Параллельное включение светодиодов
Какая схема подключения светодиодов лучше — последовательная или параллельная
Самое правильное подключение нескольких светодиодов — последовательное. Сейчас объясню почему.
Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению (деградации).
Ток — это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.
Для примера, заглянем в даташит светодиода 2835:
Как видите, прямой ток указан четко и определенно — 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс — от 2.9 до 3.3 Вольта.
Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.
Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.
Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).
Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожжёте его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).
К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.
Вот прекрасная иллюстрация к вышесказанному:
А самое неприятное то, что проводимость любого светодиода (который по сути является p-n-переходом) находится в очень сильной зависимости от температуры. На практике это приводит к тому, что по мере разогрева светодиода, ток через него начинает неумолимо возрастать. Чтобы вернуть ток к требуемому значению, придется понижать напряжение. В общем, как ни крути, а без контроля тока никак не обойтись.
Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.
Теперь, возвращаемся к главному вопросу статьи — почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.
Параллельное подключение
При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).
Очевидно, что такого неравномерного распределения мощностей нужно избегать.
Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:
Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.
Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.
В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:
Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.
Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.
Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):
Uпит | ILED | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 мА | 10 мА | 20 мА | 30 мА | 50 мА | 70 мА | 100 мА | 200 мА | 300 мА | |
5 вольт | 340 Ом | 170 Ом | 85 Ом | 57 Ом | 34 Ом | 24 Ом | 17 Ом | 8.5 Ом | 5.7 Ом |
12 вольт | 1.74 кОм | 870 Ом | 435 Ом | 290 Ом | 174 Ом | 124 Ом | 87 Ом | 43 Ом | 29 Ом |
24 вольта | 4.14 кОм | 2.07 кОм | 1.06 кОм | 690 Ом | 414 Ом | 296 Ом | 207 Ом | 103 Ом | 69 Ом |
При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.
Последовательное подключение
При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.
Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).
Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:
Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!
Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.
Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.
Вот пример готового устройства:
Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64. 106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.
И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.
Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.
Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:
Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.
Как выбрать нужный драйвер?
Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:
- выходной ток;
- максимальное выходное напряжение;
- минимальное выходное напряжение.
Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.
Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:
Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.
Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3. 4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.
Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).
Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.
Следовательно, для наших целей подойдет что-нибудь вроде этого:
Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.
Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:
Светодиоды | Какой нужен драйвер |
---|---|
60 мА, 0.2 Вт (smd 5050, 2835) | см. схему на TL431 |
150мА, 0.5Вт (smd 2835, 5630, 5730) | драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов) |
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) | драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода) |
700 мА, 3 Вт (led 3W, фитосветодиоды) | драйвер 700мА (для 6-10 светодиодов) |
3000 мА, 10 Ватт (XML2 T6) | драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему |
Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.
Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.
Особенности параллельного подключения светодиодов
Известно, что светодиоды лучше всего соединять последовательно. В этом случае ток на каждом из них будет одинаковый, что упрощает контроль над ним. Но бывают случаи, что без параллельного соединения не обойтись.
Например, если есть источник питания, и к нему необходимо подключить несколько светодиодных лампочек, суммарное падение напряжений на которых превышает напряжение источника. Иными словами, питания источника не достаточно для последовательно соединенных лампочек, и они не загораются.
Тогда лампочки включают в цепь параллельно и на каждую ветку ставят свой резистор.
По законам параллельного соединения падение напряжений на каждой ветке будет одинаковым и равным напряжению источника, а ток может отличаться. В связи с этим расчеты по определению характеристик резисторов будут проводиться отдельно для каждой ветки.
Запрет на один резистор
Почему нельзя подсоединить все светодиодные лампочки к одному резистору? Потому что технология производства не позволяет сделать светодиоды с идеально равными характеристиками. Светодиоды имеют разное внутреннее сопротивление, и порой различия в нем очень сильны даже для одинаковых моделей, взятых из одной партии.
Большой разброс сопротивления приводит к разбросу в значении тока, а это в свою очередь приводит к перегреву и перегоранию. Значит, надо проконтролировать ток на каждом светодиоде или на каждой ветке с последовательным соединением. Ведь при последовательном соединении ток одинаковый. Для этого и применяют отдельные резисторы. С их помощью стабилизируют ток.
