Почему при прохождении электрического тока проводник нагревается?

Нагревание проводников электрическим током

Почему нагреваются проводники

Электрический ток — это упорядоченное движение заряженных частиц. В проводниках этими частицами выступают отрицательно заряженные электроны. Воздействие электрического поля сообщает электронам дополнительную кинетическую энергию. В процессе движения они сталкиваются с атомами (или молекулами) проводника, отдавая часть приобретенной энергии. По этой причине начинает увеличиваться внутренняя энергия вещества, что приводит к повышению температуры и выделению тепла.

Рис. 1. Электрический ток в проводнике нагревает проводник

Если взять обычную лампочку накаливания и подключить ее к источнику напряжения через реостат (переменное сопротивление), то можно наблюдать тепловой эффект от протекания тока. Постепенно увеличивая ток, мы можем сначала на ощупь почувствовать, что стеклянная колба лампочки постепенно начнет нагреваться, а затем увидим, как начинает светиться раскаленная нить накаливания.

Заметим, что в этом эксперименте подводящие провода сильно не нагреваются и не светятся. Это происходит потому, что сопротивление нити накаливания намного больше сопротивления подводящих проводов .

Закон Джоуля-Ленца

На основании этого и других экспериментов можно сделать следующие предположения:

  • чем больше сопротивление, тем сильнее нагреваются проводники. То есть количество теплоты Q, которое выделяется при протекании электрического тока по проводнику, прямо пропорционально величине сопротивления проводника R;
  • чем больше сила тока, тем большее количества тепла выделяется. При возрастании тока большее количество частиц проходит через поперечное сечение проводника в единицу времени, то есть число столкновений возрастает, а значит больше энергии передается атомам проводника.

Формулу для вычисления количества тепла получили независимо друг от друга в 1842 г. английский физик Джеймс Джоуль и российский ученый Эмилий Ленц:

Q — количество теплоты, Дж;

Согласно закону Ома:

где U — напряжение, В.

Пользуясь этой формулой, закон Джоуля-Ленца может быть представлен еще в одном варианте, когда известно напряжение на участке проводника, а сила тока неизвестна:

Формулы закона Джоуля-Ленца справедливы тогда, когда работа, совершаемая электрическим током идет исключительно на нагревание. Если в цепи есть потребление энергии на выполнение механической работы (электродвигатель) или на совершение химических реакций (электролит), то для расчета необходимо применять другие формулы.

Плюсы и минусы от нагрева электрическим током

  • Плюсы. Нагревание проводников электрическим током находит свое применение в различных полезных приборах и устройствах: электроплитах, чайниках, кофеварках, кипятильниках, фенах, утюгах, обогревателях.
  • Минусы. Очень часто инженерам-электронщикам приходится бороться с этим эффектом для того, чтобы, например, обеспечить работоспособность электронных плат, которые напичканы огромным количеством электронных деталей, микросхем и т.д. Все эти элементы греются в соответствие с законом Джоуля-Ленца. И если не предпринять меры для принудительного охлаждения с помощью металлических радиаторов или вентиляторов (кулеров), то платы быстро выйдут из строя от перегрева.

Рис. 2. Бытовые нагревательные приборы: чайник, утюг, фен, электроплита.

Часто для быстрого соединения проводов многие пользуются способом “скрутки”. Это приводит к значительному увеличению сопротивления, а следовательно, место “скрутки” будет греться сильнее, чем остальная часть проводки. Поэтому скрутка проводов часто бывает причиной пожаров в домах и квартирах. Для улучшения контакта требуется хорошо пропаять это место.

Что мы узнали?

Итак, мы поговорили кратко о нагревании проводников электрическим током. Нагрев проводников происходит из-за того, что электроны, движущиеся упорядоченно с определенной скоростью, сталкиваются с атомами вещества и отдают часть своей энергии, которая переходит в тепло. Количество тепла можно определить, применив формулу Джоуля-Ленца.

Почему нагревается проводник с током, и как правильно выбирать проводник?

