Каково назначение преобразователя электрической энергии

Преобразователь электрической энергии

Преобразователь электрической энергии — это электротехническое устройство, предназначенное для преобразования параметров электрической энергии (напряжения, частоты, числа фаз, формы сигнала). Для реализации преобразователей широко используются полупроводниковые приборы, так как они обеспечивают высокий КПД .

Содержание

История развития

При начале практического использования электрической энергии (1880-е) возникла проблема преобразования энергии.

+ Большие мощности
— Материалоёмкость
— Сложность ремонта и обслуживания
— Шум и вибрации

Зачастую появление новых приборов не устраняет необходимости использовать ряд приборов, прежде существовавших. Например, многие полупроводниковые приборы используют трансформаторы, но в более выгодном высокочастотном диапазоне. В результате устройство приобретает преимущества и тех, и других.
Использование п-п инверторов для управления умформерами позволяет устранить коллекторы и щётки. Это снижает потери омические и на трение. Сами инверторы тоже могут быть меньшей мощности, например, при использовании машин двойного питания, потери — меньше, а качество преобразования энергии — гораздо выше.

Функции преобразователей

  • Преобразование
  • Преобразование и регулирование
  • Преобразование и стабилизация

Классификация

По характеру преобразования

Выпрямители

Выпрямитель — устройство, предназначенное для преобразования энергии источника переменного тока в постоянный ток. [1]

Инверторы

Инвертор — устройство, задача которого обратна выпрямителю, то есть преобразование энергии источника постоянного тока в энергию переменного тока.

Инверторы подразделяются на два класса: ведомые сетью (зависимые) и автономные.

Зависимые инверторы

Ведомые инверторы преобразуют энергию источника постоянного тока в переменный с отдачей её в сеть переменного тока, то есть осуществляют преобразование, обратное выпрямителю. [2]

Автономные инверторы

Автономные инверторы — устройства, преобразующие постоянный ток в переменный с неизменной или регулируемой частотой и работающие на автономную (не связанную с сетью переменного тока) нагрузку. [3]

В свою очередь автономные инверторы подразделяются на:

Преобразователи частоты

Импульсные преобразователи напряжения

По способу управления

  1. Импульсные (на постоянном токе)
  2. Фазовые (на переменном токе)

По типу схем

  • Нулевые, мостовые
  • Трансформаторные, бестрансформаторные
  • Однофазные, двухфазные, трёхфазные…

По способу управления

  • Управляемые
  • Неуправляемые

Примечания

  1. С. Ю. Забродин Глава 5 Маломощные выпрямители постоянного тока, §5.1 Общие свединия // Промышленная электроника: учебник длч вузов. — М .: Высшая школа, 1982. — С. 287. — 496 с.
  2. С. Ю. Забродин Глава 6 Ведомые сетью преобразователи средней и большой мощности, §6.1 общие сведения // Промышленная электроника: учебник для вузов. — М .: Высшая школа, 1982. — С. 315. — 496 с.
  3. С. Ю. Забродин Глава 8 Автономные инверторы, §8.1 Автономные инверторы и их классификация // Промышленная электроника: учебник для вузов. — М .: Высшая школа, 1982. — С. 438. — 496 с.

Wikimedia Foundation . 2010 .

  • Преобразование Шиндлера
  • Преодоление

Смотреть что такое «Преобразователь электрической энергии» в других словарях:

преобразователь электрической энергии — Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества. Примечание.… … Справочник технического переводчика

Преобразователь электрической энергии — 4. Преобразователь электрической энергии Converter Преобразователь электроэнергии Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с… … Словарь-справочник терминов нормативно-технической документации

преобразователь электрической энергии, — 2 преобразователь электрической энергии, преобразователь электроэнергии: Электротехническое устройство, преобразующее электрическую энергию с одними значениями параметров и/или показателей качества в электрическую энергию с другими значениями… … Словарь-справочник терминов нормативно-технической документации