Основные характеристики элементов цепи
Слегка подумав, становится понятным, что одна ветка сможет содержать максимальное количество светодиодов такое же, как при последовательном соединении и питании от этого же источника.
Например, у нас есть источник на 12 вольт. К нему можно последовательно подсоединить 5 светодиодов по 2 вольта. (12 вольт:2 вольта:1,15≈5). 1,15- это коэффициент запаса, поскольку необходимо рассчитывать, что в цепь будет включен еще и резистор.
Сопротивление резистора рассчитывается с помощью закона Ома: I=U/R, где I будет допустимым током, взятым из таблицы характеристик прибора. Напряжение U получится, если из максимального напряжения источника питания вычесть падения напряжений на каждом светодиоде, входящем в последовательную цепочку (тоже берется из таблицы характеристик).
Мощность резистора находится из формулы:
При этом все величины записываются в системе Си. Напомним, что 1 A=1000 мA, 1 мA=0,001 A, 1 Ом=0,001 кОм, 1 Вт=1000 мВт.
Сегодня много онлайн калькуляторов, которые предлагают выполнить эту операцию автоматически, просто подставив известные характеристики в пустые ячейки. Но основные понятия знать все-таки полезно.
Преимущество параллельного включения диодов
Параллельное соединение позволяет добавить 2 или 5, или 10 светодиодов, или больше. Ограничением является мощность источника питания и габариты прибора, в котором вы хотите применить такое соединение.
Лампочки для каждой параллельной ветки берут строго одинаковые, чтобы у них были максимально похожие значения допустимого тока, прямого и обратного напряжения.
Преимущество параллельного соединения светодиодов в том, что если один из них перегорит, вся цепь продолжит работать. Лампочки будут светиться и при перегорании их большего количества, главное, чтобы хоть одна ветка оставалась неповрежденной.
Как видно, параллельное соединение – это довольно полезная вещь. Просто надо уметь правильно собрать цепь, не забывая обо всех свойствах светодиодов и о законах физики.
Во многих схемах параллельное соединение комбинируют с последовательным, что позволяет создать функциональные электрические приборы.
Применение параллельного соединения светодиодов
Схема параллельного подключения с двумя выводами позволяет реализовывать двухцветное свечение лампочек, если используются два кристалла разного цвета. Цвет меняется при изменении полюсов источника (изменение направления тока). Широкое применение такая схема находит в двухцветных индикаторах.
Если два кристалла разного цвета соединить параллельно в одном корпусе и подключить к ним импульсный модулятор, то можно менять цвет в широком диапазоне. Особенно много тонов генерируется при сочетании зеленого и красного цвета светодиодов.
Как видно на схеме, к каждому кристаллу подключен свой резистор. Катод в таком соединении общий, а вся система подключена к управляющему устройству – микроконтроллеру.
В современных праздничных гирляндах иногда применяется смешанный тип соединения, в котором несколько последовательных рядов соединяются параллельно. Это позволяет гирлянде светиться, даже если несколько светодиодных источников выйдут из строя.
При создании подсветки в помещении тоже могут применять параллельное соединение. Смешанные схемы используются при конструкции многих индикаторных электроприборов и для подсвечивающих устройств.
Несколько нюансов монтажа
Отдельно можно сказать о том, как соединяются светодиоды между собой. Каждый кристалл заключен в корпус, из которого идут выводы. На выводах зачастую стоят отметки «-» или «+», что означает соответственно подключение к катоду и к аноду прибора.
Опытные радиолюбители даже на глаз могут определить полярность, поскольку катодный вывод чуть длиннее и чуть больше выступает из корпуса. Подключение светодиодов необходимо осуществлять, строго соблюдая полярность.
Если речь идет о мощных светодиодах, то в процессе монтажа довольно часто применяют пайку. Для этого используют маломощный паяльник, чтобы ни в коем случае не перегреть кристалл. Время пайки не должно превышать 4-5 секунд. Лучше, если это будет 1-2 секунды. Для этого паяльник разогревают заранее. Выводы сильно не сгибают. Схему собирают на площадке из материала, который хорошо отводит тепло.