Почему при прохождении электрического тока проводник нагревается? Ответ на этот вопрос крайне важен при выборе материалов и сечения проводников, а также в контексте борьбы с последствиями токов короткого замыкания.

Поэтому в нашей статье мы постараемся максимально подробно, но при этом на доступном языке, разобраться с причинами нагрева, его этапами и использовании этого свойства проводников на практике.

Причины нагрева проводников и их этапы

Так почему при прохождении тока проводник нагревается? Ответ на этот вопрос независимо друг от друга дали Джеймс Джоуль в 1841 году, и Эмиль Ленц в 1842 году. В связи с этим. открытый ими закон получил название Джоуля-Ленца.

Закон Джоуля-Ленца

Звучит этот закон, как: мощность тепла, выделяемого в единице объема проводника, равна произведению напряженности электрического тока к его плотности. Если из этого определения вам сразу все стало понятно, то наша статья не для вас. Мы поговорим с теми, кто, как и я, когда услышал первый раз это определение, удивленно хлопал глазами.

Поэтому мы будем по минимуму использовать формулы, а постараемся на пальцах объяснить, что значит этот закон:

Соответственно, чем большее количество времени протекает ток по проводнику, чем большее сопротивление проводника, чем больший ток протекает по проводнику, тем быстрее и больше он нагревается. Вот так характеризует нагревание проводников электрическим током закон Джоуля-Ленца.

Обратите внимание! Электрическая проводимость, а соответственно и сопротивление проводника, напрямую зависит от его температуры. Чем она выше, тем больше сопротивление проводника. Поэтому получается лавинообразный процесс. Проводник греется, его сопротивление растет, и он греется еще больше. В связи с этим, процессу отвода тепла от проводника следует уделять самое пристальное внимание.

Отвод тепла от проводника и этапы нагрева

В связи с приведенным выше свойством, с нагревом проводников нужно бороться. Достигается это за счет выбора оптимального сечения провода, а также материала. То есть, сечение провода должно соответствовать максимально допустимому току, который может протекать в нем, а также нормально выдерживать кратковременные перегрузки.

  • Дабы все это правильно рассчитать, мы должны знать не только как закон Джоуля-Ленца нагревание проводников электрическим током рассчитывает, но и как посчитать отдачу тепла проводником. Ведь наш проводник находится не в вакууме, и отдает тепло окружающей среде.

  • Сразу давайте определимся, какие параметры влияют на теплоотдачу проводника. Прежде всего, это сечение проводника, ведь вполне логично, что чем большая площадь проводника соприкасается с окружающим воздухом, тем быстрее он ее отдает.

  • Следующим важным критерием является так называемый коэффициент теплоотдачи материала, из которого выполнен проводник. Или как этот параметр еще называют — теплопроводность материала. Ведь ни для кого не секрет, что теплопроводность у материалов разная.
  • Ну и последним параметром, является разность между температурой окружающей среды и материалом проводника. Ведь как говорит инструкция: чем больше этот перепад, тем быстрее материал отдает тепло.

  • Исходя из этих всех параметров, влияющих на теплоотдачу, можно предположить, что для любого проводника и любого тока имеется, так называемая, установившаяся температура. То есть, температура, при которой существует равенство получаемой энергии от протекания тока и отводимого тепла.

  • Такую температуру называют установившимся режимом. И она должна быть в пределах рабочей температуры провода. Рабочая температура провода обычно ограничена типом используемой изоляции.

Например, для ПВХ-изоляции она не должна превышать 70⁰С, а разнообразные материалы с пропиткой лаком способны выдерживать температуры до 120⁰С и выше.

Выбор проводников

Как вы можете понять из всего выше написанного, проводники следует выбирать из условий нагрева. Дабы при определённом токе их температура не превышала максимально допустимую. Сделать это можно своими руками, благодаря таблицам в ПУЭ. Но и в этом вопросе сначала необходимо разобраться.

