Когда появилось электричество в мире?

Кто изобрел электричество?

Бенджамин Франклин получает все заслуги в открытии электричества, но все, что он сделал, это установил связь между молнией и электричеством. Шарль Франсуа Дюфе, Луиджи Гальвани, Алессандро Вольта, Майкл Фарадей, Томас Алва Эдисон и Никола Тесла внесли значительный вклад в развитие и коммерциализацию электричества.

Электричество повсюду вокруг нас: светильники, вентиляторы, компьютеры, мобильные телефоны и бесчисленное множество других устройств. В современном мире от этого практически невозможно убежать. Даже пытаясь убежать от электричества, вы найдете его по всей природе, от синапсов внутри человеческого тела до молнии во время грозы.

Но знаете ли вы, кто открыл электричество? Вообще-то, это довольно сложный вопрос. Большинство людей отдают должное только одному человеку (Бенджамину Франклину), что вроде как несправедливо.

Многие другие ученые использовали эксперименты Франклина для изучения электричества, и некоторые из них смогли изобрести различные формы электричества. Давайте копнем глубже и выясним, кто были эти ученые и каков их вклад.

Электричество 2600 лет назад

Один из инструментов, обнаруженных в археологических раскопках близ Багдада, напоминает электрохимическую ячейку

Примерно в 600 году до нашей эры греческий математик Фалес Милетский обнаружил, что трение меха о Янтарь вызывает притяжение между ними. Более поздние наблюдения доказали, что это притяжение было вызвано дисбалансом электрических зарядов, который называется статическим электричеством.

Археологи также обнаружили доказательства того, что древние люди могли экспериментировать с электричеством. В 1936 году они нашли глиняный горшок с железным прутом и медной пластиной. Он похож на электрохимический (гальванический) элемент.

Неясно, для чего использовался этот инструмент, но он пролил некоторый свет на тот факт, что древние люди, возможно, изучали ранние формы батарей задолго до того, как мы это знаем.

Томас Браун использовал слово «электричество» в 1646 году

В 1600 году английский физик Уильям Гилберт написал книгу под названием De Magnete, в которой он объяснил, как статическое электричество генерируется трением янтаря. Однако он не понимал, что электрический заряд универсален для всех материалов.

Поскольку Гилберт изучал статическое электричество с помощью янтаря, а янтарь по-гречески называют «Электрум», он решил назвать его действие электрической силой. Он также изобрел электроскоп (известный как «versorium» Гилберта) для обнаружения присутствия электрического заряда на теле.

Работа Гилберта дала начало английскому слову «electricity», которое впервые появилось во втором выпуске научного журнала Pseudodoxia Epidemica , написанного сэром Томасом Брауном в 1946 году.

Шарль Франсуа Дюфе открыл типы электрических зарядов

Дальнейшие исследования проводились многими учеными. Отто фон Герике, например, изобрел примитивную форму фрикционной электрической машины в 1663 году. Стивен Грей различал проводимость и изоляцию и открыл явление, называемое электростатической индукцией, в 1729 году.

Один из основных вкладов начала 17 века сделал французский химик Шарль Франсуа Дюфе. Он открыл два типа электричества: стекловидное и смолистое (которое в настоящее время известно как положительный и отрицательный заряд соответственно).

Он также обнаружил, что объекты с одинаковым зарядом притягиваются друг к другу, а объекты с противоположным зарядом отталкиваются. Он также прояснил некоторые популярные заблуждения того времени, например, что электрические свойства объекта зависят от его цвета.

Бенджамин Франклин доказал, что молния имеет электрическую природу

В середине XVIII века Бенджамин Франклин широко изучал и проводил многочисленные эксперименты, чтобы понять электричество. В 1748 году он построил электрическую батарею, поместив несколько стеклянных листов, зажатых между свинцовыми пластинами. Он также открыл принцип сохранения заряда.

В июне 1752 года Франклин провел знаменитый эксперимент, чтобы доказать, что молния — это электричество. Он прикрепил металлический ключ к нижней части смоченной веревки воздушного змея и запустил змея во время грозы. Он был осторожен, стоя на изоляторе, чтобы избежать удара током.

Как он и ожидал, змей собрал немного электрического заряда из грозовых облаков, который затем потек по веревке, сотрясая его. Этот эксперимент доказал, что молния действительно была электрической по своей природе.

Луиджи Гальвани открыл биоэлектромагнетизм в 1780-х годах

Итальянский физик и биолог был пионером биоэлектромагнетизма. В 1780 году он провел несколько экспериментов на лягушках и обнаружил, что электричество является средой, через которую нейроны передают сигналы мышцам.

Алессандро Вольта изобрел электрическую батарею в 1800 году

Другой итальянский физик по имени Алессандро Вольта обнаружил, что некоторые химические реакции могут производить постоянный электрический ток. Он построил электрическую батарею, для производства непрерывного потока электрического заряда. Она была сделана из чередующихся слоев меди и цинка.

Вольта также различал электрический потенциал (V) и заряд (Q), описывая, что они пропорциональны для данного объекта. Это то, что мы называем законом емкости Вольта. За эту работу единица измерения электрического потенциала SI (вольт) была названа в его честь.

Исследования, проведенные Вольтом, привлекли большое внимание и побудили других ученых провести аналогичные исследования, что в конечном итоге привело к развитию нового раздела физической химии, называемого электрохимией.

Немецкий физик Георг Симон Ом дополнительно изучил электрохимическую ячейку Вольта и обнаружил, что электрический ток прямо пропорционален напряжению (разности потенциалов), приложенному к проводнику. Эта связь называется законом Ома.