Особенности параллельного и последовательного соединений светодиодов
Соединение светодиодов – несложная процедура даже для человека без профессиональных навыков.
Соединение в LED цепочку компонентов может быть нескольких видов – последовательное и параллельное.
Эти схемы могут выполняться в различных вариациях, каждая из которых имеет свои положительные и отрицательные стороны.
Принципы подключения
Светоизлучающие диоды активно применяются в подсветке, индикации. Своими руками можно создать устройства, поэтому важно знать, как производить соединение светодиодов.
К основным способам подключения относятся:
- параллельное;
- последовательное;
- комбинированное.
Основные причины выхода из строя светодиодных цепочек:
- неправильное соединение;
- некачественные диоды или блоки питания.
Конструкция излучающего диода подразумевает его подключение к источнику постоянного тока. При соединении важно соблюдать полярность компонента – если перепутать катод и анод, диод не будет излучать световой поток.
Важно! Любой компонент имеет техдокументацию, в которой указывается полярность. Ее узнать можно по маркировке компонента или визуально.
Полярность
Определить, какой из электродов является плюсом, а какой – минусом, можно несколькими способами.
Первый – конструктивно. Обычный LED компонент имеет две ножки, длинная является плюсом (анодом), а короткая – катодом.
При помощи тестера. Для этого нужно взять мультиметр, перевести его в положение «Прозвонка» и прикладывать щупы к электродам. Когда красный щуп коснется анода, а черный катода – светодиод загорится. Если при перестановке на шкале высвечивается и не меняется «бесконечное» сопротивление, есть неполадка с элементом. Так что мультитестер используется и для проверки работоспособности излучающих приборов.
Визуальный осмотр. Можно посмотреть внутрь колбы. Широкая часть – это катод, а узкая – анод. Мощные светодиоды сверхъяркого типа имеют маркировку выводов «+» и «–». Компоненты для поверхностного монтажа обычно имеют специальный скос, который указывает на катод.
Включение в источник питания. Диод можно подключить к аккумулятору, батарее или другому блоку. Нужно постепенно повышать электропитание, которое вызовет свечение. Если компонент не горит, полярность следует поменять. Собирается такая схема проверки обязательно с использованием токоограничивающего резистора.
По технической документации. В паспорте прибора будет написано, какая полярность.
После определения плюса и минуса электродов нужно разобраться с методом подсоединения.
Способы подключения
Этапы соединения:
- определение полярности;
- составление схемы подключения;
- подбор драйвера и блока питания;
- расчет резистора;
- сбор цепи;
- тестирование подключенной системы.
Можно выделить 2 метода соединения – к электросети 220 Вольт и 12 Вольт. Осуществить подключение можно последовательно или параллельно. Наилучшим способом считается последовательное соединение светодиодов.
Подключение к напряжению 220 В
Чтобы светодиод загорелся, через него должен проходить ток в 20 мА и выше, а падение напряжения не должно превышать 2,2 – 3 В в зависимости от материалов кристалла. С учетом указанных параметров выбирается токоограничивающий резистор по закону Ома. Его формула:
R=(Uпит-Uпад)/(I*0,75), где R – номинал резистора, Uпит – напряжение источника, Uпад – падение на диоде, I – номинальный ток, 0,75 – коэффициент надежности.
Падением напряжения называют уровень напряжения, которое светодиод преобразует в свечение.
Также требуется знать мощность резистора. Она вычисляется как P=I*I*R=(Uпит-Uпад)*(Uпит-Uпад)/R.
Таким образом, для тока в 20 мА, сети 220 В и падения напряжения на диоде 2,2-3 В номинал сопротивления должен быть равен 30 кОм. Мощность сопротивления равняется 2 Вт.
Упрощенная схема подключения будет состоять из светодиода, диода, конденсатора и резисторов.
