Как определить тип светодиода по внешнему виду?

Виды, характеристики, маркировка SMD-светодиодов

Освещение – важное условия для работы и комфорта человека. Долгое время применялись в качестве источников света лампы накаливания, потом люминесцентные лампы, для мощных прожекторов и фонарей использовали галогеновые лампы, ДРЛ и ДНаТ.

В XXI веке произошла смена поколений осветительных приборов, и рынок более чем на половину занимают светодиодные светильники, их часто называют на зарубежный манер LED-светильниками или лампами. В зависимости от конструкции и мощности они представляют собой либо светодиодные COB-матрицы, либо сборки из отдельных светодиодов.

Содержание статьи

Разновидности светодиодов

Первые LED-светильники и лампы строились на базе 5-мм выводных светодиодов. Они не отличались высокой энергоэффективностью, ценой и надежностью, но это была первая ступень в развитии нового источника света. Долгое время такие светодиоды применялись в качестве индикаторов бытовой и промышленной технике и в качестве излучателей для носимых фонариков.

Позже их заменили светодиоды выполненные в безвыводных корпусах, так называемые SMD (surface mounted device, рус. приборы для поверхностного монтажа).

Если 5 мм светодиоды монтировались в плату через отверстия, то SMD запаиваются прямо на поверхность платы, что ускоряет их сборку и снижает стоимость светильника. У них вместо ножек расположены контактные металлические площадки, от 2 и более штук, в зависимости от количества цветов и кристаллов в одном корпусе.

В общем случае выделяют три типа светодиодов:

1. Выводные (3, 5, 10 мм – диаметр колбы и прочие).

2. SMD (их разнообразие мы рассмотрим в этой статье).

3. COB светодиоды – это матрицы из кристаллов расположенных на плате под единым слоем люминофора. Расшифровывается, как Chip-On-Board, рус. чипы на плате. Их внешний вид на рисунке выше.

СМД светодиоды используют в лампах с различными цоколями, прожекторах, светодиодных лентах, настольных LED-лампах и прочих осветительных приборах.

Характеристики SMD светодиодов

Изначально наибольшую популярность получили модели светодиодов 3528 и 5050, сейчас они встречаются в основном на светодиодных лентах, в светильниках их практически не применяют, отдавая предпочтение 5630 светодиодам и другим современным моделям.

SMD-светодиоды в своей маркировке содержат свои габаритные размеры – длину и ширину, при этом в оригинальных светодиодах в каждом из видов корпусов, независимо от того 3528 это или 5730 устанавливается свой тип светодиодного кристалла с особыми характеристиками.

К сожалению, китайские производители под видом современных 5730 не брезгуют продажей кристаллов 3528 в новом корпусе. В обзоре напряжение питания я указывать не буду, т.к. для всех белых светодиодов оно обычно лежит в пределах 2.8 – 3.4В.

SMD3528 технические характеристики

Светодиоды 3528 представляют собой что-то вроде аналога стандартного 5-мм светодиода, но в SMD корпусе. Имеют характеристики:

мощность – 0.06 Вт;

световой поток – 5-7 лм;

габариты – 3.5х2.8х1.4 мм;

температура до 80 °C;

на лицевой части корпуса есть срез – с этой стороны катод (минус).

В светодиодных лентах устанавливаются в количестве 30, 60, 120 шт/м, используются в основном для подсветки, реже для освещения, т.к. довольно слабые. Лента 120 шт/м из 3528 потребляет 9.6 Вт/м.

SMD5050 технические характеристики

Светодиод 5050 содержит в своем корпусе три таких же кристаллах, как и в 3528, значит он в три раза мощнее.

Конструктивное исполнение весьма интересно: на его «пузе» вы увидите 6 выводов, это и есть аноды и катоды по одной паре с каждого кристалла.

ток – 3х0.02 А = 0.06 А общий ток при параллельном соединении кристаллов;

мощность – 3х0.06 Вт суммарная до 0.02 Вт;

световой поток – до 20 Лм

габариты – 5х5х1.6 мм;

рекомендуемая температура до 60 °C;

катоды со стороны среза на углу корпуса.

На ленте обычно устанавливают 30 и 60 диодов на метр. Лента с 60 светодиодами типа 5050 потребляет 14.4 Вт/м, может успешно использоваться для освещения. Часто встречается в RGB и в RGBW исполнениях.

SMD 5630 технические характеристики

Светодиоды 5630 современнее и технологичнее, используются в прожекторах, светильниках, устанавливаются на светодиодных лентах. На корпусе 4 вывода.

Распиновку вы видите на рисунке выше, катод со стороны срезанного угла.

Мощность – 0.5 Вт;

Максимальная температура кристалла – 130 °C;

Световой поток 40 Лм.

Габариты 5.6х3х0.75 мм

В лентах чаще всего поставляется 60 шт/м, а также металлических линейках с количеством диодов 72шт, питанием 12В. Такая лента потребляет до 18 Вт/м, можно использовать для основного освещения комнаты, или декоративной подсветки, например в нишах подвесного потолка. Бывают в RGB исполнении.

