Как прозвонить греющий кабель?
Как проверить греющий кабель
Подписка на рассылку
- ВКонтакте
- ok
- YouTube
- Яндекс.Дзен
- TikTok
Типы повреждений нагревательного кабеля
Рассмотрим, какие повреждения нагревательного кабеля встречаются чаще всего.
Как правило, повреждения могут быть механического характера или из-за перегрева.
Механические повреждения кабеля могут привести к его обрыву, и как следствие к короткому замыканию.
Механические повреждения, обычно, происходят вследствие следующих причин:
- Проведение различных работ после укладки кабеля, без учета схемы его расположения, т.е. сверление отверстий в напольном покрытии, установка оборудования и тд., не учитывающие расположение кабеля при монтаже;
- Слишком частый шаг змейки кабеля при укладке. Зачастую кабель не выдерживает механической нагрузки вследствие слишком маленького радиуса изгиба.
- Повреждение муфт. Часто под воздействием влажной среды происходит окисление контактов греющей жилы кабеля и, как следствие, их окисление. Это приводит к разрушению муфты, соединяющей эти контакты.
Самые частые причины перегрева кабеля:
- Локальный перегрев может возникнуть, если кабель располагается под мебелью, которая практически никогда не сдвигается с места, или под коврами.
- Кабель при прокладке пересекается с другими кабелями, трубками или материалами, которые по своей теплопроводности контрастируют со стяжкой или основой, в которой уложен кабель. Это создает температурный перепад, в дальнейшем ведущий к постоянному перегреву кабеля.
Безусловно, выше перечислены не все возможные причины повреждения или перегрева кабеля. Большинство из них можно избежать, четко соблюдая инструкции по монтажу греющего кабеля.
Как проверить греющий кабель мультиметром
Как проверить греющий кабель на целостность после его укладки? Необходимо прозвонить греющий кабель, это можно сделать с помощью мультиметра. Данный прибор измеряет сопротивление жил кабеля.
Для этого устанавливаем мультиметр в режим измерения электросопротивления. Прикладываем щупы мультиметра соответственно к жилам кабеля. На экране прибора в этот момент высвечивается цифра, это фактическое сопротивление кабеля (например, 216 Ом/м). Сравниваем ее с сопротивлением, которое указано на маркировке или в паспорте кабеля (например, 208 Ом/м ± 10%). Если показания находятся в пределах указанных на маркировке значений, то данный кабель соответствует заявленным характеристикам и не поврежден.
Если же на экране мультиметра высвечивается цифра близкая к бесконечности, значит кабель имеет разрыв. После того, как удастся проверить работоспособность греющего кабеля, можно приступать к локализации повреждений.
Как производится поиск повреждения при помощи тепловизора и выполняется ремонт
Поиск повреждений теплого пола лучше начать при помощи тепловизора. Это самый наглядный и быстрый способ диагностики повреждения греющего кабеля.
Данный прибор выдает на своем экране изображение инфракрасного излучения от теплого пола. Равномерность этого излучения свидетельствует о том, что повреждений не должно быть.
Однако, если тепловизор показывает картинку неравномерного теплового излучения, значит повреждения все-таки есть, и придется производить ремонт системы нагрева.
Для этого первоначально необходимо вскрыть напольное покрытие в месте предполагаемой неисправности кабеля (естественно, система должна быть отключена от сети в этот момент). Разбивать стяжку необходимо очень аккуратно, чтобы дополнительно не повредить кабель.
Затем необходимо в месте обрыва произвести зачистку кабеля и соединить токопроводящие жилы и экранирующую оплетку кабеля с помощью изолированных гильз. Поверх этого соединения ставится термоусадочная трубка. Усадку трубки можно произвести с помощью строительного фена.
Затем восстанавливаем напольное покрытие: при необходимости заливаем цементную стяжку, не оставляя воздушных пустот, и после ее высыхания укладываем напольное покрытие. Если это напольная плитка, то рекомендуется выждать время до полного высыхания плиточного клея и стяжки. Как правило, этот процесс занимает до 21 дня (для стяжки) и от 24 до 48 часов (для плиточного клея) зависимости от температуры в помещении. После этого включаем систему отопления в сеть.