Но такое соединение используется все реже. Чтобы подключить светодиоды к электросети, используются специальные устройства – драйверы. Они преобразуют переменное напряжение 220 В в постоянное, пригодное для работы элемента. В большинстве светодиодных лент драйверы уже имеются в конструкции. В основе драйвера находятся диодный мост, делитель напряжения и стабилизатор. Основное преимущество – простота исполнения и надежность эксплуатации.
Как выбрать нужный драйвер, зависит от трех параметров:
- выходной ток;
- максимальное и минимальное напряжение на выходе;
Рабочий ток является важнейшей характеристикой. Ток драйвера должен быть чуть меньше или равен току светодиода.
Подключение к сети 12 в
Напряжение 12 В является оптимальным для работы светоизлучающего диода. Оно безопасно, и используется для включения в особо опасных помещениях (ванная, смотровые ямы гаража, бани).
Для подключения к 12 В нужен резистор. Он рассчитывается по той же формуле, что и для 220 В.
Важное преимущество 12 В – оно постоянное. Это позволяет упростить схему соединения.
Последовательное подключение
Чтобы подключить светодиоды последовательно, нужно к катоду одного устройства припаять анод другого, и так до нужной длины цепочки. Соединение производится через токоограничивающий резистор. По схеме будет протекать один и тот же ток через все элементы. Уровень напряжения будет суммой падений на каждом участке.
Так, для подключения к источнику питания с напряжением 12 Вольт потребуется не более четырех светодиодов 3 Вольт (3*4=12). Для большего числа диодов нужен более мощный аккумулятор.
Преимущества и недостатки
- одинаковый уровень тока;
- простота.
- количество светодиодов ограничено падением напряжения;
- если сломается один элемент, непригодной становится вся цепочка.
Схема раньше использовалась в гирляндах для елки. Сейчас ее вытеснило смешанное соединение.
Параллельное подключение
При параллельном подключении уровень напряжения на каждом светодиоде одинаков. Сила тока наоборот состоит из суммы токов, проходящих через элементы. Подключаются диоды так же через резисторы, но для каждого устройства он свой. Это связано с тем, что любой светоизлучающий диод имеет различные характеристики. Если поставить один резистор, через светодиоды будет пропускаться разный ток, и некоторые могут выйти из строя.
Параллельное подключение может использоваться для реализации двухцветного свечения ламп.
Плюсы и минусы
- можно использовать большее количество диодов;
- если перегорит один светодиод, цепь продолжит работу.
- требуется много резисторов;
- если сломается один элемент, на другие увеличится нагрузка.
Смешанное подключение
Смешанный тип соединения является самим оптимальным. Он используется во всех LED лентах, гирляндах, светодиодных панелях и представляет собой смесь параллельного и последовательного включений.
Так, параллельно включаются не отдельные элементы, а группы светодиодов. В группах диоды подключаются последовательно через один резистор для каждой цепи.
- при поломке элемента из одной цепочки вся гирлянда будет светить дальше;
- нужно не так много резисторов.
В этом способе учтены и исправлены все недостатки из параллельного и последовательного соединений.
Как подключить мощный светодиод
Для мощного светодиода потребуется источник питания с большим номиналом. Так, диод 1 В будет загораться, если по нему будет протекать ток величиной не менее 350 мА. Для 5 В элемента потребуется источник тока с нагрузкой не менее 1,4 А.
Схема соединения также будет включать токоограничивающий резистор и интегральный стабилизатор напряжения. Он помогает обезопасить светодиод от скачков электричества. Чаще всего используется интегральная микросхема LM317 для стабилизации. Подключить мощный светодиод можно параллельно, последовательно и комбинированным способом.
Распространенные ошибки при подключении
Самые часто встречающиеся ошибки при соединении светодиодов:
- Выбор резистора не того номинала – если подобрать слишком маленькое сопротивление, светодиод может перегореть. При большом значении светить диод будет не в полную силу.
- Подключение напрямую к источнику питания без токоограничивающего резистора. Излучающий компонент сразу сгорит.
- Соединение по параллельной схеме с одним резистором для всех диодов. Компоненты начнут выходить из строя, так как рабочий ток у каждого различный.