  • В ПУЭ приведены таблицы, по которым можно осуществить выбор проводников по нагреву, экономической плотности тока, способу прокладки и другим параметрам. Но для начала мы точно должны знать условия монтажа и работы провода. Давайте разберем, зачем это нужно.

  • Но прежде разберемся с током. Ни для кого не секрет, что в течение времени ток в проводнике будет меняться. И какой из них следует рассматривать в качестве результирующего для выбора сечения проводника, непонятно. На этот вопрос нам отвечает п. 1.3.2 ПУЭ, который гласит, что для выбора следует применять средний ток в течении получаса, наиболее нагруженного в течении суток.

  • Теперь давайте определимся с температурой. В разных местах монтажа она может достаточно сильно отличаться от рабочей температуры. Это следует учитывать. Поэтому в табл. 1.3.3 ПУЭ приведены поправочные коэффициенты для различной кабельно-проводниковой продукции, если температуры в которых будет работать кабель, отличается от рабочей.
  • Выбор проводников по нагреву, плотности тока, обязательно учитывает способ прокладки проводника. Это может быть одиночная прокладка по воздуху, а может быть монтаж в земле или в трубах. Согласитесь, теплоотведение у таких проводников будет существенно отличаться. И это обязательно стоит учитывать.
  • Так же следует учитывать количество жил проводника. То ли у нас охлаждается одна жила, то ли три, которые соприкасаются.

Обратите внимание! В табл. 1.3.12 ПУЭ имеется отдельный поправочный коэффициент при монтаже проводников пучками. Ведь если у нас рядом проложено сразу несколько проводников, то они вполне могут нагревать друг друга и заметно хуже остывать. И это так же должно учитываться.

  • В итоге мы сможем воспользоваться таблицами 1.3.4. – 1.3.11 ПУЭ, которые предписывают, проводники какого сечения использовать для различных токов, и при использовании проводников с различными типами изоляции.

Обратите внимание! Если вы выбираете проводник для жилого помещения, то сразу должны исключить провода и кабели, выполненные из алюминия. Ведь согласно новых норм ПУЭ от 2001 года, такой материал в электропроводках жилых зданий запрещен.

  • Но эти таблицы можно применять для не самых мощных линий. При расчётах межсистемных высоковольтных линий с напряжением в 330кВ и выше, опираться на эти таблицы нельзя. В этом случае используют таблицу 1.3.36 ПУЭ, которая позволяет выбрать сечение проводников, исходя из экономической плотности тока.

Из этого видео Вы узнаете о требованиях к проводникам.

Использование нагрева материалов при прохождении тока на практике

Но далеко не всегда нагрев проводников электрическим током является негативным фактором. Люди научились применять этот закон и себе на пользу. И примеров такого применения масса. Мы приведем лишь некоторые из них.

  • Самым первым и самым распространенным, является применение закона Джоуля-Ленца в электрических печах, нагревателях и фенах. Для этого, в качестве проводника, сознательно устанавливается материал с большим сопротивлением. При протекании через него тока выделяется большое количество тепла, которое потом соответствующим образом используется человеком.
  • Еще одним способом применения этого закона, являются теплые полы в вашем доме или греющие кабели, которые применяют в строительстве и канализационных системах. Для них так же сознательно применяется проводник с высоким сопротивлением.

  • И даже лампочка «Ильича» отчасти использует этот закон. Только тут материал подбирается не только исходя из сопротивления, но и из яркости свечения в нагретом состоянии.
  • Но нагревание электрическим током проводников нашло свое применение и в электроэнергетике. Все вы наверняка сталкивались с предохранителями. Суть данного защитного устройства сводится к тому, что в емкость с условно неизменными параметрами помещают проводник определенного сечения. При протекании через этот проводник тока больше допустимого, он перегорает, и тем самым обесточивает защищаемую сеть.

И это только несколько примеров на скорую руку. На самом деле их на порядок больше. Поэтому нагрев проводников при протекании по ним электрического тока это далеко не всегда «зло».