Ханс Кристиан Эрстед обнаружил, что электричество создает магнитные поля

Ханс Кристиан Эрстед

В начале 19 века датский физик Ханс Кристиан Эрстед обнаружил прямую связь между электричеством и магнетизмом. В 1820 году он опубликовал свои открытия, описывая, как стрелка компаса может отклоняться под действием электрического тока.

Работы Эрстеда вдохновили французского физика Андре-Мари Ампера на разработку физико-математической теории, которая могла бы лучше объяснить связь между электричеством и магнетизмом. Он сформировал математическую формулу для представления магнитных сил между объектами, несущими ток. Для этой работы в его честь была названа единица измерения электрического тока (ампер).

В 1820-х годах Ампер изобрел многочисленные приборы, в том числе электромагнит (электромагнит, создающий управляемое магнитное поле) и электрический телеграф (система обмена текстовыми сообщениями «точка-точка»).

Майкл Фарадей сделал электричество практичным для использования в технологиях

Майкл Фарадей, около 70 лет

Майкл Фарадей заложил основы концепции электромагнитного поля. Он обнаружил, что на световые лучи может влиять магнетизм. Он изобрел электромагнитные вращательные устройства, которые легли в основу технологии электродвигателей.

В 1831 году Фарадей разработал электрическую динамомашину-машину, которая могла непрерывно преобразовывать вращательную механическую энергию в электрическую, что сделало возможным производство электричества.

В 1832 году Фарадей провел серию экспериментов по исследованию поведения электричества. Он пришел к выводу, что категоризация различных «типов» электричества была иллюзорной. Вместо этого он предложил, что существует только один «тип» электричества, и изменение таких параметров, как ток и напряжение (количество и интенсивность), приведет к созданию различных групп явлений.

Джеймс Клерк Максвелл сформулировал теорию электромагнитного излучения

В 1873 году шотландский ученый Джеймс Клерк Максвелл начал разрабатывать уравнения, которые могли бы точно описать электромагнитное поле. Он предположил, что электрические и магнитные поля движутся как волны со скоростью света.

Генрих Рудольф Герц окончательно доказал эту теорию, и Гульельмо Маркони использовал эти волны для разработки радио.

Томас Эдисон коммерциализировал электричество

В 1879 году Томас Альва Эдисон изобрел практичную лампочку, которая прослужит долго, прежде чем перегореть. Его следующей задачей была разработка электрической системы, которая могла бы обеспечить людей реальным источником энергии для питания этих ламп.

В 1882 году он построил первую электростанцию в Лондоне, чтобы вырабатывать электроэнергию и переносить ее в дома людей. Несколько месяцев спустя он создал еще одну электростанцию в Нью-Йорке для обеспечения электрическим освещением нижней части острова Манхэттен. Около 85 потребителей получили достаточно энергии, чтобы зажечь 5000 ламп.

На заводе использовались возвратно-поступательные паровые двигатели для включения генераторов постоянного тока. Но так как это было распределение постоянного тока, зона обслуживания была ограничена падением напряжения в фидерах.

Никола Тесла изобрел переменный ток

Поворотный момент в электрической эре наступил через несколько лет, когда Никола Тесла приехал в Нью-Йорк, чтобы работать на Эдисона. Он покинул Edison Machine Works через шесть месяцев из-за невыплаченных бонусов, которые, по его мнению, он заработал.

Вскоре после ухода из компании Тесла обнаружил новый тип двигателя переменного тока и технологию передачи электроэнергии. Он объединился с Джорджем Вестингаузом, чтобы запатентовать систему переменного тока, чтобы обеспечить страну электроэнергией высочайшего качества.

Энергетическая система, изобретенная Теслой, быстро распространилась в США и Европе благодаря своим преимуществам в дальней высоковольтной передаче. Первая гидроэлектростанция Теслы в Ниагарском водопаде могла транспортировать электроэнергию более чем на 200 квадратных миль. В отличие от этого, эдисоновская электростанция постоянного тока могла транспортировать электричество только в пределах одной мили.

Сегодня переменный ток вырабатывается большинством электростанций и используется почти всеми системами распределения электроэнергии. Общее мировое валовое производство электроэнергии в 2019 году составило 27 644 ТВтч.

Генрих Рудольф Герц наблюдал фотоэлектрический эффект в 1887 году

Генрих Рудольф Герц

Пока Тесла был занят изобретением и распределением переменного тока, Генрих Герц проводил серию экспериментов по пониманию электромагнитных волн. В 1887 году он наблюдал фотоэлектрический эффект, явление, при котором электроны испускаются, когда электромагнитное излучение (например, свет) попадает на материал.

В 1905 году Альберт Эйнштейн опубликовал «закон фотоэлектрических эффектов», выдвинув гипотезу о том, что световая энергия переносится дискретными квантованными пакетами. Это был решающий шаг в развитии квантовой механики. За эту работу Эйнштейн был удостоен Нобелевской премии по физике 1921 года.

Фотоэлектрический эффект используется в фотоэлементах, обычно встречающихся в солнечных батареях. Эти фотоэлементы вырабатывают напряжение и подают электрический ток, когда на них светит солнечный свет (или свет с определенной длиной волны).

К концу 2019 года во всем мире было установлено в общей сложности 629 гигаватт солнечной энергии. Это число будет увеличиваться в ближайшие годы, поскольку многие страны и территории переходят на возобновляемые источники энергии, чтобы уменьшить воздействие производства электроэнергии на окружающую среду.