Преобразователь электрической энергии — – электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества. ГОСТ 18311 80 … Коммерческая электроэнергетика. Словарь-справочник

Преобразователь электрической энергии — 1. Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей качества Употребляется в… … Телекоммуникационный словарь

Преобразователь электрической энергии (Преобразователь электроэнергии) — English: Electricity converter Электротехническое изделие (устройство), преобразующее электрическую энергию с одними значениями параметров и (или) показателей качества в электрическую энергию с другими значениями параметров и (или) показателей… … Строительный словарь

ГОСТ Р 54130-2010: Качество электрической энергии. Термины и определения — Терминология ГОСТ Р 54130 2010: Качество электрической энергии. Термины и определения оригинал документа: Amplitude die schnelle VergroRerung der Spannung 87 Определения термина из разных документов: Amplitude die schnelle VergroRerung der… … Словарь-справочник терминов нормативно-технической документации

ПЛАЗМЕННЫЕ ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ — преобразователи тепловой энергии плазмы в электрич. энергию. Существуют два типа П. и. э. э. магнитогидродинамический генератор и термоэлектронный преобразователь. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор … Физическая энциклопедия

Плазменные источники электрической энергии — преобразователи тепловой энергии плазмы (См. Плазма) в электрическую энергию. Существует 2 типа П. и. э. э. Магнитогидродинамический генератор и Термоэлектронный преобразователь … Большая советская энциклопедия

преобразователь частоты — [IEV number 151 13 43] [IEV number 313 03 06] преобразователь частоты Преобразователь электрической энергии переменного тока, который преобразует электрическую энергию с изменением частоты [ОСТ 45.55 99] EN frequency converter electric energy… … Справочник технического переводчика

Принцип работы и разновидности преобразователей напряжения

Любой преобразователь напряжения – это электротехническое или электронное устройство, способное изменять его величину на требуемое значение. Этот прибор особо востребован в ситуациях, когда к сети необходимо подключить нагрузку с различными номиналами напряжений. Причем они могут не только понижать значение этого параметра, но и повышать.

  1. Принцип работы
  2. Области применения
  3. В промышленности
  4. В быту, медицине и оборонной промышленности
  5. Преимущества и недостатки
  6. Разновидности преобразователей
  7. Аппаратура для дома
  8. Регулируемые устройства
  9. Бестрансформаторные приборы

Принцип работы

Преобразователь напряжения 12/220В HP-1200

Основное требование, определяющее принцип работы преобразователей напряжения – возможность передать на выход полезную мощность с минимальными потерями (обеспечить максимальный КПД). Для этого в них нередко используются экономичные с точки зрения потерь модули, например, электронные инверторы. Электрический преобразователь напряжения, построенный по трансформаторной схеме – наиболее удобен для рассмотрения принципа работы. Суть его функционирования состоит в следующем:

  • на вход устройства потенциал поступает с генератора переменного напряжения или подобного ему источника тока;
  • схожий по форме сигнал снимается с выхода трансформатора (с его вторичной обмотки);
  • при необходимости переменное выходное напряжение сначала выпрямляется специальным диодным блоком, а затем стабилизируется.

Добиться нужной эффективности от такой схемы очень сложно, поскольку в обмотках трансформатора теряется часть передаваемой мощности (из-за теплового рассеивания).

Чтобы получить от устройства высокий КПД, на выходе трансформатора устанавливаются ключевые схемы, работающие в экономичном режиме. При их работе, основанной на скоростном переключении транзисторов из закрытого состояния в открытое, потери мощности в обмотках существенно снижаются.

В преобразователях напряжения, рассчитанных на работу с высоковольтными источниками питания, традиционно используется явление самоиндукции. Она реализуется в выходных ферритовых сердечниках при резком прерывании тока в первичной обмотке. В качестве такого прерывателя используются все те же транзисторы, а получаемое на выходе импульсное напряжение затем выпрямляется. Такие схемы позволяют получать высокие потенциалы порядка нескольких десятков кВ. Они используются в цепях питания уже устаревших электронно-лучевых трубок, а также в телевизионных кинескопах. В этом случае удается получать неплохой КПД (до 80%).