- Соединение по последовательной схеме светодиодов, рассчитанных на разный ток. В таком случае часть диодов перегорит, а часть будет светить тусклее.
- Подключение напрямую к сети 220 В без защиты.
Важно! Совершение описанных ошибок повлечет за собой негативные последствия в виде поломки диода или нанесения себе травм.
Основные выводы
Все светодиоды, в не зависимости от их рабочего напряжения или силы тока, подключаются последовательно или параллельно. Способ включения может быть и комбинированным – в таком случае устраняются недостатки последовательного и параллельного соединений. Важно уметь правильно собирать цепь, подбирать источник питания, считать номиналы токоограничивающих резисторов и нужное количество светодиодов, чтобы схема функционировала. Соединение без токоограничивающего резистора и других защитных элементов приведет к поломке диода.
Последовательное соединение светодиодов и параллельное подключение: схемы включения светодиодов параллельно и последовательно, как правильно соединить ленты или панели к сети с напряжением 12 и 220 вольт
Соединение светодиодов – несложная процеДypa даже для человека без профессиональных навыков.
Соединение в LED цепочку компонентов может быть нескольких видов – последовательное и параллельное.
Эти схемы могут выполняться в различных вариациях, каждая из которых имеет свои положительные и отрицательные стороны.
Принципы подключения
Светоизлучающие диоды активно применяются в подсветке, индикации. Своими руками можно создать устройства, поэтому важно знать, как производить соединение светодиодов.
К основным способам подключения относятся:
- параллельное;
- последовательное;
- комбинированное.
Основные причины выхода из строя светодиодных цепочек:
- неправильное соединение;
- некачественные диоды или блоки питания.
Конструкция излучающего диода подразумевает его подключение к источнику постоянного тока. При соединении важно соблюдать полярность компонента – если перепутать катод и анод, диод не будет излучать световой поток.
Важно! Любой компонент имеет техдокументацию, в которой указывается полярность. Ее узнать можно по маркировке компонента или визуально.
Полярность
Определить, какой из электродов является плюсом, а какой – минусом, можно несколькими способами.
Первый – конструктивно. Обычный LED компонент имеет две ножки, длинная является плюсом (анодом), а короткая – катодом.
При помощи тестера. Для этого нужно взять мультиметр, перевести его в положение «Прозвонка» и прикладывать щупы к электродам. Когда красный щуп коснется анода, а черный катода – светодиод загорится. Если при перестановке на шкале высвечивается и не меняется «бесконечное» сопротивление, есть неполадка с элементом. Так что мультитестер используется и для проверки работоспособности излучающих приборов.
Визуальный осмотр. Можно посмотреть внутрь колбы. Широкая часть – это катод, а узкая – анод. Мощные светодиоды сверхъяркого типа имеют маркировку выводов «+» и «–». Компоненты для поверхностного монтажа обычно имеют специальный скос, который указывает на катод.
Включение в источник питания. Диод можно подключить к аккумулятору, батарее или другому блоку. Нужно постепенно повышать электропитание, которое вызовет свечение. Если компонент не горит, полярность следует поменять. Собирается такая схема проверки обязательно с использованием токоограничивающего резистора.
По технической документации. В паспорте прибора будет написано, какая полярность.
После определения плюса и минуса электродов нужно разобраться с методом подсоединения.
Способы подключения
- определение полярности;
- составление схемы подключения;
- подбор драйвера и блока питания;
- расчет резистора;
- сбор цепи;
- тестирование подключенной системы.
Можно выделить 2 метода соединения – к электросети 220 Вольт и 12 Вольт. Осуществить подключение можно последовательно или параллельно. Наилучшим способом считается последовательное соединение светодиодов.
Подключение к напряжению 220 В
Чтобы светодиод загорелся, через него должен проходить ток в 20 мА и выше, а падение напряжения не должно превышать 2,2 – 3 В в зависимости от материалов кристалла. С учетом указанных параметров выбирается токоограничивающий резистор по закону Ома. Его формула:
R=(Uпит-Uпад)/(I*0,75), где R – номинал резистора, Uпит – напряжение источника, Uпад – падение на диоде, I – номинальный ток, 0,75 – коэффициент надежности.