И поэтому было бы неправильно отдать должное только одному человеку за то, что он открыл для себя электричество. В то время как идея электричества существовала тысячи лет, когда пришло время ее научного и коммерческого изучения, несколько великих умов работали над различными подмножествами этой проблемы.

Кто придумал электричество

Задавать вопрос «кто придумал электричество?» не совсем корректно. Более правильно спрашивать, кто открыл электричество? Ответить однозначно невозможно. История электричества уходит своими корнями в глубину веков существования человеческой цивилизации.

Хронология основных открытий и изобретений

В современном мире каждый ребёнок в сознательном возрасте сталкивается в доме с электричеством. Первые упоминания о наблюдениях в природе этого физического явления относятся к IV веку д. н. э. Великий философ Аристотель изучал поведение угрей, которые поражали свои жертвы электрическими разрядами.

Легендарный учёный Фалес Милетский, живший в Древней Греции (V век д.н.э.), упоминал в своих трудах о таком явлении, как электричество. Он наблюдал за тем, как янтарь, натёртый комком шерсти, притягивал к себе различную мелочь. Историки признают время описания опытов периодом открытия электричества.

Важно! Термин «электричество» происходит от слова «электрон», что означает янтарь.

Далее в истории человечества происходит длительный временной промежуток, в котором не осталось сколь-нибудь существенных упоминаний об электричестве.

Лишь, начиная с 17 века, стартует череда открытий и изобретений, касающаяся электроэнергии. Об истории электричества сообщает Википедия достаточно подробно. Вот краткий перечень основных вех развития науки об электрической энергии:

  1. Англичанин Уильям Гилберт в начале XVII века, изучая магнитоэлектрические явления, ввёл впервые такое понятие, как электричество (янтарность).
  2. Через два года в 1663 году бургомистр Магдебурга Отто фон Генрике продемонстрировал электростатический прибор, состоящий из серного шара, насаженного на металлическую ось. На поверхности сферы в результате трения о ладони накапливался статический заряд тока, который своим магнитным полем притягивал или отталкивал мелкие предметы.

  1. Почти через 60 лет (1729 г.) английский физик Стивен Грей опытным путём определил способность проводить ток различных материалов.
  2. Четыре года спустя (1733 г.) французский физик Шарль Дюфе выдвинул сомнительную версию о существовании двух типов электричества, имеющих стеклянное и смоляное происхождение. Он пояснял это тем, что он получал электрический заряд на поверхности стеклянного стержня и комка смолы путём их трения о шёлк и шерсть, соответственно.
  3. В 1745 году была изобретена Лейденская банка – прообраз современного конденсатора. Автором изобретения был голландский исследователь Питер ван Мушенброк.

  1. В это же время выдающиеся русские учёные Рихман и Ломоносов в Санкт-Петербурге добиваются получения искусственного грозового разряда в лабораторных условиях. Во время проведения очередного эксперимента, получив электрический удар, погибает Рихман.
  2. 1785 г. ознаменовался регистрацией в Лондоне закона Кулона, носящего имя его автора. Учёный обосновал величину силы взаимодействия точечных зарядов в зависимости от длины промежутка между ними.
  3. Спустя несколько лет, в 1791 году, Гальвани выпускает в свет трактат, в котором доказывает протекание электрических процессов в мышцах животных.
  4. В этой же стране Вольта в 1800 г. демонстрирует гальванический элемент – источник постоянного тока. Прибор представлял вертикальное сооружение из серебряных и цинковых дисков, переложенных бумагой, вымоченной в соляном растворе.

  1. Через двадцать лет датский физик Эрстед обнаружил существование электромагнитного эффекта. Размыкая контакты электрической цепи, он заметил колебания стрелки рядом положенного компаса.
  2. Спустя год, великий французский учёный Ампер в 1821 г. обнаружил магнитное поле вокруг проводника переменного тока.
  3. 1831 г. – Фарадей создаёт первый в мире генератор тока. Двигая намагниченный сердечник внутри катушки из металлической проволоки, он зафиксировал проявление электрического заряда в её витках. Учёный был одним из тех физиков, кто первый создал электричество в лабораторных условиях. Им же была обоснована теория об электромагнитной индукции.

Обратите внимание! По мере накопления практики в результате многочисленных опытов стала возникать потребность теоретического обоснования явлений и появления науки, связанной с электричеством.

Этапы создания теории

Каждая ступень строительства электрической теории возводилась на основе личных открытий выдающихся учёных физиков. Их фамилии составляют список имён, кому принадлежит изобретение электричества. Теоретическая научная база электричества развивалась постепенно, по мере накопления экспериментального опыта.

Появление термина

Выше уже упоминалось то, что понятие «электричество» впервые было введено в употребление Уильямом Гилбертом в 1600 г. С этого момента отмечают дату, когда появилось электричество.

Первая электростатическая машина

Демонстрируемый прибор в 1663 г. бургомистром Магдебурга Отто фон Генрике считают первой электростатической машиной. Она представляла собой смоляной шар, насаженный на металлический стержень.

Лейденская банка

В 1745 году случилось знаменательное событие – голландский исследователь Питер ван Мушенброк создал электростатический конденсатор. Прибор был назван в честь города, где было сделано изобретение, – Лейденской банкой.

Два вида зарядов

Бенджамин Франклин ввёл понятие о полярности зарядов. С тех пор аксиомой является то, что любой электрический потенциал имеет отрицательный и положительный полюсы.