Вывод

Мы очень надеемся, что теперь вы знаете, как можно объяснить нагревание проводника электрическим током, и понимаете сам процесс. Так же вы должны понимать, с чем связаны определенные ограничения при выборе сечения проводников, и не будет ли слишком велика цена игнорирования этих правил.

Ведь все из них основаны на реальных практических и научных обоснованиях, а электротехника очень жестоко наказывает тех, кто их игнорирует.

Нагревание проводников электрическим током. Закон Джоуля–Ленца

Модульная технология. 8-й класс

В настоящее время очень много говорят о том, что наша система образования не отвечает современным требованиям. Подготовка выпускников оставляет желать лучшего. Учащиеся тяжело ориентируются в меняющихся ситуациях, не могут самостоятельно приобретать знания и применять их на практике, не умеют грамотно работать с информацией и т.д. Решение этих проблем возможно через личностно-ориентированные технологии обучения, одной из которых является модульная технология.

Сущность модульной технологии состоит в том, что взаимодействие педагога и обучающегося в учебном процессе осуществляется на принципиально новой основе: с помощью учебных элементов (модулей) обеспечивается осознанное самостоятельное достижение обучающимися определённого уровня подготовки. Учащийся полностью самостоятельно работает над предложенной ему индивидуальной программой, включающей в себя целевой план действий, информацию и методическое руководство по достижению поставленных дидактических целей. Успешность модульного обучения предопределяется соблюдением паритетных взаимоотношений между педагогом и учащимися. Принцип такого обучения выражает прежде всего его целенаправленность, способствующую формированию мотивации в обучении. Использовать модульную технологию можно как при изучении новых тем, которые учащиеся способны освоить самостоятельно (материал основан на ранее изученном), так и при закреплении, обобщении и систематизации изученного. Учитель на этих уроках выполняет роль консультанта, корректирует и направляет работу ученика. Все эти условия являются благотворной почвой для развития у учащихся способностей использовать имеющиеся знания в новых ситуациях. Модульное обучение обеспечивает самостоятельность приобретения дополнительных знаний к уже известным и их перенос в новые условия, ученик учится самостоятельно организовывать усвоение нового материала.

Модульный урок позволяет решить задачу дифференциации, способствует осознанному подходу к обучению, даёт возможность сориентироваться в предложенном материале и выбрать уровень изучения по своим знаниям, а также формирует стремление к освоению более сложного материала темы.

Рассмотрим примерную логическую структуру содержания урока по модульной технологии.

Хотя модульный урок требует большой затраты времени на подготовку (обдумывание темы и хода урока, подбор материала, оформление урока), работа учителя во время урока облегчается. Кроме того, в процессе такой систематической работы происходит накопление материала, что ведёт к уменьшению времени подготовки в дальнейшем.

Рассмотрим, как можно использовать данную технологию, на примере представленного урока физики. Этот урок стоит в конце темы «Электрические явления», материал не сложен для самостоятельного изучения, т.к. у учащихся к этому времени уже имеется багаж знаний по теме и отработан навык решения задач.

Логическая структура урока по модульной технологии может выглядеть так.

1. Постановка целей урока.

2. Повторение изученного по теме (входной контроль). Первые 5–7 мин можно посвятить проверке качества усвоения материала, для чего дать письменную работу по карточкам с разноуровневыми заданиями или провести устный опрос.

3. Изучение теоретического материала по новой теме. Самостоятельная работа учащихся с использованием учебника и карты учащегося.

4. Закрепление материала. Ответы на вопросы и решение задач.

5. Самопроверка. Решение задач.

6. Осмысление. Ученик возвращается к целям, поставленным в начале урока.

7. Экспертный контроль. Ответы на вопросы учителя, небольшая проверочная работа.