Падением напряжения называют уровень напряжения, которое светодиод преобразует в свечение.
Также требуется знать мощность резистора. Она вычисляется как P=I*I*R=(Uпит-Uпад)*(Uпит-Uпад)/R.
Таким образом, для тока в 20 мА, сети 220 В и падения напряжения на диоде 2,2-3 В номинал сопротивления должен быть равен 30 кОм. Мощность сопротивления равняется 2 Вт.
Упрощенная схема подключения будет состоять из светодиода, диода, конденсатора и резисторов.
Но такое соединение используется все реже. Чтобы подключить светодиоды к электросети, используются специальные устройства – драйверы. Они преобразуют переменное напряжение 220 В в постоянное, пригодное для работы элемента. В большинстве светодиодных лент драйверы уже имеются в конструкции. В основе драйвера находятся диодный мост, делитель напряжения и стабилизатор. Основное преимущество – простота исполнения и надежность эксплуатации.
Как выбрать нужный драйвер, зависит от трех параметров:
- выходной ток;
- максимальное и минимальное напряжение на выходе;
Рабочий ток является важнейшей хаpaктеристикой. Ток драйвера должен быть чуть меньше или равен току светодиода.
Подключение к сети 12 в
Напряжение 12 В является оптимальным для работы светоизлучающего диода. Оно безопасно, и используется для включения в особо опасных помещениях (ванная, смотровые ямы гаража, бани).
Для подключения к 12 В нужен резистор. Он рассчитывается по той же формуле, что и для 220 В.
Важное преимущество 12 В – оно постоянное. Это позволяет упростить схему соединения.
Последовательное подключение
Чтобы подключить светодиоды последовательно, нужно к катоду одного устройства припаять анод другого, и так до нужной длины цепочки. Соединение производится через токоограничивающий резистор. По схеме будет протекать один и тот же ток через все элементы. Уровень напряжения будет суммой падений на каждом участке.
Так, для подключения к источнику питания с напряжением 12 Вольт потребуется не более четырех светодиодов 3 Вольт (3*4=12). Для большего числа диодов нужен более мощный аккумулятор.
Преимущества и недостатки
- одинаковый уровень тока;
- простота.
- количество светодиодов ограничено падением напряжения;
- если сломается один элемент, непригодной становится вся цепочка.
Схема раньше использовалась в гирляндах для елки. Сейчас ее вытеснило смешанное соединение.
Параллельное подключение
При параллельном подключении уровень напряжения на каждом светодиоде одинаков. Сила тока наоборот состоит из суммы токов, проходящих через элементы. Подключаются диоды так же через резисторы, но для каждого устройства он свой. Это связано с тем, что любой светоизлучающий диод имеет различные хаpaктеристики. Если поставить один резистор, через светодиоды будет пропускаться разный ток, и некоторые могут выйти из строя.
Параллельное подключение может использоваться для реализации двухцветного свечения ламп.
Плюсы и минусы
- можно использовать большее количество диодов;
- если перегорит один светодиод, цепь продолжит работу.
- требуется много резисторов;
- если сломается один элемент, на другие увеличится нагрузка.
Смешанное подключение
Смешанный тип соединения является самим оптимальным. Он используется во всех LED лентах, гирляндах, светодиодных панелях и представляет собой смесь параллельного и последовательного включений.
Так, параллельно включаются не отдельные элементы, а группы светодиодов. В группах диоды подключаются последовательно через один резистор для каждой цепи.
- при поломке элемента из одной цепочки вся гирлянда будет светить дальше;
- нужно не так много резисторов.
В этом способе учтены и исправлены все недостатки из параллельного и последовательного соединений.
Как подключить мощный светодиод
Для мощного светодиода потребуется источник питания с большим номиналом. Так, диод 1 В будет загораться, если по нему будет протекать ток величиной не менее 350 мА. Для 5 В элемента потребуется источник тока с нагрузкой не менее 1,4 А.