Почему не работает нагревательный кабель, если проверка показала, что кабель в норме
После проверки греющего кабеля на целостность мультиметром, может выясниться, что кабель в порядке, однако система по-прежнему не работает.
В таком случае вероятнее всего могут быть следующие причины неисправности системы:
Неисправность в распределительном щитке. Рекомендуем проверить устройство защитного отключения (УЗО), автомат или дифавтомат, в зависимости от того на какой тип выключателя подведена система электрического отопления в вашем щитке.
Пониженное напряжение в электрической сети также может стать причиной ненадлежащей работы нагревательного кабеля. В этом случае решением проблемы может стать установка стабилизатора напряжения.
Способы проверки греющего кабеля
При покупке, монтаже и эксплуатации теплого пола или другой аналогичной системы необходимо проверять греющий кабель. От целостности внутренней и наружной кабельной изоляции зависит долговечность работы электрической нагревательной системы. При этом сложность заключается в том, что уложенное изделие — скрытая проводка. Рассмотрим основные типы повреждений нагревательного кабеля и способы проверки.
Типы повреждений
Чаще всего целостность греющего провода нарушается из-за механического воздействия или перегрева.
В результате механических повреждений возможен обрыв нагревательного кабеля, который, в свою очередь, может привести к короткому замыканию. Подобные повреждения вызывают различные факторы:
- проведение работ в зоне, где уложен провод, без учета схемы его размещения — например, сверление напольного покрытия или установка оборудования;
- несоблюдение рекомендованного производителем радиуса изгиба при укладке;
- разрушение муфт, соединяющей контакты греющей жилы, из-за их окисления под воздействием высокой влажности.
Перегрев, как правило, случается в результате одной из двух причин. Первая — над проложенным нагревательным проводом размещены ковры или мебель, которую не сдвигают с места на протяжении многих лет. Вторая — кабель пересекается с другими проводами, трубками или материалами, контрастирующими по теплопроводности с основой (стяжкой), и в результате образуется перепад температур, ведущий к постоянному перегреву проводки.
Способы проверки
Проверить нагревательный кабель после укладки можно разными способами. Самые эффективные и быстрые — с помощью мультиметра, мегаомметра и тепловизора.
Прозвонка мультиметром
Мультиметр нужен для измерения сопротивления кабельных жил. Его используют, чтобы проверить провод на целостность. Как происходит проверка:
- мультиметр нужно установить в режим измерения электрического сопротивления;
- щупы прибора прикладывают к кабельным жилам;
- на экране высветится цифра, обозначающая фактическое сопротивление проводника — ее необходимо сравнить с сопротивлением, указанным в паспорте или на маркировке.
Если данные прибора примерно равны паспортным значениям, значит, с нагревательным кабелем всё в порядке и он соответствует заявленным характеристикам. Допускается разница в 15 % в большую или меньшую сторону.
Если на экране высветилась цифра, близкая к бесконечности, это говорит о наличии разрыва и необходимости локализации проблемного места.
Проверка мегаомметром
Полноценная диагностика системы нагрева после укладки нагревательного кабеля проводится с использованием мегаомметра. Прибор может быть стрелочным с механической ручкой или электронным с цифровой индикацией. Главное — он должен иметь рабочее напряжение не ниже 2500 В.
При прозвонке проводки мегаомметром сопротивление изоляции должно составлять от 1 GOm (1000 МОм): если прибор показывает более низкие значения, это указывает на наличие проблем с проводом.
Проверка тепловизором
Проверка тепловизором позволяет обнаружить места повреждений. На экране этого прибора отображается инфракрасное излучение, идущее от системы, в которой работают нагревательные кабели. Там, где повреждений нет, излучение будет равномерным.
Если тепловизор показывает неравномерное тепловое излучение, значит, повреждения есть, и необходимо ремонтировать нагревательную систему.
Другие причины
Случается, что проверка мультиметром показывает, что с нагревательным кабелем всё в порядке, но система не работает. В таком случае причины неисправности часто кроются не в кабельной изоляции.
Неисправность может возникнуть в распределительном щитке. Выявить ее поможет проверка устройства защитного отключения, автомата или дифавтомата — смотря на какой тип выключена подведена система в вашем щитке.
Неработающий провод может быть следствием пониженного напряжения в электросети. Решить проблему поможет установка стабилизатора напряжения.