Области применения

Разделитель 100 амперный

Сфера применения многозонных преобразователей напряжения очень обширна. Они традиционно используются в следующих целях:

  • в линейных устройствах для распределения и передачи электроэнергии;
  • для проведения таких ответственных технологических операций, как сварка, термическая обработка и им подобных;
  • при необходимости электроснабжения нагрузочных цепей в самых различных областях техники.

В первом случае вырабатываемая на электростанциях ЭДС повышается с помощью этих устройств с 6-24 кВ до 110-220 кВ – в таком виде ее легче «перегонять» по проводам на дальние расстояния. На районных подстанциях уже другие трансформаторные устройства обеспечивают ее снижение сначала до 10 (6,3) кВ, а затем – до привычных 380 Вольт.

При обслуживании технологического оборудования преобразователи напряжения применяются в качестве электротермических установок или сварочных трансформаторов.

В промышленности

Самая обширная область применения – обеспечение качественным питанием следующих промышленных образцов потребителей:

  • аппаратуры, работающей в линиях автоматического управления и контроля;
  • устройств телекоммуникации и связи;
  • широкого спектра электроизмерительных приборов;
  • специального радио- и телевизионного оборудования и тому подобное.

Особую функцию выполняют так называемые «разделительные» трансформаторы, используемые для развязки нагрузочных линий от высоковольтного входа.

Поскольку такие преобразователи «играют вспомогательную роль», чаще всего они имеют небольшую мощность и сравнительно малые размеры.

В быту, медицине и оборонной промышленности

Преобразователь напряжения 24/12V DC-20

Достаточно широко применяются преобразователи напряжения и в быту. На их основе построено большинство БП, используемых для зарядки бытовой техники, а также более сложных устройств типа:

  • стабилизаторы напряжения;
  • инверторы;
  • резервные блоки питания и т. п.

Наиболее востребованы эти устройства в медицине, военной сфере, а также в энергетике и науке. В этих отраслях к ним предъявляются особо «жесткие» требования, касающиеся качества преобразуемого напряжения («чистоты» синусоиды, например).

Преимущества и недостатки

К достоинствам преобразователей напряжения можно отнести:

  • возможность управления параметрами выходного сигнала – превращение его переменной величины в постоянное значение с использованием принципа частотного преобразования;
  • наличие опции коммутации входных и выходных цепей (варьирование амплитудой напряжения);
  • допустимость подстройки их номинальных значений под конкретную нагрузку;
  • компактность и простота конструкции бытовых преобразователей, которые нередко изготавливаются в модульном или настенном исполнении;
  • экономичность (по заявлениям производителей их КПД достигает 90%);
  • удобство пользования и универсальность;
  • возможность передачи электроэнергии на удаленные расстояния и обеспечение работы особо ответственных отраслей промышленности.

К минусам относят высокую стоимость и низкую влагостойкость (за исключением моделей, предназначенных специально для работы в условиях повышенной влажности).

Разновидности преобразователей

Среди всего многообразия существующих видов преобразователей выделяются следующие классы:

  • специальные устройства для дома;
  • высоковольтное и высокочастотное оборудование;
  • бестрансформаторные и инверторные импульсные устройства;
  • преобразователи постоянного напряжения;
  • регулируемые аппараты.

К этой же категории электронных приборов относят преобразователи тока в напряжение.

Аппаратура для дома

С этим типом преобразовательных устройств рядовой пользователь сталкивается постоянно, поскольку в большинстве моделей современной техники имеется встроенный блок питания. К тому же классу относятся бесперебойные источники питания (БИП), имеющие встроенный аккумулятор.

В отдельных случаях бытовые преобразователи выполняются по двойной кольцевой (инверторной) схеме.

