низкий ток. Этого вполне достаточно, но только для неоновых ламп накаливания.

Давайте попробуем применить его к обычной лампе, если близко посмотреть, вы можете видеть, что лампа светит, хоть и очень слабо, но светит.

В случае, если вы изолируете один патрон и подключите провод к другому патрону, он включается.

С помощью этого устройства (фото ниже) мы увеличили электрический ток в 1000 раз. Я изучал
много схем и наконец остановился на трансформаторе. Это обратный трансформатор. ТВС 110 ЛК и разрядник.

Когда он искрится, он превращает напряжение в короткие импульсы. В результате высокочастотный трансформатор понижает напряжение.

Я узнал это экспериментально. Он подает 4-5 вольт. Однако все это работает довольно плохо, потому что сама установка вызывает сбои. Тем не менее это работает.

Вам понравилась статья?

Напишите в комментариях о том, что вы хотели бы, чтобы мы сделали в наших следующих статьях.
Как сделать мощный генератор энергии ветра, как получить энергию от Солнца или как использовать Землю в
разность потенциалов?

Вероятно, Вам также понравятся следующие материалы:

Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!

Следите за нами в твиттере: https://twitter.com/Alter2201

Делитесь с друзьями, оставляйте ваши комментарии

Добавляйтесь в нашу группу в ВК:

и предлагайте темы для обсуждений, вместе будет интереснее.