Чтобы избежать проблем с поиском неисправностей уложенного кабеля в будущем, обязательно сохраняйте его паспортную документацию.
Какой кабель лучше? Проверка греющего кабеля
Чтобы оценить качество саморегулирующегося греющего кабеля необходимо изучить паспорт с заявленными характеристиками, сертификат электро- и пожаробезопасности, а также его основные внешние и рабочие свойства.
Большинство производителей заявляет общие характеристики мощности, максимальной рабочей температуры, а также срок службы. Данные параметры не являются стандартизированной величиной, то есть не проходят проверку при сертификации. Сертификат подтверждает безопасность работы нагревательного кабеля при соблюдении соответствующих условий эксплуатации .
Таким образом, рабочие характеристики кабеля, заявленные в каталогах производителя, можно проверить лишь опытным путем. Некоторые исследования довольно просты, и дают общее представление о качестве кабеля. Более сложные испытания проводятся в специализированных лаборатория, с соблюдением условий и технологии измерения исследуемых параметров.
В приведенном примере исследуются характеристики саморегулирующегося нагревательного кабеля трех разных производителей. Кабель без оплетки, линейной мощностью 16 Вт/м, применяемый для обогрева бытовых трубопроводов под теплоизоляцией.
Состав и строение саморегулирующегося кабеля
Рабочие характеристики греющего кабеля напрямую зависят от:
- Строения нагревательного кабеля (количество оболочек, их толщина, диаметр токоведущих жил).
- Качества материалов, применяемых в оболочках, саморегулирующейся матрице и токоведущих жилах.
- Технологии изготовления (плотность прилегания оболочек, наличие воздушных пузырьков в составе полимера).
Для соблюдения технологии исследования взято 3 отрезка греющего кабеля длиной 1м. Для сравнения внешняя и внутренняя оболочки отделены от саморегулирующейся матрицы. Исследуются механические свойства – внешний вид, жесткость, плотность прилегания, а также измеряется толщина каждого элемента.
Параметр нагревательного кабеля | Описание | Образец №1 | Образец №2 | Образец №3 |
---|---|---|---|---|
Толщина наружной оболочки, мм | Измерение осуществлялось микрометром | 0.75 | 0.95 | 0.85 |
Толщина внутренней оболочки, мм | Измерение осуществлялось микрометром | 0.51 | — | 0.5 |
Диаметр скрученной токоведущей жилы, мм | Измерение осуществлялось микрометром | 1.3 | 1.15 | 1.35 |
Количество и диаметр токоведущих жил, мм | Измерение осуществлялось микрометром | 19 жил по 0.24мм | 19 жил по 0.23мм | 7 жил по 0.49мм |
Гибкость оболочек обуславливает соблюдение минимального радиуса изгиба кабеля. Отсутствие воздушных пузырей на сгибе, умеренная упругость кабеля говорит о соблюдении технологии изготовления и равномерности толщины оболочки. Эти характеристики влияют на удобство монтажа кабеля и стойкость оболочек к внешним воздействиям. В данном исследовании Образцы №1 и №3 полностью соответствуют требованиям к механическим свойствам греющего кабеля. Образец №2 имеет более жесткую внешнюю оболочку, что делает кабель менее гибким – это усложняет монтаж на мелких деталях трубопровода.
В процессе исследования Образца №2 не удалось отделить внутреннюю оболочку от матрицы (Рисунок 1). Это значительно затрудняет зачистку токоведущих жил в процессе монтажа, увеличивая срок работ. Кроме того, при зачистке велика вероятность их повреждения.
Также на внутренней стороне внешней оболочке Образца №2 обнаружены следы спекания. Вероятнее всего была нарушена технология производства кабеля, а именно – превышена температура (Рисунок 2).
Диаметр токоведущей жилы греющего кабеля определяет максимальную длину секции греющего кабеля.
Большая максимальная длина греющей части кабельной секции позволяет:
- Уменьшить количество соединений в системе обогрева, что во-первых, экономит время монтажа, а во-вторых, повышает надежность системы.
- Экономит количество соединительных элементов.
- Уменьшает длины силовых кабелей.