За счет такого преобразования от источника постоянного тока (аккумулятора, например), удается получить на выходе переменное напряжение стандартной величины 220 Вольт. Особенностью электронных схем является возможность получения на выходе чисто синусоидального сигнала постоянной амплитуды.

Регулируемые устройства

Эти агрегаты способны значение выходного напряжения и повышать его. На практике чаще встречаются аппараты, позволяющие плавно изменять пониженное значение выходного потенциала.

Классическим является случай, когда на входе действует 220 Вольт, а на выходе получается регулируемое постоянное напряжение величиной от 2-х до 30 Вольт.

Приборы с тонкой регулировкой выходного параметра традиционно применяются для проверки стрелочных и цифровых измерительных приборов в условиях современных исследовательских лабораторий.

Бестрансформаторные приборы

Бестрансформаторные (инверторные) агрегаты построены по электронному принципу, предполагающему применение отдельного модуля управления. В качестве промежуточного звена в них используется преобразователь частоты, приводящий сигнал на выходе к удобному для выпрямления виду. В современных образцах инверторного оборудования нередко устанавливаются программируемые микроконтроллеры, существенно повышающие качество управление преобразованием.

Высоковольтные устройства представлены уже описанными станционными трансформаторами, повышающими и понижающими передаваемое напряжение в нужных соотношениях.

При передаче энергии по высоковольтным линиям и последующей трансформации стремятся свести ее потери в ваттах к минимуму.

К этому же классу относятся устройства, формирующие сигнал для управления лучом в телевизионной трубке (кинескопе).

Силовые полупроводниковые преобразователи

Вы будете перенаправлены на Автор24

Свойства и назначение полупроводниковых преобразователей

Силовой полупроводниковый преобразователь — это электротехническое устройство, которое предназначено для преобразования электрической энергии одного вида в электрическую энергию другого вида.

Использующиеся в промышленности силовые полупроводниковые преобразователи должны обладать следующими свойствами:

  1. Высокой степенью защиты от помех.
  2. Небольшими габаритами и массой.
  3. Отсутствием воздействия на сеть.
  4. Двусторонней проводимостью энергии между источниками питания и исполнительным органом, который представляет собой нагрузку преобразователя, с целью обеспечения его функционирования во всех квадрантах.
  5. Малой инерционностью.
  6. Высоким коэффициентом полезного действия.
  7. Жесткой внешней характеристикой.
  8. Необходимой перегрузочной способностью.

Готовые работы на аналогичную тему

  • Курсовая работа Силовые полупроводниковые преобразователи 480 руб.
  • Реферат Силовые полупроводниковые преобразователи 250 руб.
  • Контрольная работа Силовые полупроводниковые преобразователи 220 руб.

Силовые полупроводниковые преобразователи являются статическими, бесконтактными и обладают высокой эффективностью. Статический характер силовых полупроводниковых преобразователей обусловлен тем, что преобразование электроэнергии происходит в полупроводниковой структуре без механического движения, поэтому в них нет износа деталей из-за трения. В таких преобразователях осуществляется движение только электрозарядов и их носителей, которое подчиняется законам электродинамики. Бесконтактный характер преобразователей данного вида определен тем, что отключение и включение электрического тока осуществляется без видимого прерывания цепи, без износа материала коммутирующего процесса и при отсутствии электрической дуги. Высокая эффективность силовых полупроводниковых преобразователей обусловлена вольтамперными характеристиками, приближающиеся к идеальным характеристиками коммутационной аппаратуры, в которой отсутствуют потери. Им свойственны малое падения напряжения в прямом проводящем направлении, а также высоким электрическим сопротивлением в в закрытом состоянии и обратном направлении. Таким образом преобразование электрической энергии осуществляется с минимальными потерями. Например, при преобразовании электрической энергии переменного тока в энергии постоянного тока, экономия энергии может достигать 40 % в сравнении с традиционными устройствами. Высокая эффективность силовых полупроводниковых приборов также является причиной их высокой надежности, быстродействия и качества регулирования, что способствует увеличению производительности оборудования на 30 — 50 %.