Бенджамин Франклин

В 1747 году американский научный исследователь Бенджамин Франклин создаёт собственную теорию об электричестве. Он представил природу электричества как нематериальную жидкость в виде неких флюидов.

От теории к точной науке

Теоретическая база, накопленная за несколько последних столетий, позволила в ХХ веке полученные знания переформатировать в точную науку. Основополагающие открытия и изобретения появились, благодаря тем учёным, кто открыл природу электрического тока. Точно установить, в каком году изобрели искусственное электричество, невозможно. Это произошло в основном в течение 18 и 19 веков.

Назвать того, кто первый изобрёл ток, довольно затруднительно. Скорее всего, это можно приписать целому ряду великих учёных, упомянутых выше. К этому приложили руку выдающиеся физики Америки, Англии, Франции, Италии, России и многих других стран Европы.

Несомненную бессмертную славу заслужили такие изобретатели и теоретики электротехники, как Эдисон и Тесла. Последний много приложил усилий по теоретическому обоснованию природы магнетизма, успешно реализовывал его на практике. Тесла является создателем беспроводного электричества.

Закон взаимодействия зарядов

Одной из фундаментальных скрижалей науки об электричестве является закон взаимодействия зарядов, известный как закон Кулона. Он гласит о том, что сила взаимодействия двух точечных зарядов находится в прямой пропорциональной зависимости от произведения количеств зарядов и обратно пропорциональна расстоянию в квадрате между этими точками.

Изобретение батареи

Документальным подтверждением изобретения электрической батареи считается предложенное устройство итальянским учёным Алессандро Вольта. Прибор назвали вольтовым столбом. Он представлял собой своеобразную этажерку, сложенную из медных и цинковых пластинок, переложенных кусками войлока, смоченного раствором серной кислоты.

Вверху и внизу столба создавался электрический потенциал, разряд которого можно было почувствовать, приложив к столбу ладони рук. В результате взаимодействия атомов металлов, возбуждённых электролитом, внутри батареи накапливалась электроэнергия.

Изобретатель гальванического электричества, Алессандро Вольта, положил начало появлению того, что сегодня называют батарейками.

Появление понятие тока

Выражение «ток» возникло одновременно с появлением электричества в лаборатории физика Уильяма Гилберта в 1600 году. Ток характеризует направленность электрической энергии. Он может быть как переменным, так и постоянным.

Закон электрической цепи

Бесценный вклад в развитие теории электричества внёс в XIX веке немецкий физик Кирхгофа. Он был автором терминов таких, как ветвь, узел, контур. Законы Кирхгофа стали основой построения всех электрических цепей радиоэлектронных и радиотехнических приборов и устройств.

Первый закон гласит: «Сумма электрических зарядов, идущих в узел в течение определённого времени, равна сумме зарядов, уходящих из него за это же время».

Второе положение Кирхгофа можно выразить так: «При прохождении токов через все ветви контура падает потенциал. При их возвращении в исходный узел потенциал полностью восстанавливается и достигает своей первоначальной величины. То есть утечка энергии в пределах замкнутого электрического контура равняется нулю».

Электромагнитная индукция

Явление возникновения электрического тока в замкнутом контуре проводника при прохождении через него переменного магнитного поля описал в 1831 году Фарадей. Теория электромагнитной индукции позволила открывать последующие законы электротехники и изобретать различные модели генераторов как постоянного, так и переменного тока. Эти устройства демонстрируют, как появляется и проистекает электричество в результате действия электромагнитной индукции.

Использование электрического освещения в России

Ещё со школьной скамьи люди помнят историю появления электрических лампочек в России. Первый опыт в создании этих приборов был проведён русским учёным Яблочковым. Их устройство было основано на возникновении искры между двумя каолиновыми электродами.

В 1874 г. Яблочков впервые представил прибор освещения с использованием электрической дуги. Этот год можно считать отправной точкой, когда впервые появилось световое электричество в России. Впоследствии свечи Яблочкова использовались как дуговые прожектора на паровозах.

До появления ламп накаливания Эдисона угольные свечи Яблочкова ещё долго использовались как единственный источник электрического освещения в России.

Производство и практическое использование

Со времён появления первого электричества до массового производства электричества и его практического применения должно было произойти много открытий, и внедрено изобретений в сферу генерирования и передачи электрической энергии.

Генерирование и передача электроэнергии

Со временем стали придумывать различные способы генерирования электричества. С появлением мобильных, а впоследствии гигантских электростанций, возникла проблема передачи электричества на большие расстояния.

Позволить решить этот вопрос помогла научно-техническая революция. В результате были построены огромные сети электропередач, охватывающие страны и целые континенты.

Применение

Практически невозможно назвать сферу деятельности человечества, где бы ни было задействовано электричество. Оно является основным источником энергии во многих жизнеобеспечивающих сферах деятельности человека.

Современный виток исследований

Грандиозный рывок в развитии электротехники совершил легендарный учёный, физик и изобретатель Никола Тесла на рубеже XIX, XX веков. Многие изобретения Теслы ещё ждут нового витка исследований в области электротехники для того, чтобы они были внедрены в жизнь.

Сейчас ведутся исследовательские работы по получению новых сверхпроводимых материалов, созданию совершенных компонентов электрических цепей с высоким КПД.

Дополнительная информация. Открытие графена и получение из него новых токопроводящих материалов предрекают грандиозные перемены в сфере использования электричества.

Наука не стоит на месте. С каждым годом человечество становится свидетелем появления более совершенных источников электроэнергии, вместе с этим и создания приборов, машин и различных агрегатов, потребляющих экологически чистую энергию в виде электрического тока.