В данном исследовании максимальная длина секции Образца №3 соответствует каталожному значению, указанному производителем и значительно превышает данный параметр Образцов №1 и №2 .
Параметр нагревательного кабеля | Описание | Образец №1 | Образец №2 | Образец №3 |
---|---|---|---|---|
Сечение токоведущей жилы, мм2 | Вычислено по формуле S=N*3.14*d*d/4, где N — количество жил, d — диаметр жилы | 0.86 | 0.79 | 1.31 |
Максимальная длина нагревательной секции в зависимости от сечения токоведущей жилы | Определяется допустимый длительный ток с учетом поправочного коэффициента на нагрев жилы от матрицы (К=0.61) в зависимости от сечения токоведущей жилы по ПУЭ.* | 101 | 93 | 135 |
Для сечения 1.32мм2 принято 16А*0.61=9.76А, сечения 0.86мм2 принято 12А*0.61=7.32А, для сечения 0.79мм2 принято 11А*0.61=6.71А. Далее вычисляется по формуле L=U*Iдоп/Pуд, где L-длина секции, U=220В — напряжение сети, Iдоп — допустимый длительный ток, Pуд=16Вт/м — удельная мощность кабеля.
Таким образом, система обогрева выполненная на базе Образца №3 будет экономически более выгодной при всех прочих равных условиях.
Мощность греющего кабеля и стартовые токи напрямую зависят от сопротивления токоведущей жилы. При тестировании сопротивление и пусковой ток измеряется при комнатной температуре и при температуре кабеля -15°С. Чем ниже коэффициент стартового тока, тем меньше возрастает мощность греющего кабеля (от номинальной) при включении системы.
Меньший коэффициент стартового тока:
- Экономия энергии при запуске системы
- Дольше срок службы греющего кабеля (меньшее воздействие на полупроводниковую матрицу)
- Меньший номинал пускозащитной аппаратуры (ниже её стоимость)
- Меньшее сечение силовых кабелей
- Выше надежность системы
Так как пусковой ток связан с площадью сечения токоведущей жилы, самый низкий СТ показал Образец №3.
Параметр нагревательного кабеля | Описание | Образец №1 | Образец №2 | Образец №3 |
---|---|---|---|---|
Сопротивление в «холодном» состоянии при температуре окружающей среды, Ом | Измерение осуществлялось мультиметром при температуре Токр=24С | 1570 | 1350 | 2360 |
Пусковой ток при температуре окружающей среды, А | Измерение осуществлялось многофункциональным измерителем мощности при температуре Токр=24С | 0.226 | 0.283 | 0.136 |
Пусковая мощность при температуре окружающей среды, Вт | Вычислено по формуле Pст=U*Iст, где Pст — пусковая мощность, U=220В — напряжение сети, Iст — пусковой ток | 49.72 | 62.26 | 29.9 |
Сопротивление в «холодном» состоянии при температуре Т=-15С, Ом | Образец помещен в морозильную камеру на время не менее 4 часов. Температура морозильной камеры Т=-15С. Измерение осуществлялось мультиметром сразу после изъятия из морозильной камеры | 917 | 840 | 1000 |
Пусковой ток при температуре Т=-15С, А | Образец помещен в морозильную камеру на время не менее 4 часов. Температура морозильной камеры Т=-15С. Измерение осуществлялось многофункциональным измерителем мощности сразу после замера сопротивления | 0.318 | 0.366 | 0.227 |
Пусковая мощность при температуре Т=-15С, Вт | Вычислено по формуле Pст=U*Iст, где Pст — пусковая мощность, U=220В — напряжение сети, Iст — пусковой ток | 69.9 | 80.5 | 49.9 |
Номинальный ток в установившемся режиме, А | Измерение осуществлялось многофункциональным измерителем мощности при температуре Токр=24С спустя 15 минут после включения кабеля | 0.073 | 0.088 | 0.039 |
Соответственно при понижении температуры пусковая мощность возрастает. Подробную таблицу зависимостей мощности греющего кабеля от температуры окружающей среды, вы можете найти в следующем разделе.
Температура нагрева саморегулирующегося кабеля , применяемого для обогрева трубопроводов под теплоизоляцией и соответствующего низкотемпературному классу Т6 по нормам не должна превышать 65°С. Это необходимо для безопасной эксплуатации кабеля под теплоизоляцией, имеющей низкую температуру плавления, а также при обогреве пластиковых трубопроводов.