Основное назначение силовых полупроводниковых преобразователей заключается в регулировании скорости исполнительного двигателя электрического привода. В электроприводах постоянного тока это достигается за счет регулировки напряжения на выходе преобразователя. В электрических приводах переменного тока регулировка частоты и напряжения на выходе преобразователя осуществляется по определенному закону.

Виды силовых полупроводниковых преобразователей

К силовым полупроводниковым преобразователям, широко использующимся в разнообразных технологических процессах относятся:

  1. Непосредственные преобразователи частоты, которые связывают источник переменного тока с двигателем переменного тока.
  2. Широтно-импульсные преобразователи, которые связывают источник постоянного тока с двигателем постоянного тока.
  3. Автономные инверторы, которые связывают источник постоянного тока с двигателем переменного тока.
  4. Управляемые выпрямители, которые связывают источник переменного тока с двигателем постоянного тока.

Частым случаем управляемого выпрямителя является неуправляемый выпрямитель, использующийся во вторичных источниках питания

Функциональная схема базовых силовых преобразователей изображена на рисунке ниже.

Рисунок 1. Функциональная схема базовых силовых преобразователей. Автор24 — интернет-биржа студенческих работ

ШИП — широтно-импульсный преобразователь; А — автономный инвертор; УВ — управляемый выпрямитель; НПЧ — непосредственный преобразователь частоты.

Принцип работы базовых силовых полупроводниковых преобразователей изображен на рисунке ниже.

Рисунок 2. Принцип работы базовых силовых полупроводниковых преобразователей. Автор24 — интернет-биржа студенческих работ

В системах постоянного тока исполнительным двигателем является двигатель постоянного тока. В случае питания от источника постоянного тока (солнечная батарея, аккумулятор, генератор постоянного тока), как силовой полупроводниковый преобразователь может использоваться широтно-импульсный преобразователь, а если источником питания является сеть переменного тока, то может использоваться управляемый выпрямитель или широтно-импульсный преобразователь в сочетании со вторичными источниками питания.

В системах переменного тока исполнительным двигателем является машина переменного тока. В данном случае, при питании от источника постоянного тока используется автономный инвертор, при питании от источника переменного тока непосредственный преобразователь частоты, либо сочетания управляемого выпрямителя с вторичным источником питания или автономного инвертора с вторичным источником питания.

Преобразователи частоты со звеном постоянного тока

Преобразователи частоты (ПЧ) со звеном постоянного тока имеют в своем составе выпрямитель и инвертор. Выпрямитель преобразует электрическую энергию переменного тока в электрическую энергию постоянного тока, а инвертор преобразует электрическую энергию постоянного тока в электрическую энергию переменного тока. Очевидным достоинством ПЧ со звеном постоянного тока является независимость частоты выходного напряжения на выходе ПЧ от частоты питающей сети.

Рисунок 46. ПЧ с управляемым выпрямителем и инвертором напряжения

Рисунок 47. ПЧ с управляемым выпрямителем и инвертором тока

ПЧ со звеном постоянного тока могут выполняться по схеме с инвертором напряжения (рисунок 46) и с инвертором тока (рисунок 47). Регулирование частоты выходного напряжения ПЧ осуществляется путем изменения частоты переключения полупроводниковых ключей (транзисторов или полностью управляемых тиристоров) автономного инвертора. Величина выходного напряжения в этих схемах может регулироваться путем регулирования величины выходного напряжения управляемого выпрямителя (этот способ называется амплитудным способом).

В настоящее время в большей мере находит применение широтно – импульсный метод регулирования выходного напряжения инвертора, реализуемый путем применения соответствующего алгоритма управления вентилями автономного инвертора. Выпрямитель в этом случае выполняется неуправляемым.