Схема соединения также будет включать токоограничивающий резистор и интегральный стабилизатор напряжения. Он помогает обезопасить светодиод от скачков электричества. Чаще всего используется интегральная микросхема LM317 для стабилизации. Подключить мощный светодиод можно параллельно, последовательно и комбинированным способом.
Распространенные ошибки при подключении
Самые часто встречающиеся ошибки при соединении светодиодов:
- Выбор резистора не того номинала – если подобрать слишком маленькое сопротивление, светодиод может перегореть. При большом значении светить диод будет не в полную силу.
- Подключение напрямую к источнику питания без токоограничивающего резистора. Излучающий компонент сразу сгорит.
- Соединение по параллельной схеме с одним резистором для всех диодов. Компоненты начнут выходить из строя, так как рабочий ток у каждого различный.
- Соединение по последовательной схеме светодиодов, рассчитанных на разный ток. В таком случае часть диодов перегорит, а часть будет светить тусклее.
- Подключение напрямую к сети 220 В без защиты.
Важно! Совершение описанных ошибок повлечет за собой негативные последствия в виде поломки диода или нанесения себе травм.
Основные выводы
Все светодиоды, в не зависимости от их рабочего напряжения или силы тока, подключаются последовательно или параллельно. Способ включения может быть и комбинированным – в таком случае устраняются недостатки последовательного и параллельного соединений. Важно уметь правильно собирать цепь, подбирать источник питания, считать номиналы токоограничивающих резисторов и нужное количество светодиодов, чтобы схема функционировала. Соединение без токоограничивающего резистора и других защитных элементов приведет к поломке диода.
Основы параллельного и последовательного подключения светодиодов
Светодиодная техника – последнее достижение светотехники, которое внесло изменения в освещение жилья, улиц, общественных мест, транспорта. Их применение имеет ряд особенностей по видам подключения: последовательное соединение светодиодов, параллельное или смешанное. Каждый из этих видов имеет положительные и отрицательные стороны. Последовательное допускает подсоединение к высоковольтной сети, а недостатком является ненадежность. Остальные виды также имеют свои плюсы и минусы.
Параллельное включение
Светодиод (СД, LED ) — микроэлемент, работа которого зависит от многих параметров. Погрешности в микротехнологиях приводят к тому, что вольт-амперная характеристика каждого отдельного СД отличается. Поэтому порог срабатывания («включения») всех диодов одновременно различен. Это допускается стандартами качества и это необходимо учитывать при построении электросхем. Параллельное соединение светодиодов требует именно такой настройки для их одновременного срабатывания.
На электросхеме видно, что для каждого СД выбирается свой резистор. При настройке резисторы R1-R6 регулируют работу всей системы. Порог срабатывания каждого диода лежит в пределах 2,5-3,0 Вольт, поэтому резисторы необходимо подбирать под каждый диод.
Положительным показателем является низковольтная характеристика. Уровень срабатывания одного LED составляет до 3,0 В, поэтому можно рассчитать весь световой узел на низкое напряжение.
Существенным достоинством параллельного подсоединения является «живучесть» такого варианта. При выходе из строя одного светодиодного элемента система продолжает работать и давать освещение.
Это качество используется в мини-приборах, когда важна миниатюризация и они собраны на аккумуляторных «таблетках». Подобные поделки широко выпускаются промышленностью и предназначены для небольших задач — местной подсветки, в рекламных целях и т.д.
Преимущества и недостатки
Преимуществами параллельного подключения СД являются: низкое напряжение питания схемы, что дает возможность построения миниатюрных приборов; высокая «живучесть» системы, так как каждый диод подключен напрямую к источнику тока. Недостатками – необходимость настройки каждого СД, что ведет к увеличению числа элементов (резисторов); необходимость отдельного источника тока (или драйвера) при использовании электросетей общего назначения.
Последовательное включение
При последовательном соединении светодиодов в электросхеме исключены индивидуальные настройки цепи каждого СД в отдельности. Но есть и свои особенности.
Схема настраивается одним резистором, при этом происходит срабатывание всех диодов одновременно. Преимуществом этого соединения является малокомпонентность и простота. Недостатком – невысокая «живучесть»: при выходе из строя одного СД выключается вся система.