Видео

История открытия электричества

Электричество – обыденное и жизненно необходимое для большинства людей явление. И как любая привычная вещь, оно редко заметно. Мало кто задаётся вопросом откуда оно появляется, как работает, что с его помощью можно сделать. Однако, его исследованием занимались задолго до нашей эры и до сих пор некоторые загадки остаются без ответа.

Что понимают под электрическим током

Электричество – это комплекс явлений, связанный с существованием электрических зарядов. Под этим словом чаще всего подразумевается электрический ток и все процессы, которые он вызывает.

Электрический ток – это направленное движение частиц, несущих заряд, под воздействием электрического поля.

Кто придумал электричество — история

Частные проявления электричества изучались ещё задолго до нашей эры. Но соединить их в одну теорию, объясняющую вспышки молний в небе, притяжение предметов, способность вызывать пожары и онемение частей тела или даже смерть человека, оказалось непростой задачей.

Учёные издревле изучали три проявления электричества:

  • Рыбы, вырабатывающие электричество;
  • Статическое электричество;
  • Магнетизм.

В Древнем Египте целители знали о странных способностях нильского сома и пытались с его помощью лечить головную боль и другие заболевания. Древнеримские врачи использовали в сходных целях электрического ската. Древние греки подробно изучали странные способности ската и знали, что оглушить человека существо могло без прямого контакта через трезубец и рыболовные сети.

Несколько раньше было обнаружено, что если потереть янтарь о кусок шерсти, то он начнёт притягивать шерстинки и небольшие предметы. Позже был открыт и другой материал со сходными свойствами – турмалин.

Примерно в 500-х годах до н.э. индийские и арабские учёные знали о веществах, способных притягивать железо и активно использовали эту способность в разных областях. Около 100-го года до н.э. китайские учёные изобрели магнитный компас.

В 1600 году Уильям Гилберт, придворный врач Елизаветы I и Якова I, обнаружил, что вся планета – это один огромный компас и ввел понятие «электричество» (с греческого «янтарность»). В его трудах эксперименты с натиранием янтаря о шерсть и способность компаса указывать на север начали объединяться в одну теорию. На картине ниже он демонстрирует магнит Елизавете I.

В 1633 год инженер Отто фон Герике изобретает электростатическую машину, которая может не только притягивать, но и отталкивать предметы, а в 1745 году Питер ван Мушенбрук сооружает первый в мире накопитель электрического заряда.

В 1800 году итальянец Алессандро Вольта изобретает первый источник тока – электрическую батарею, вырабатывающую постоянный ток. Также он смог передать электрический ток на расстояние. Поэтому именно этот год многие считают годом изобретения электричества.

В 1831 году Майк Фарадей открывает явление электромагнитной индукции и открывает направление для изобретения различных устройств на основе электрического тока.

На рубеже XIX-XX веков совершается огромное количество открытий и достижений, благодаря деятельности Николы Тесла. Среди прочего, он изобрёл высокочастотный генератор и трансформатор, электродвигатель, антенну для радиосигналов.

Наука, изучающая электричество

Электричество – природное явление. Оно частично изучается в биологии, химии и физике. Наиболее полно электрические заряды рассматриваются в рамках электродинамики – одного из разделов физики.

Теории и законы электричества

Законов, которым подчиняется электричество немного, но они полностью описывают явление:

  • Закон сохранения энергии – фундаментальный закон, которому подчиняются и электрические явления;
  • Закон Ома – основной закон электрического тока;
  • Закон электромагнитной индукции – о электромагнитном и магнитном полях;
  • Закон Ампера – о взаимодействии двух проводников с токами;
  • Закон Джоуля-Ленца – о тепловом эффекте электричества;
  • Закон Кулон – об электростатике;
  • Правила правой и левой руки – определяющие направления силовых линий магнитного поля и силы Ампера, действующей на проводник в магнитном поле;
  • Правило Ленца – определяющее направление индукционного тока;
  • Законы Фарадея – об электролизе.

Первые опыты с электричеством

Первые опыты с электричеством носили, в основном, развлекательный характер. Их суть была в лёгких предметах, которые притягивались и отталкивались под действием плохо изученной силы. Другой занимательный опыт – передача электричества через цепочку людей, взявшихся за руки. Физиологическое действие электричества активно изучал Жан Нолле, заставивший пройти электрический заряд через 180 человек.

Из чего состоит электрический ток

Электрический ток – это направленное или упорядоченное движение заряженных частиц (электронов, ионов). Такие частицы называют носителями электрического заряда. Для того чтобы движение появилось, в веществе должны быть свободные заряженные частицы. Способность заряженных частиц перемещаться в веществе определяет проводимость этого вещества. По проводимости вещества различают на проводники, полупроводники, диэлектрики и изоляторы.

В металлах заряд перемещают электроны. Само вещество при этом никуда не утекает – ионы металла надёжно закреплены в узлах структуры и лишь слегка колеблются.

В жидкостях заряд переносят ионы: положительно заряженные катионы и отрицательно заряженные анионы. Частицы устремляются к электродам с противоположным зарядом, где становятся нейтральными и оседают.

В газах под действием сил с разными потенциалами образуется плазма. Заряд переносится свободными электронами и ионами обоих полюсов.

В полупроводниках, заряд перемещают электроны, перемещаясь от атома к атому и оставляя после себя разрывы, считающиеся положительно заряженными.