При тестировании (комнатная температура) Образец №1 показал нагрев до 61°С. Следовательно, при более низкой температуре окружающей среды под теплоизоляцией этот показатель будет гораздо выше. Образец №2 при тестировании нагрелся до 55°С. Это не критическая температура, но она находится на границе класса. Образец №3 показал температуру нагрева 43°С, что соответствует каталожному значению, а также температурному классу Т6.
Параметр нагревательного кабеля | Описание | Образец №1 | Образец №2 | Образец №3 |
---|---|---|---|---|
Максимальная температура нагрева кабеля в установившемся режиме, С | Измерение осуществлялось пирометром в нескольких точках. В протоколе указано максимальное значение из всех измеренных | 55 | 61 | 43 |
Несоблюдение температурного режима ведет не только к перерасходу электроэнергии, но и к возможным повреждениям трубопровода и теплоизоляции, а также выхода системы из строя.
Таким образом, можно заключить, что при внешней схожести образцов кабеля и заявленных производителем характеристиках, качество и производственные особенности саморегулирующихся лент различны. Проведенное тестирование полностью прошел только один Образец №3 . Для того, чтобы убедиться в качестве приобретаемого кабеля, необходимо не только оценивать сопроводительную документацию, но и запрашивать результаты тестирований, проводимых производителями, зафиксированные в протоколах испытаний.
Как проверить греющий кабель на целостность мультиметром?
Строительные материалы, которые в середине прошлого века можно было только «достать», сейчас предлагаются в изобилии. Многие появились не так давно. К примеру, теплые полы или системы антиобледенения кровель, о которых лет 30 назад никто еще и не слышал. А сейчас они доступны и популярны, благодаря своей эффективности. Основным «действующим лицом» подобных систем является греющий кабель. Но при эксплуатации он нередко подвергается воздействию разрушающих факторов, поэтому любой владелец теплого пола должен знать, как проверить греющий кабель на целостность мультиметром.
Греющий кабель – виды, область применения, причины неисправности
Если говорить о видах, то их всего два:
- резистивные – простые в монтаже и недорогие;
- саморегулирующиеся – с полупроводниковой полимерной греющей жилой; они способные менять свое сопротивление в зависимости от температуры окружающей среды.
Вторые являются более современными, имеют более высокий КПД и поэтому позволяют экономить электроэнергию.
- в системах канализации и водопровода для защиты труб от промерзания;
- для создания систем антиобледенения;
- для обогрева различных резервуаров и емкостей;
- в системах теплого пола.
Принцип действия греющего кабеля прост – он преобразует электрическую энергию в тепловую. Кабель представляет собой замкнутую цепь, двигаясь по которой электроток нагревает его по всей длине.
Оболочка кабеля является особо прочной и герметичной, поэтому он легко выдерживает воздействие влаги и может использоваться как внутри помещений, так и снаружи.
Но, как бы прочна ни была оболочка, она может быть повреждена:
- механическим путем;
- при неправильной укладке, когда радиус изгиба кабеля слишком мал;
- при повреждении муфт, соединяющих контакты греющей жилы.
Если кабель перестал греть, нужно проверять всю систему, в которой он задействован. Чтобы, проверить целостность греющего провода, можно использовать мультитестер.
Как проверить греющий кабель на целостность мультиметром?
Чаще всего рядовой потребитель сталкивается с греющим кабелем, используемым для монтажа теплых полов. Когда система перестает подавать тепло в помещение, приходится разбираться с причинами. Основных точек отказа теплого пола три:
- терморегулятор;
- датчик температуры;
- греющий кабель.
Если первые две проверены и оказались исправными, придется проводить проверку кабеля.
Узнать о его работоспособности можно двумя путями:
- провести визуальную оценку, опираясь на внешние признаки повреждения – расплав изоляции, почернение участка кабеля;
- использовать измерительный прибор, самым доступным из которых является мультиметр.
Проверка проводится в следующем порядке:
- Прибор устанавливают в режим измерения переменного напряжения и проверяют наличие питающего напряжения на клеммах терморегулятора.
- Далее нужно проверить сопротивление самого греющего кабеля. Для этого тестер переводят в режим измерения сопротивления.