Следует напомнить, что расчетные соотношения, устанавливающие связь между напряжением цепи постоянного тока инвертора напряжения и напряжением переменного тока на выходе инвертора приведены в разделе «инверторы напряжения».

Для обеспечения генераторного режима работы нагрузки ПЧ (электрической машины) необходимо обеспечить перевод управляемого выпрямителя в режим зависимого инвертирования. Поскольку тиристоры управляемого выпрямителя обладают односторонней проводимостью, в режиме инвертирования необходимо изменить полярность напряжения в цепи постоянного тока ПЧ. Схема ПЧ с инвертором напряжения (рисунок 46) содержит в цепи постоянного тока L-C сглаживающий фильтр. Поскольку полярность напряжения на конденсаторе фильтра изменять нельзя, управляемый выпрямитель в этой схеме ПЧ не может быть переведен в режим инвертирования.

ПЧ с инвертором тока содержит в цепи постоянного тока индуктивный фильтр, поэтому в этой схеме ПЧ нет никаких препятствий для перевода управляемого выпрямителя в режим зависимого инвертирования.

Как уже было показано выше, из-за наличия во входной цепи инвертора дросселя со значительной индуктивностью пульсации входного тока пренебрежимо малы. Полупроводниковые ключи автономного инвертора, поочередно переключаясь, распределяют входной ток по фазам нагрузки. Ток каждой фазы нагрузки имеет прямоугольно- ступенчатую форму, причем форма тока не зависит от нагрузки и ее характера. Таким образом действующее значение тока нагрузки можно определить по известному (из раздела «выпрямители») соотношению

а первая гармоника этого тока

(114)

Напряжение на выходе автономного инвертора тока и его форма определяются нагрузкой и ее характером. Действующее значение первой гармоники напряжения фазы нагрузки можно определить из условия баланса мощностей, потребляемого инвертором и нагрузки. При пренебрежении потерями мощности на элементах схемы можно записать

(115)

Uф(1) и Iф(1)— действующие значения первых гармоник напряжения и тока нагрузки;

φнг(1)— угол сдвига между первыми гармониками напряжения и тока нагрузки.

Из (115) с учетом (114) получим

(116)

Таким образом, напряжение на нагрузке при постоянстве напряжения источника питания не сохраняется постоянным, а изменяется приблизительно обратно пропорционально коэффициенту мощности нагрузки. Если нагрузкой преобразователя является асинхронный двигатель, то изменение момента нагрузки на ее валу приводит к существенному изменению напряжения на ее обмотке статора, что в большинстве случаев недопустимо, поэтому в практических схемах преобразователей частоты с автономным инвертором тока необходимо использовать различные обратные связи для стабилизации напряжения на двигателе или регулирования его величины по заданному закону с целью обеспечения необходимого магнитного потока машины.

ПЧ с инвертором тока мощностью более 30-40 кВт на практике не нашли широкого применения из-за необходимости установки в цепи постоянного тока дросселя с очень большой индуктивностью, что существенно увеличивает не только объем преобразователя, но и его стоимость.

Для электроприводов переменного тока, у которых случаи рекуперации электрической энергии в питающую сеть достаточно редки, возможно применение схемы ПЧ, приведенной на рисунке 48. В этой схеме энергия нагрузки, рекуперируемая в цепь постоянного тока, рассеивается на балластном сопротивлении Rб при включении транзистора VT. Транзистор VT, который часто называют чопером, включается сигналом системы управления в том случае, когда напряжение на конденсаторе фильтра С повышается выше заранее установленного предела. В свою очередь повышение напряжения на конденсаторе С происходит при переходе нагрузки в генераторный режим. Совершенно очевидно, что при частых переходах электропривода в генераторный режим, мощность, рассеиваемая на балластном сопротивлении, существенно возрастает, а КПД установки в целом уменьшается. Невзирая на этот факт, можно найти примеры реализации этой схемы при мощности нагрузки до единиц меговатт.