Откуда берется электрический ток

Электричество, поступающее по проводам в дома, вырабатывается электрическим генератором на различных электростанциях. На них генератор соединён с постоянно вращающейся турбиной.

В конструкции генератора есть ротор – катушка, которая располагается между полюсами магнита. При вращении турбиной этого ротора в магнитном поле по законам физики появляется или наводится электрический ток. Таким образом назначение генератора – преобразовывать кинетическую силу вращения в электричество.

Заставить турбину крутиться можно многими способами, используя разнообразные источники энергии. Они разделяются на три вида:

  • Возобновляемые – энергия, получаемая из неисчерпаемых ресурсов: потоков воды, солнечного света, ветра, геотермальных источников и биотоплива;
  • Невозобновляемые – энергия, получаемая из ресурсов, которые возникают очень медленно, несоизмеримо с темпами расходования: уголь, нефть, торф, природный газ;
  • Ядерные – энергия, получаемая из процесса ядерного деления клеток.

Чаще всего электроэнергия возникает благодаря работе:

  • Гидроэлектростанций (ГЭС) – строятся на реках и используют силу водного потока;
  • Тепловых электростанций (ТЭС) – работают на тепловой энергии от сжигания топлива;
  • Атомные электростанции (АЭС) – работают на тепловой энергии, получаемой от процесса ядерной реакции.

Преобразованная энергия по проводам поступает в трансформаторные подстанции и распределительные устройства и уже потом доходит до конечного потребителя.

Сейчас активно развиваются так называемые альтернативные виды энергии. К ним относят ветрогенераторы, солнечные батареи, использование геотермальных источников и любые другие способы получить электроэнергию через необычные явления. Альтернативная энергетика сильно уступает по производительности и окупаемости традиционным источникам, но в определённых ситуациях помогают сэкономить и снизить нагрузку на основные электросети.

Также есть миф о существовании БТГ — бестопливных генераторов. В интернете есть ролики демонстрирующие их работу и предлагается их продажа. Но о достоверности этой информации идут большие споры.

Виды электричества в природе

Самый простой пример электричества, возникающего естественным путём – это молнии. Частицы воды в облаках постоянно сталкиваются друг с другом, приобретая положительный или отрицательный заряд. Более лёгкие, положительно заряженные частицы оказываются в верхней части облака, а тяжёлые отрицательные перемещаются вниз. Когда два подобных облака оказываются на достаточно близком расстоянии, но на разной высоте, положительные заряды одного начинают взаимно притягиваться отрицательными частицами другого. В этот момент и возникает молния. Также это явление возникает между облаками и самой земной поверхностью.

Другое проявление электричества в природе – это специальные органы у рыб, скатов и угрей. С их помощью они могут создавать электрические заряды, чтобы обороняться от хищников или оглушать своих жертв. Их потенциал – от совсем слабых разрядов, незаметных для человека, до смертельно опасных. Некоторые рыбы создают вокруг себя слабое электрическое поле, помогающее искать добычу и ориентироваться в мутной воде. Любой физический объект так или иначе искажает его, что помогает воссоздавать окружающее пространство и «видеть» без глаз.

Также электричество проявляется и в работе нервной системы живых организмов. Нервный импульс передаёт информацию от одной клетки к другой, позволяя реагировать на внешние и внутренние раздражители, мыслить и управлять своими движениями.

Что такое статическое электричество и как с ним бороться?

Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле

Кто изобрел лампочку первым?

Что такое ЭДС индукции и когда возникает?

Закон Кулона, определение и формула — электрические точечные заряды и их взаимодействие

Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки

Когда появилось электричество

Активное использование электрического тока началось лишь в 20 веке, а до этого все ограничивалось опытами и исследованиями, проводимыми отдельными учеными из разных стран. Когда появилось электричество не имеет однозначного ответа, поскольку первые понятия о нем возникли еще в 7 веке до нашей эры. Наблюдая за некоторыми физическими явлениями, греческий ученый и философ Фалес Милетский обратил внимание на то, что янтарь способен притягивать легкие мелкие предметы после его трения о шерсть. На этом уровне знания об электричестве приостановились на многие века.

Первые исследования и открытия

Знания в области электричества стали развиваться далее лишь в 15 веке. И если рассматривать электричество, кто создал его и ввел такое понятие, следует в первую очередь отметить английского физика Уильяма Гильберта (1544-1603). Этот ученый-естествоиспытатель и придворный врач по праву считается основоположником учения об электричестве и магнетизме. Благодаря Уильяму появились термины «электричество» и «электрический». В своем научном труде Уильям Гильберт аргументированно доказывает наличие у Земли магнитного поля.

Книга «О магните, магнитных телах и великом магните Земли» подробно описывает опыты, подтверждающие магнитные и электрические свойства тел. Все тела были разделены на электризующиеся с помощью трения и не электризующиеся. Было установлено, что каждый магнит обладает двумя неразделимыми полюсами. То есть, при распиливании магнита на две равные части, на каждой половинке вновь образуется собственная пара полюсов. Разноименные полюса притягиваются друг к другу, а одноименные, наоборот, отталкиваются в противоположные стороны.

Во время опытов с металлическим шаром, взаимодействующим с магнитной стрелкой, ученым впервые было выдвинуто предположение о том, что Земля есть не что иное, как огромный магнит, а ее магнитные полюсы могут совпадать с географическими полюсами.