- Всю систему обесточивают, выводы нагревательных элементов отключают от клемм терморегулятора и производят замер.
- Щупы прибора прикладывают к выводам кабеля.
Показатели на дисплее зависят от мощности кабеля, которые указаны в паспорте на него. Возможные результаты:
- Допускается отклонение сопротивления на 5 – 10% в обе стороны. Поэтому если действительное сопротивление греющего кабеля находится в этих пределах, его считают исправным.
- Превышение сопротивления указывает на повреждение изоляции.
- Показатель сопротивления, стремящийся к бесконечности, сигнализируют о возможном обрыве кабеля.
- Сопротивление равное нулю говорит о коротком замыкании.
Если проверка показала неработоспособность кабеля, придется заниматься поиском мест повреждений и ремонтом.
Вопрос — ответ
Вопрос: Как можно найти место повреждения кабеля системы теплого пола, не разбирая само покрытие?
Имя: Александр
Ответ: После проверки мультиметром, показавшей на неисправность греющего кабеля теплого пола, нужно как можно точнее найти место повреждения. В этом поможет такой прибор как тепловизор, фиксирующий инфракрасное излучение. В том месте, где кабель не работает, равномерность излучения изменена. Специалист, выполняющий проверку, быстро определит область возможной поломки.
Вопрос: Проверка мультиметром показывает, что кабель в норме, но он почему-то не работает?
Имя: Ярослав
Ответ: Возможно, неисправность локализована в распределительном щитке. Нужно проверить УЗО или автомат.
Вопрос: Пол плохо греется, а мультиметр показывает пониженное напряжение в сети. Что делать?
Имя: Матвей
Ответ: В данном случае поможет стабилизатор напряжения. Но причину стабильно пониженного напряжения в сети нужно все-таки выяснить в энергоснабжающей организации, поскольку это явление не нормальное.
Вопрос: Какой греющий кабель лучше? И как это проверить мультитестером?
Имя: Егор
Ответ: Проверять тестером здесь ничего не нужно. Саморегулирующийся кабель считается более современным. Он лучше защищен от перегрева, особенно в таких местах, где стоит стационарная мебель. Обычно под ней теплый пол не монтируют, но при необходимости перемещения крупногабаритной мебели на другой участок пола, перегрев все же возможен. Кроме того, такой кабель позволяет значительно снизить расход электроэнергии.
Диагностика теплого пола: как найти место повреждения или обрыва греющего кабеля? Руководство!
Для проведения быстрой и качественной диагностики, которая позволит найти обрыв теплого пола или другие повреждения греющего кабеля, требуются специальные приборы, которых нет домашних условиях. Данное руководство разработано ведущим европейским производителем электрического напольного отопления – компанией Warmup и рекомендуется в первую очередь для мастеров, занимающихся обслуживанием и ремонтом тёплых полов.
Системы «Теплый пол», выполненные на базе греющего кабеля, активно применяются для обогрева помещений различного типа. Они монтируются под плитку, ламинат, линолеум, ковролин и т.д., удобны в использовании и обеспечивают комфортные условия для жизни человека. Вместе с тем, как и любая техника время от времени они выходят из строя. Рассмотрим методику локализации повреждений в системах «Теплый пол» с использованием приборов Greenlee, которые используются компанией Warmup.
Диагностические приборы необходимые для проверки электрического теплого пола:
- Импульсный рефлектометр Tempo TS-90 или Sidekick Plus. Применяется для измерения расстояния до возникшей неисправности в проводке системы электрического напольного отопления.
- Тестовый набор Greenlee 701K-G. Применяется для трассировки кабеля под покрытием для более точного определения их места повреждения.
Как работает рефлектометр
Рефлектометр посылает электрический импульс в подключенный к нему кабель. Импульс проходит по кабелю до места неисправности, где отражается обратно к рефлектометру. При этом прибором измеряется время, которое потребовалось импульсу на то, чтобы достичь неисправности и вернулся назад. Значение времени преобразуется в показания расстояния, которые выводятся на дисплей рефлектометра.