Рисунок 48. Преобразователь частоты с рекуперацией электрической энергии в цепь чоппера

Универсальной схемой для электроприводов большой мощности является схема ПЧ, приведенная на рисунке 45, которая содержит в своем составе кроме управляемого выпрямителя, инвертора напряжения, моста вентилей обратного тока еще и зависимый инвертор, вход которого подключен к выходу моста вентилей обратного тока, а выход – к сети переменного тока, питающей управляемый выпрямитель. Эта схема ПЧ позволяет обеспечить работу электропривода во всех четырех квадрантах механической характеристики, охватывающих двигательный и генераторный режимы работы электрической машины, как при отстающем, так и при опережающем характере тока нагрузки. Эта схема наиболее предпочтительна для электроприводов с частыми пусками, торможениями и реверсами. Примером такого электропривода может быть электропривод грузоподъемных механизмов — строительных кранов, портальных кранов и так далее.

Расчетные соотношения, необходимые для выбора элементов преобразователя частоты, выполненного по этой схеме, приведены в разделах «выпрямители», «зависимые инверторы», «сглаживающие фильтры» и «инверторы напряжения».

Рисунок 49. Преобразователь частоты с рекуперацией электрической энергии в питающую сеть через зависимый инвертор

Число каскадов силовой схемы преобразователя частоты со звеном постоянного тока, способного рекуперировать электрическую энергию в питающую сеть может быть сокращено, если на входе преобразователя частоты установить активный выпрямитель. Схема будет иметь вид, приведенный на рисунке 46, но вместо управляемого выпрямителя должен стоять активный выпрямитель, а инвертор напряжения должен работать в режиме широтно- импульсной модуляции выходного напряжения и регулировать величину и частоты выходного напряжения. Перевод активного выпрямителя из режима выпрямления в режим инвертирования происходит практически автоматически при увеличении напряжения цепи постоянного тока преобразователя выше той величины, которая получается при выпрямлении напряжения сети переменного тока, питающей преобразователь, диодами обратного тока, включенными параллельно каждому транзистору активного выпрямителя.

Это напряжение цепи постоянного (Ud) легко определить, если известно номинальное значение напряжения фазы питающей сети (Uф с) и определена схема выпрямителя, а именно: ее коэффициент преобразования схемы (kсх). Действительно,

Основные виды преобразователей эл. энергии и классификация преобразователей

Электрическая энергия вырабатывается на электрических станциях и передается потребителям главным образом в виде переменного трехфазного тока промышленной частоты 50 Гц. Однако как в промышленности, так и на транспорте имеются установки, для питания которых переменный ток частотой 50 Гц непригоден.

К числу основных видов преобразования электрической энергии относят:

1. выпрямление переменного тока;

2. инвертирование тока;

3. преобразование частоты;

4. преобразование числа фаз;

5. преобразование постоянного тока одного напряжения в постоянный ток другого напряжения;

6. формирование определенной кривой переменного напряжения (например, мощных импульсов тока), которые находят применение в специальных установках.

Реально существует большой класс преобразователей, которые делят на:

7. ведомые, зависимые от сети. Осуществляется периодический переход тока с одного вентиля на другой, коммутация тока осуществляется под действием переменного напряжения какого-либо внешнего источника;

8. автономные. Коммутация осуществляется специальной электрической цепью, формирующей управляющие сигналы.

Классификация преобразователей электрической энергии по назначению:

9. преобразователи с естественной коммутацией, в которых цепь переменного тока связана с цепью постоянного тока. Эти преобразователи обеспечивают передачу энергии в обоих направлениях. Различают выпрямительный и инверторный режимы их работы;

10. преобразователи с принудительной коммутацией, с помощью которых связана цепь постоянного тока с переменной. Также обеспечивают работу в двух режимах, но в основном в инверторном режиме;

11. преобразователи с принудительной коммутацией, разделяющие две цепи постоянного тока (прерыватели постоянного тока);

12. преобразователи с естественной или принудительной коммутацией, разделяющие две цепи переменного тока одной частоты (прерыватели переменного тока);

13. специальные преобразователи, представляющие собой комбинации всех остальных (например, преобразователь частоты со звеном постоянного тока);

14. преобразователи с естественной и принудительной коммутацией, связывающие цепи переменного тока разных частот (преобразователи частоты).