Например (в четырёх вариантах):

Карта учащегося

Нагревание проводников электрическим током. Закон Джоуля–Ленца

Постановка целей

Сегодня на уроке вы самостоятельно узнаете, почему при прохождении электрического тока по проводникам они нагреваются, познакомитесь с формулой, с помощью которой можно подсчитать количество теплоты, которое выделяет проводник при прохождении через него электрического тока, научитесь решать задачи по теме, а также узнаете интересные факты из биографии великих учёных и изобретателей. Вы уже знакомы с такими понятиями и явлениями, как электрическое поле, электрический ток, сопротивление проводников; знаете такие физические величины, как напряжение U, сила тока I, сопротивление R; знаете закон Ома для участка цепи, формулу для расчёта сопротивления проводника; умеете решать задачи с использованием этих физических величин.

Материал, который вы будете изучать сегодня, покажется несложным. Внимательно читайте инструкцию и строго следуйте ей! Успехов!

Ваша цель на уроке:

– узнать причину нагревания проводников при прохождении через них электрического тока;

– познакомиться с формулой для расчёта количества теплоты, выделяемого проводником при прохождении через него электрического тока (законом Джоуля–Ленца);

– научиться с помощью закона Джоуля–Ленца решать задачи;

Входной контроль

Самостоятельное изучение нового материала

Закрепление изученного

Внимательно прочитайте текст, приведённый ниже. Из содержания параграфа вы узнали, почему электрический ток, проходя через проводники, вызывает их нагрев. Дело в том, что упорядоченно движущиеся под действием электрического поля свободные электроны взаимодействуют с ионами и атомами вещества и, передавая им часть своей энергии, заставляют отклоняться от положения равновесия (т.е. двигаться). В результате этого внутренняя энергия проводника возрастает, он нагревается и отдаёт энергию окружающим телам путём теплопередачи. Но следует помнить, что вся работа электрического тока идёт на увеличение его внутренней энергии лишь в неподвижных проводниках. В подвижных проводниках часть энергии идёт на совершение механической работы. Именно поэтому закон Джоуля–Ленца применим только к неподвижным проводникам.

Экспертный контроль

Ответьте на вопросы и решите задачи на отдельном листке.

1. Какова причина нагревания проводников электрическим током?

2. Почему провода, подводящие электрический ток к нагревательному элементу, сами нагреваются не так сильно, как нагревательные элементы приборов?

3. Какое количество теплоты выделит проводник за 5 с, если его сопротивление 25 Ом, а сила тока в цепи 2 А?

4. Какое количество теплоты выделится в нити накала электрической лампы за 10 мин, если при напряжении 5 В сила тока в ней 0,2 А?

Если вы успели сделать всё, то можете подумать над дополнительными задачами (см. Приложение 2) и ознакомиться с интересными сведениями из биографии Д.Джоуля и Э.Ленца (см. Приложение 3).

* Учебник: А.В.Пёрышкин. Физика-8. – М.: Дрофа, 2004. Сборник задач по физике для 7–9 кл.: В.И.Лукашик, Е.И.Иванова. – М.: Просвещение, 2004.

Тепловое действие тока, плотность тока и их влияние на нагрев проводников

Под тепловым действием электрического тока понимают выделение тепловой энергии в процессе прохождения тока по проводнику. Когда через проводник проходит ток, образующие ток свободные электроны сталкиваются с ионами и атомами проводника, нагревая его.

Выделяемое при этом количество теплоты можно определить с помощью закона Джоуля-Ленца, который формулируется так: количество теплоты, выделяемое при прохождении электрического тока через проводник, равно произведению квадрата тока, сопротивления данного проводника и времени прохождения тока через проводник.

Приняв ток в амперах, сопротивление в омах, а время в секундах, получим количество теплоты в джоулях. А учитывая что произведение тока на сопротивление — есть напряжение, а произведение напряжения на ток — мощность, в результате оказывается, что количество выделенной теплоты в данном случае равно количеству электрической энергии, переданной данному проводнику во время прохождения по нему тока. То есть электрическая энергия преобразуется в тепловую.

Получение тепловой энергии из электрической широко применяется с давних времен в различной технике. Электронагревательные приборы, такие как обогреватели, водонагреватели, электрические плиты, паяльники, электропечи и т. д., а также электросварка, лампы накаливания и многое другое используют именно этот принцип для получения тепла.