Электрические явления были исследованы ученым с помощью версора, созданного собственноручно, который стал первым своеобразным электроскопом. Понятия магнетизма и электричества разделились, поскольку магнитными свойствами обладают в основном металлические предметы, а электрические присущи многим веществам, входящим в особую категорию. В книге Уильяма Гилберта впервые определены понятия электрического притяжения, электрической силы и магнитных полюсов.

Опыты ученого через много лет решил повторить немецкий физик, инженер и философ из Магдебурга Отто фон Герике (1602-1686). Он изобрел специальные физические приборы, которые помогли не только подтвердить выводы Гилберта, но и подтвердить научные изыскания самого фон Герике. Лучшими доказательствами считаются ряд экспериментальных исследований, затрагивающих статическое электричество, которым до тех пор практически никто не интересовался.

Для подтверждения собственных изысканий и предыдущих опытов Уильяма Гильберта, фон Герике изобрел специальный прибор, позволяющий создавать электрическое состояние. В нем отсутствовал конденсатор для накопления электричества, производимого трением, поэтому данный прибор не в полной мере соответствовал понятию электрической машины. Тем не менее, он сыграл свою роль и благодаря ему история развития электричества получила новый толчок в нужном направлении.

Фон Герике открыл еще и эффект электрического отталкивания, который был ранее неизвестен. Для подтверждения данного эффекта был изготовлен большой шар из серы, сквозь который продевалась ось, приводившая его в движение. В процессе вращения он натирался сухой рукой, что вызывало электризацию шара. В ходе эксперимента было замечено, что тела вначале притягиваются к нему, а затем отталкиваются. Кроме того, было видно, как оттолкнувшуюся пушинку притягивают другие тела. В процессе исследования наблюдались и другие эффекты, подтверждающие общие характеристики и свойства электричества, известные в то время.

В дальнейшем электрическая машина фон Герике была усовершенствована немецкими учеными Бозе, Винклером, английским физиком Хоксби. С ее помощью в 18 и 19 веках удалось сделать массу новых открытий в теории и практике электричества.

Великие открытия 18-19 веков

Исследования в области электричества были успешно продолжены другими учеными. Так в 1707 году французский физик Дю Фей обнаружил разницу между электричеством, получаемым от трения о разные материалы. Для экспериментов использовались круги из стекла и древесной смолы.

В 1729 году английскими учеными Греем и Уилером было установлено, что отдельные виды веществ способны пропускать сквозь себя электричество. Именно с их открытия все тела начали разделяться по типам и называться проводниками и непроводниками электричества. В этом же году голландский физик Мушенбрук из Лейдена сделал грандиозное открытие. В ходе опытов со стеклянной банкой, закрытой с двух сторон листами станиоля, было установлено, что такой сосуд способен накапливать электричество. По месту проведения эксперимента данный прибор был назван лейденской банкой.

Большой вклад в науку внес американский ученый и общественный деятель Бенджамин Франклин. Он доказал теорию совместного существования положительного и отрицательного электричества, объяснил процессы, происходящие во время зарядки и разрядки лейденской банки. Было установлено, что свободная электризация обкладок этого прибора может происходить под действием разных электрических зарядов. Бенджамин Франклин много времени уделял изучению атмосферного электричества и доказал с помощью громоотвода возникновение молнии от разности электрических потенциалов.

В 1785 году французским ученым Шарлем Кулоном был открыт закон, описывающий электрическое взаимодействие между точечными зарядами. Открытие точного физического закона произошло без сложного лабораторного оборудования, с помощью лишь стальных шариков. Для определения расстояния и силы взаимодействия использовались такие же крутильные весы, как и при исследованиях сил тяготения между двумя телами. Ученый не пользовался абсолютной величиной электрических зарядов, он просто брал два одинаковых заряда или неодинаковые, но с заранее известной разницей их величины.

Важное открытие в области электричества было сделано итальянским ученым Алессандро Вольта в 1800 году. Этим изобретением стала химическая батарея, состоящая из круглых серебряных пластинок, переложенных кусками бумаги, предварительно смоченных соленой водой. Химические реакции, возникающие в батарее, способствовали регулярному вырабатыванию электрического тока.

В 1831 году знаменитый английский физик Майкл Фарадей открыл явление электромагнитной индукции, и на ее основе первым в мире изобрел электрический генератор. С именем Майкл Фарадей связаны понятия электрического и магнитного поля, изобретение простейшего электродвигателя.

Вся история электричества была бы неполной без выдающегося изобретателя Николы Тесла, работавшего на рубеже 19-20 веков и значительно обогнавшего свое время. Свои исследования в области магнетизма и электричества он постоянно переводил в практическую плоскость. Приборы, созданные гениальным ученым, до сих пор считаются уникальными и неповторимыми.

В течение всей своей жизни, посвященной изучению возможностей электричества, Тесла зарегистрировал множество патентов, сделал открытия, ставшие прорывом в электротехнике. Большинство изобретений и открытий, так или иначе до сих пор используются в повседневной жизни. Из наиболее известных работ следует отметить вращающееся магнитное поле, позволяющее использовать переменный ток в электродвигателях без преобразования в постоянный ток. Также Тесла создал двигатель переменного тока, на основе которого в дальнейшем был создан генератор переменного тока. Эти и другие открытия успешно использовались во многих технических решениях.

Ученых, сделавших весомый вклад в развитие науки об электричестве, можно перечислять очень долго. В завершение хочется отметить Георга Ома, который в ходе экспериментов вывел основной закон электрической цепи. Благодаря Ому появились такие термины, как электродвижущая сила, проводимость, падение напряжения и другие. Не менее известен Ампер Андре-Мари, придумавший правило правой руки для определения направления тока на магнитную стрелку. Ему принадлежит и конструкция усилителя магнитного поля, представляющего собой катушку с большим количеством витков. Эти и другие ученые много сделали для того, чтобы человечество в полной мере пользовалось теми благами, которые дает электричество.