1. Выпрямление переменного тока — преобразование переменного тока (обычно промышленной частоты) в постоянный ток. Этот вид преобразования получил наибольшее развитие, так как часть потребителей электрической энергии может работать только на постоянном токе (электрохимические и электрометаллургические установки, линии передачи постоянного тока, электролизные ванны, заряжаемые аккумуляторные батареи, радиотехническая аппаратура и т.д.), другие же потребители имеют на постоянном токе лучшие характеристики, чем на переменном токе (регулируемые электродвигатели).

2. Инвертирование тока — преобразование постоянного тока в переменный. Инвертор применяется в тех случаях, когда источник энергии генерирует постоянный ток (электромашинные генераторы постоянного тока, аккумуляторные батареи и другие химические источники тока, солнечные батареи, магнитогидродинамические генераторы и т.д.), а для потребителей нужна энергия переменного тока. В ряде случаев инвертирование тока необходимо при других видах преобразования электрической энергии (преобразование частоты, преобразование числа фаз).

3. Преобразование частоты — преобразование переменного тока одной частоты (обычно 50 Гц) в переменный ток другой частоты. Такое преобразование необходимо для питания регулируемых электроприводов переменного тока, установок индукционного нагрева и плавки металлов, ультразвуковых устройств и т. д.

4. Преобразование числа фаз. В ряде случаев встречается необходимость в преобразовании трехфазного тока в однофазный (например, для питания дуговых электропечей) или, наоборот, однофазного в трехфазный. Так, на электрифицированном транспорте используется контактная сеть однофазного переменного тока, а на электровозах используются вспомогательные машины трехфазного тока. В промышленности используются трехфазно-однофазные преобразователи частоты с непосредственной связью, в которых наряду с преобразованием промышленной частоты в более низкую происходит и преобразование трехфазного напряжения в однофазное.

Разработаны различные типы преобразователей (ПР), которые обладают 1 общим признаком: управляют потоком энергии путем вкл/выкл СПП, или за счет циклической переда­чи тока от одного СПП к другому (коммутация).

Наиболее часто ПР классифицируют по виду коммутации и различают ПР с естес­твенной и принудительной коммутацией. В ПР с естественной коммутацией цикли­ческая коммутация СПП происходит под действием «

» напряжением источника пита­ния. В ПР принудительной коммутацией коммутация происходит под действием допол­нит. коммутирующих узлов или системы управления. По назначению ПР делят на:

1. ПР с ест. комм., связывающие цепь «

» тока с цепью «-» тока и наоборот. Эти ПР обеспечивают передачу энергии в обоих направлениях и в зависимости от направления передачи различают выпрямительный и инверсный режимы их работы

2. ПР с принудительной коммутацией, связывающих цепь «-» тока с цепью «

» тока. Обеспечивают передачи в обоих направлениях, однако используются в инверторном режиме.

3. ПР с принудительной коммутацией, разделяющие цепи «-» и «

» тока называемые прерывателями «-» тока.

4. ПР с естеств. или принудительной коммутацией, разделяющие две цепи «

» тока одной частоты, называемые прерывателями «

5. ПР с естеств. или принудительной коммутацией, связывающие сети «

» тока разной частоты, называемые преобразователи частоты.

6. Смешанные преобразователи.

Неотъемлемой частью ПР является различные схемы управления, регулирования, защиты. Для управлением ПР требуется незначительная, поэтому передача и обработка управляющей информации происходит при малом расходе энергии.