Но в большом количестве электрических устройств нагрев, вызываемый током, вреден: электродвигатели, трансформаторы, провода, электромагниты и т. д. — в данных устройствах, не предназначенных для получения тепла, нагрев снижает их КПД, мешает эффективной работе, и даже может привести к аварийным ситуациям.

Для любого проводника, в зависимости от параметров окружающей среды, характерно определенное допустимое значение величины тока, при котором проводник заметно не нагревается.

Так, например, для нахождения допустимой токовой нагрузки на провода, используют параметр «плотность тока», характеризующий ток, приходящийся на 1 кв.мм площади поперечного сечения данного проводника.

Допустимая плотность тока для каждого проводящего материала в определенных условиях своя, она зависит от многих факторов: от вида изоляции, интенсивности охлаждения, температуры окружающей среды, площади поперечного сечения и т. д.

К примеру для электрических машин, где обмотки изготавливают, как правило, из меди, величина предельно допустимой плотности тока не должна превышать 3-6 ампер на кв.мм. Для лампы накаливания, а точнее для ее вольфрамовой нити, — не более 15 ампер на кв.мм.

Для проводов осветительных и силовых сетей предельно допустимая плотность тока принимается исходя из вида их изоляции и площади поперечного сечения.

Если материалом проводника служит медь, а изоляция резиновая, то при площади сечения, например, в 4 кв.мм допускается плотность тока не более 10,2 ампер на кв.мм, а если сечение 50 кв.мм, то допустимая плотность тока будет всего 4,3 ампера на кв.мм. Если же проводники указанной площади не имеют изоляции, то допустимые плотности тока будут соответственно 12,5 и 5,6 ампер на кв.мм.

С чем же связано понижение допустимой плотности тока для проводников большего сечения? Дело в том, что проводники с существенной площадью поперечного сечения, в отличие от проводников малого сечения, имеют больший объем проводящего материала расположенного внутри, и получается что внутренние слои проводника сами окружены нагревающимися слоями, которые мешают отводу тепла изнутри.

Чем больше площадь поверхности проводника по отношению к его объему, — тем большую плотность тока способен выдержать проводник не перегреваясь. Неизолированные проводники допускают нагрев до более высокой температуры, так как от них тепло отводится прямо в окружающую среду, изоляция этому не препятствует, и охлаждение происходит быстрее, поэтому для них допускается более высокая плотность тока чем для проводников в изоляции.

Если превысить допустимый для проводника ток, он начнет перегреваться, и в какой-то момент его температура окажется чрезмерной. Изоляция обмотки электродвигателя, генератора или просто проводки, может в таких условиях обуглиться или загореться, что приведет к короткому замыканию и пожару. Если же говорить о неизолированном проводе, то он при высокой температуре может просто расплавиться и разорвать цепь, в которой служит проводником.

Превышение допустимого тока принято предотвращать. Поэтому в электрических установках обычно принимают специальные меры с целью автоматического отключения от источника питания той части цепи или того электроприемника, в котором случилась перегрузка по току или короткое замыкание. Для этого служат автоматические выключатели, плавкие предохранители и другие устройства, несущие аналогичную функцию — разорвать цепь при перегрузке.

Из закона Джоуля-Ленца следует, что перегрев проводника может произойти не только из-за превышения тока через его поперечное сечение, но и из-за более высокого сопротивления проводника. По этой причине для полноценной и надежной работы любой электрической установки крайне важно сопротивление, особенно в местах соединения друг с другом отдельных проводников.

Если проводники соединены не плотно, если их контакт друг с другом не качественный, то сопротивление в месте соединения (так называемое переходное сопротивление в месте контакта) окажется выше чем для цельного участка проводника той же длины.

В результате прохождения тока через такое некачественное, не достаточно плотное соединение, место данного соединения будет перегреваться, что чревато возгоранием, выгоранием проводников или даже пожаром.