История развития электричества

Ученые Вашингтонского университета доказали, что с появлением электричества люди стали спать гораздо меньше, поскольку исчезла необходимость ложиться с заходом солнца. Diletant.media и «Ростех» расскажут о том, как учёные смогли совладать с электрическими зарядами.



Первый опыт

Вплоть до начала XVII века знания об электричестве ограничивались размышлениями античных философов, которые в своё время заметили, что потертый об шерсть янтарь имеет свойство притягивать маленькие предметы. Янтарь по-гречески, кстати, именно так и звучит — «электрон». Само название «электричество», соответственно, и произошло от янтаря.

Устройство для получения статического электричества Отто фон Герике

Именно эффект трения (как в случае с шерстью и янтарем) использовал Отто фон Герике для создания одного из первых в мире электрических генераторов. Он натирал руками шар из серы, а ночью видел, как его шар излучает свет и потрескивает. Он, вероятно, одним из первых наблюдал электролюминесценцию уже в 1663 году.

Учёный и шутник Стивен Грей

Стивен Грей — британский астроном-любитель, всю жизнь едва сводивший концы с концами — как-то раз заметил, что пробка, заткнувшая стеклянную трубку, притягивает мелкие кусочки бумаги, если трубку натереть. Затем вместо пробки любопытный учёный вставил длинную щепку и заметил такой же эффект. После этого Стивен Грей заменил щепку на пеньковую верёвку. В результате своих опытов Грей смог передать электрический заряд на расстояние восьмисот футов. По сути, учёный смог открыть явление передачи электричества на расстоянии и дать людям представление о том, что может проводить ток, а что нет.

Стивен Грей стал первым лауреатом Медали Копли, высшей награды Королевского общества Великобритании

Некоторые источники утверждают, что на своём открытии Стивен Грей сделал забавный бизнес. Он якобы брал мальчишек из приюта Чартерхаус и подвешивал их на шнурках из изолирующего материала. После этого он «электрифицировал его прикосновением натертого стекла и высекал искры из его носа».

Лейденская банка

У Питера ван Мушенбрука, ученика Ньютона, изобретательство, можно сказать, было в крови, так как его отец занимался созданием специализированных научных приборов.

Благодаря Лейденской банке удалось впервые искусственным путём получить электрическую искру

Став преподавателем философии Лейденского университета, Мушенбрук направил свои силы на изучение нового на тот момент явления — электричества. Его научная деятельность дала результаты: в 1745 году он вместе со своим учеником соорудил устройство для накопления заряда, так называемую Лейденскую банку. Отчет об этом событии выглядит очень комично: «Банку устроил голландский физик Мушенбрук, впервые испытал удар от разряда банки лейденский гражданин Кюнеус».

Создание Лейденской банки продвинуло эксперименты с электричеством на новый уровень. Некто Бозе даже высказал желание быть убитым электричеством, если об этом напишут в изданиях Парижской академии наук. Кстати, именно Мушенбрук впервые сравнил действие разряда с ударом ската, первым употребив термин «электрическая рыба».

Электрическая панацея

После изобретения Лейденской банки опыты с электричеством приобрели небывалую популярность. Почему-то люди стали считать, что электрические разряды обладают врачебными свойствами. На волне этого заблуждения Мэри Шелли написала роман «Франкенштейн, или Современный Прометей», в котором умершего смогли оживить с помощью сильного разряда тока.

Обложка книги «Франкенштейн, или Современный Прометей», 1831 год

Аббе Нолле придумал, используя электричество, необычную забаву. В Версале, демонстрируя королю Людовику чудеса электричества, учёный в 1746 году выстроил монахов в 270-метровую цепь, соединив друг с другом кусками железной проволоки. Когда всё было готово, Нолле подал электричество, и монахи в ту же секунду вскрикнули и вместе подпрыгнули. Ещё практически через сто лет Максвелл подсчитает, что электричество распространяется со скоростью света.

Вольт и гальванический элемент

Эти хорошо знакомые нам обозначения на самом деле произошли от фамилий двух учёных — Александро Вольта и Луиджи Гальвани.


Лаборатория, в которой Гальвани проводил свои опыты

Первый опустил пластины из цинка и меди в кислоту, тем самым получив непрерывный электрический ток, а второй первым исследовал электрические явления при мышечном сокращении. В дальнейшем эти открытия сыграли важнейшую роль в становлении науки об электричестве. На открытия Вольта и Гальвани будут опираться работы Ампера, Джоуля, Ома и Фарадея.

Судьбоносный подарок

Майкл Фарадей, ученик переплетчика в лондонском книжном магазине, заприметил книжку по электричеству и химии. Чтение настолько увлекло его, что уже тогда он сам пытался проводить простейшие опыты с электричеством. Отец, поощряя тягу сына к знаниям, даже купил тому Лейденскую банку, что позволило молодому Фарадею проводить более серьёзные опыты.

Фарадей за опытами в своей лаборатории

Как выяснилось, подарок скончавшегося вскоре отца оказал огромное влияние на юношу — через двадцать лет Фарадей откроет явление электромагнитной индукции, соберёт первый в мире генератор электроэнергии и электродвигатель, выведет законы электролиза и сыграет едва ли не главную роль в становлении теории электричества.