Настройка рефлектометра
Для правильного пересчета времени перемещения импульса к повреждению и обратно, и повышения точности в измерении расстояния до повреждения, необходимо выставить коэффициент распространения, соответствующий типу греющего кабеля, который предстоит диагностировать. Для этого:
- Полностью отключите подачу электроэнергии на термостат системы «Теплый пол», и отсоедините от него систему отопления.
- Нажмите кнопку включения питания на рефлектометре TS-90, в случае использования анализатора Sidekick, переключите переключатель режимов анализатора в положение TDR.
- Зайдите в режим «Настройки» (Setup)
- При помощи клавиш «вверх»/«вниз» выберите нужный кабель из списка.
- Подсоедините входящие в комплект зажимы типа «крокодил» к измерителю, соблюдая указанную цветовую кодировку (черный к черному, красный к красному).
Если характеристики кабеля системы «Теплый пол» неизвестны, можно их определить самостоятельно, для чего понадобится аналогичный кабель известной длины. Для этого:
- Прикрепите один из измерительных проводов рефлектометра к одной из жил аналогичного греющего кабеля известной длины
- Прикрепите другой измерительный шнур к металлической оболочке нагревательного кабеля (кабель должен быть никуда не подключен)
- Подкорректировать коэффициент распространения NVP таким образом, чтобы длина кабеля, отображаемая рефлектометром, соответствовала реальной длине кабеля.
Если в справочнике прибора нет кабеля с таким коэффициентом распространения, необходимо записать его. Это пригодится в будущем для диагностики аналогичных кабелей.
Методика поиска неисправностей в системе «теплый пол»
- Полностью отключите подачу электроэнергии на термостат, и отсоедините от него систему отопления.
- Прикрепите один зажим к одному из проводов системы отопления, а другой – к проводу заземления (металлическая заземленная оболочка нагревательного кабеля).
- Нажмите кнопку F1 (для измерения длины) и дождитесь появления показаний. Запишите полученное значение.
- Повторите процедуру, описанную в п.3, для другого провода. Запишите полученное значение.
- Сравните полученные значения между собой и с длиной провода системы, которая указана в руководстве по установке кабеля. Это позволит определить расстояние до разрыва.
Если показания одинаковые
Если показания для обоих проводов одинаковы и находятся в пределах 10% от общей длины провода (обратитесь к техническим характеристикам изделия или руководству), возможно, все в порядке. Однако это может также означать, что разрыв находится на дальнем конце провода. Наиболее распространенным неисправностью в этом случае является повреждение оконечного соединения (на конце провода).
Если полученные показания одинаковые, но значение расстояния меньше заводской длины провода.
Это может указывать на полный обрыв греющего кабеля в теплом полу.
Пример 1. Например, в мате NADWM-120-350 площадью 25 квадратных футов (2,32 м. кв.) длина кабеля составляет 100 футов (30,5 метра), а самого мата 15 футов (4,5 метра). Если показания рефлектометра меньше 30,5 метров, возможно, имеется полный разрыв провода.
Пример 2. Если используются маты другими габаритами, длину кабеля в 1 квадратном метре можно уточнить у их производителя, или высчитать самостоятельно. К примеру, наиболее распространенными являются маты шириной 50 см и шагом провода 8-10 см.
Простыми пересчетами можно приблизительно определить длину кабеля в мате длиной 2м (площадь 1 м кв.) L каб = 10,5 м. Для точного определения местонахождения нагревательного кабеля, можно воспользоваться тестовым набором 701K-G:
- Подключить красный вывод к одному (или одновременно двум) жилам греющего кабеля
- Подключить черный вывод к металлической оболочке греющего кабеля
- Переключить генератор в режим Tone (в этом режиме генератор подает в кабель сигнал)
- При помощи индуктивного щупа, определяем местонахождение кабеля по максимальному значению принимаемого сигнала. Во избежание ошибок, следует уменьшить чувствительность прибора до минимального уровня, при котором будет слышен сигнал.
Если показания рефлектометра меньше фактической длины кабеля, возможно, имеется полный разрыв провода.
Проверьте показания с помощью омметра или мультиметра:
- Между черным и белым проводами: смотрите заводские настройки. Как правило, при выборе шкалы 200 Ом показания должны быть в пределах от 20 до 200 Ом. Если никаких показаний нет, это подтверждает обрыв кабеля. Прежде чем делать выводы, дважды проверьте батарейки на своем измерителе и проведите измерение заново. Используете цифровой омметр (с цифровым дисплеем), а не аналоговый (со стрелочным индикатором).