Последовательный способ подключить LED-приборы позволяет использовать высоковольтные источники тока. Обычно это стационарные осветительные приборы различного назначения, использующие стандартные общественные электросети.
Системы СД с напряжением 12 В
LED-устройства, рассчитанные на 12 В, как правило принадлежат к классу автомобильного света. Автомобильная сеть имеет стабилизаторы, поэтому необходимости по выравниванию напряжения нет. LED-свет в автомобилях стал популярным – многие фирмы широко применяют светодиодную подсветку в моделях для освещения дороги и работы сигнализации, подсвечивания салона, багажника и приборной панели. Однако применение в автомобилях СД привело к повышению цены световых элементов, особенно головного света и сигнальных светоблоков. В некоторых премиальных моделях стоимость блок-фары сопоставима с ценой недорогого автомобиля.
Также 12-вольтовые LED-диоды используются в строительстве и отделке жилых помещений. Часто это светодиодные ленты, которые не только освещают комнату, но и создают световые инсталляции. Для этого необходима установка понижающих трансформаторов или драйверов, подключенных к домовым электросетям и обеспечивающих долгую работу диодов.
Системы СД напряжением 220 В
Такие диодные системы самые распространенные. Светодиоды с последовательным соединением, рассчитанные на 220 В, служат для освещения больших помещений, применяются в мощных прожекторах, в уличном освещении, сигнальных системах аэропортов и т.д.
Приведенный вариант последовательного соединения на 220 В представляет простейший способ подключить цепочку диодов с малым числом компонентов.
Смешанное подключение светодиодов
Этот вид подключения использует достоинства параллельного и последовательного включения СД. Смешанное (или гибридное) подключение используется в сложных LED-системах, имеющих большое число световых точек и совмещающих мощные узконаправленные светильники и рассеянный свет.
Смешанные соединения реализуют достоинства параллельного и последовательного включений для повышения надежности всей системы: если перегорает один из диодов, то вся схема остается работоспособной, при этом остальные СД не испытывают перенапряжения и сохраняют ресурс.
Распространенные ошибки при подключениях
Светодиод – это токовый элемент, который «болезненно» реагирует на повышения протекающего тока. Это надо учитывать при создании систем, включающих СД, где много элементов, влияющих на работу диодов и их ресурс. Это является распространенной ошибкой и касается LED-систем на аккумуляторных батареях: если батарея недостаточно мощная, то протекающий ток ограничивается ее внутренним сопротивлением, что не позволит превысить граничные значения токовых характеристик диодов и не приведет к выходу их из строя.
Для систем, включающих диоды, лучшими считаются с последовательным соединением. Они простые в разработке и производстве, малоэлементные, надежные в эксплуатации, обеспечивают подключение к высоковольтным источникам без применения понижающих трансформаторов.
Конечно, системы с параллельным подсоединением имеют свои достоинства – возможность использования в миниатюрных приборах. Но они требуют низковольтных источников тока.
Для увеличения надежности и ресурса LED-систем применяются стабилизаторы и драйверы, что позволяет избегать ошибок при проектировании и дает возможность использовать все виды подключений.
Тематическое видео: Для чего диоды соединяют последовательно и параллельно.
Выбор нужного драйвера
Драйверы – это электронные блоки питания, используемые при подключении СД, которые чувствительны к превышению токов. Эти приборы в основном построены на принципах широтно-импульсной модуляции (ШИМ), которая обеспечивает максимальный КПД системы и автоматическое регулирование тока. При выборе нужного драйвера для LED-схемы учитываются:
- входное и выходное напряжение;
- выходной ток;
- выходная мощность;
- степень защиты от окружающей среды.
Входное и выходное напряжения – это требования параметров сети: переменное или постоянное (домовая сеть 220 В — переменное, автомобильная сеть 12 В — постоянное). Ток нагрузки рассчитывается по количеству светодиодов и их токовых данных. Выходная мощность определяется мощностью всей схемы. Степень защиты зависит от того, где размещается светильник – на улице или в помещении.