Чтобы этого избежать, концы соединяемых проводников надежно зачищают, облуживают и оснащают кабельными наконечниками (впаивают или прессуют) или гильзами, которые обеспечивают запас на переходное сопротивление в месте контакта. Такие наконечники можно плотно закрепить на клеммах электрической машины при помощи болтов.

К электрическим аппаратам, предназначенным для включения и выключения тока, также применяют меры по уменьшению переходного сопротивления между контактами.

Закон Джоуля – Ленца

Если проводник, в котором течет постоянный ток, и он при этом остается неподвижным, то работа сторонних сил расходуется на его нагревание.

Электрическая энергия, полученная от источника тока, в металлических проводниках превращается в энергию хаотического движения атомов, то есть в теплоту. Опыты полностью подтверждают данную теорию – при протекании тока по любому проводнику происходит выделение теплоты, равной работе, совершаемой электрическими силами по переносу заряда вдоль проводника.

Представим, что на концах участка проводника существует разность потенциалов φ1 – φ2 = U. Тогда на этом участке работа по переносу заряда равна:

По определению I = q/τ, откуда q = Iτ, где τ – время прохождения заряда, то есть:

Сила тока измеряется в амперах, напряжение в вольтах, время в секундах, а работа, соответственно, в джоулях: 1 Дж = 1 А·1 В·1 с.

Поскольку работа А идет на нагревание проводника, то вполне можно написать, что выделяющаяся в проводнике теплота Q равна работе А электрических сил:

Данная формула носит название закона Джоуля – Ленца. Это явление было открыто в 1841 году английским физиком Дж. Джоулем и независимо от него в 1842 году русским физиком Э. Х. Ленцем.

В системе СИ теплота и работа измеряются в джоулях.

Использовав закон Ома для участка цепи, запишем формулу (2) следующим образом:

Из формулы следует, что теплота, выделяемая в проводнике при прохождении электрического тока, зависит силы тока, времени его прохождения и сопротивления проводника.

Если измерять теплоту во внесистемных единицах – калориях, а остальные величины в единицах СИ, то в формулу (3) следует подставить коэффициент пропорциональности k = 0.24 кал/Дж, и тогда получим:

Энергия электрического тока может быть израсходована не только на нагревание проводников, но и испытывать самые разные превращения. Например, если во внешнюю цепь подключен электродвигатель, то часть электрической энергии преобразуется в механическую. Если во внешнюю цепь включены электролиты (проводники второго рода), то часть энергии превратится в химическую и так далее. Если во внешнюю цепь включены только металлические проводники, то энергия источника будет превращаться только в теплоту, а если проводники имеют высокую температуру, то будет расходоваться на излучение.

Давайте преобразуем закон Джоуля – Ленца в другой вид. Введем понятие плотность тепловой мощности ω – величину, равную энергии, выделенной за время τ прохождения тока в каждой единице объема проводника:

Где l – длина проводника, Q – теплота, а S – поперечное сечение проводника.

Приняв во внимание, что Q = I 2 Rτ, а R=ρl/S, получим:

Но I/S = j – это плотность тока, а ρ = l/γ, где γ – удельная проводимость, тогда:

Если учесть закон Ома в дифференциальной форме, то тогда:

Данное соотношение имеет название закон Джоуля – Ленца в дифференциальной форме. Из него делаем вывод, что плотность тепловой мощности равна произведению удельной проводимости проводника на квадрат напряженности Е электрического поля.

Формулы (3) можно применить для расчета мощности N тока, равной работе электрических сил за единицу времени:

В системе СИ мощность тока измеряется в ваттах: 1 Ватт = 1 А· 1 В.

Нагревание проводника током в одних случаях является нежелательным явлением и с ним активно борются, а в других наоборот – полезным явлением. К нежелательным тепловым явлениям относят явлениям потери электрической энергии в линиях электропередач, разрушение изоляции проводов и кабелей из-за перегрева. Также во многих случаях теплота, выделяемая электрическим током при прохождении через проводник успешно используется технике (бытовые электронагревательные приборы, электропечи в промышленности).