- Между черным проводом и землей: не должны отображаться никакие показания. Если есть показания, значит, имеется «замыкание на землю», то есть «короткое замыкание». Рефлектометр должен показать расстояние до неисправности на этом проводе и указать «Short» (короткое замыкание).
- Между белым проводом и землей: не должны отображаться никакие показания. Если есть показания, значит, имеется «замыкание на землю», то есть «короткое замыкание». Рефлектометр должен показать расстояние до неисправности на этом проводе и указать «Short» (короткое замыкание).
Если показания отличаются
Если показания для черного и белого провода кабеля отличаются, запишите их. Возможно, причиной является частичное повреждение греющего кабеля, и сигнал по одному проводу не проходит из-за повреждения, а по другому проводу доходит до конца кабеля, а затем попадает на повреждение на обратном пути. Если в приведенном выше примере (Пример 1) с матом площадью 25 квадратных футов (2,32 м. кв.) повреждение находится на расстоянии 30 футов (9,1 м) в белом проводнике кабеля, тогда одно показание будет 30 футов (9,1 м), а другое — 170 футов (51,82 м). Это 100 футов (30,5 м) до конца одного провода (не имеющего повреждения) и 70 футов (21,3 м) обратного пути сигнала по другому проводу кабеля.
1. После того, как показания записаны и нарисована схема расположения кабеля или нагревательного мата с указанием возможного местоположения неисправности, аккуратно поднимите плитку над предполагаемой областью повреждения. Будьте при этом осторожны, используйте инструменты небольшого размера и не торопитесь. Не используйте общепринятый подход «зубила и молотка». Инструмент меньшего размера позволит снизить вероятность дальнейшего повреждения провода.
2. Если дела пойдут хорошо, обрыв будет найден. Ищите черное или темное пятно в тонком месте, где перегорел кабель, или, после освобождения кабеля, место повреждения на нем. Обычно место повреждения можно обнаружить голыми руками, водя пальцами на месте разрыва. Чаще всего это не то место, где лежит разрыв.
3. Если разрыв отсутствует, специально обрежьте провод и тщательно очистите заземление и проводники с обеих сторон. Одна сторона кабеля будет идти к термостату, а другая — к концу мата. Для зачистки проводов рекомендуется использовать универсальный нож с новым лезвием. Провода настолько малы, что большинство инструментов для зачистки проводов просто сломают кабель.
Определите сторону с обрывом
С помощью омметра определите, в какой стороне (к термостату или к концу мата) находится обрыв относительно вашего разреза. Скрутите черный и белый провода друг с другом на термостате с помощью соединительного изолирующего зажима (не подсоединяйте провод заземления). Проверьте сопротивление от места разреза к термостату. Должны появиться показания (часть от заводского значения, так как измеряется не весь кабель), и отсутствовать замыкание на землю. Если это не так, значит, разрыв на этой стороне, и следует повторно использовать рефлектометр, как описывалось выше, чтобы определить, расстояние до разрыва от места разреза. Если исходный чертеж и оценка были сделаны правильно, вы должны быть довольно близко и показания расстояния в метрах должно быть небольшим.
Если же с этой цепью все в порядке, перейдите на другую сторону разреза и с помощью омметра проведите измерения в сторону конца мата. Если полученные показания не соответствуют полной цепи, повторно воспользуйтесь рефлектометром, как было описано выше, чтобы приблизиться к месту разрыва.
Когда разрыв обнаружен
После обнаружения разрыва мы предлагаем сначала просто скрутить провода вместе, чтобы восстановить полную цепь от термостата. Для проверки измерьте сопротивление кабеля, показаниям должны быть оригинальными или близкими к оригинальным. Кабель не имеет полярности, поэтому проводники можно поменять местами в любой точке. Несмотря на то, что кабели имеют цветовую маркировку на термостате, под полом они одинаковы.
При подключении приборов всегда следуйте инструкциям производителя греющего кабеля.
Данное руководство подходит для диагностики любых нагревательных кабелей, в том числе использующихся в уличных условиях для обогрева ступеней, крыш и т.п.