SMD 5730 – технические характеристики

Очень похожи на предыдущие, выпускаются в версиях 5730-05 и 5730-1, на 0.5 и 1 Вт соответственно. Обладают немного большим световым потоком. В отличие от 5630 у 5730 два вывода, а длина их немного больше.

мощность – 0.5/1 Вт;

световой поток – 55/110 Лм;

габариты с учетом длины выводов – 5.7х3х0.75 мм.

Вы могли заметить, что у этого и предыдущего светодиода кроме выводов для подключения, на нижней части есть металлическая площадка, она нужна для отвода тепла. Такое конструктивное решение позволило успешно использовать чипы высокой мощности. Кстати это также поможет определить цоколевку светодиода, теплоотвод на них смещен к АНОДУ.

SMD 2835 – технические характеристики

Это не опечатка, маркировку 2835 часто путают с 3528, но это совершенно разные поколения светодиодов. LED 2835 современнее и ярче. Первое отличие, которое бросается в глаза – это площадь покрытая люминофором у 3528 круглая, а у 2835 ближе к прямоугольнику. Световой поток у первых до 40 Лм/Вт, а у 2835 больше 110 Лм/Вт, что в 2-3 раза ярче, при той же потребляемой мощности.

Увеличение мощности вызвало необходимость улучшить теплоотдачу, поэтому корпус 2835 сделали тоньше, а контактные площадки больше. Промышленностью выпускаются на 0.2, 0.5 и 1Вт. Однако не стоит забывать, что чем больше мощность, тем больше выделяется тепла и при таких маленьких размерах это очень важно.

Мощность – 0.2 Вт;

Световой поток – 25 Лм;

Рабочая температура – 65 °C;

Габариты – 2.8х3.5х0.95 мм.

На светодиодных лентах монтируются также в количестве 30, 60, 120 штук на метр. Например, лента с плотностью светодиодов 60 шт/м потребляет мощность 4.8 Вт/м, благодаря своим характеристикам гораздо более эффективны в плане энергосбережения и освещения, чем 3528, можно использовать в качестве источника света и декоративной подсветки.

Сводная таблица характеристик SMD 3014, 7020, 3020

Светодиоды которые реже встречаются я решил рассмотреть все вместе в сводной таблице.

3014 3020 7020
Ток, А 0.03 0.02 0.15
Мощность, Вт 0.1-0.12 0.06 0.5
Световой поток, Лм 6-11 8-10 45-60
Рабочая температура, °C До 65 До 85 До 85
Габариты, мм 3х1.4х0.8 3х2х1.3 7 х2.1х0.7

Светодиоды 3014 очень компактны, лучше подходят для декоративной подсветки, их внешний вид изображен ниже.

На ленте они выглядят следующим образом. Ленты продаются в стандартных размерностях 30-120 шт//м, встречаются и 240 шт/м, но реже.

Светодиоды 7020 очень яркие, длинные и узкие, что позволяет их плотно смонтировать на плате, встречаются в лентах, на металлических полосках и в прожекторах.

Такие металлические полосы со светодиодами 7020 обеспечивают хороший теплоотвод, что значительно улучшает рабочие условия и увеличивает срок службы.

Лично я скептически отношусь к классическим гибким лентам с 7020-ми из-за высокой мощности светодиодов, однако в продаже имеются такие 60 шт/м.

Подборка статей про светодиодные ленты:

Заключение

К сожалению, качество большей части led-продукции оставляет желать лучшего. Производители либо пренебрегают схемами включения диодов, либо источниками питания, либо вообще закупают низкосортные подделки для своих приборов. Поэтому я и не стал указывать такой параметр, как индекс цветопередачи. Он сильно зависит от качества люминофора.

Тем более в сети встречается информация о том, что и систему определения CRI индекса цветопередачи научились обманывать, люминофор состоит из таких компонентов, которые формируют световой поток с пиками в спектре на нужных длинах волн для успешного прохождения теста.

Получается, что при высоком индексе реальное различие цветов глазом страдает. Срок службы указывать бессмысленно, у светодиодов он обычно от 30 до 50 тысяч часов, однако сильно зависит от источника питания (вернее качества питания), теплового режима и режима эксплуатации в целом.

Также я не указывал и угол свечения, так как на всех SMD светодиодах он лежит в пределах 105-135°, а самый распространенный — 120°.

В результате напрашивается вывод о том, что такой популярный товар как светодиод на деле оказывает сложно найти надлежащего качества. Если вы хотите получить достойный свет лучше обратить внимание на продукцию проверенных производителей, например OSRAM, Philips, CREE.

Цветовая маркировка диодов

Несмотря на простой принцип устройства диода, существует множество разновидностей этого прибора. Различать их помогают метки на корпусе – цветовая маркировка диодов. Она позволяет определить нужный прибор при покупке, а также правильно подключить его в схему. Однако большое количество категорий диодов и несколько систем условных обозначений могут легко ввести в заблуждение.

Типы диодов

Основное разделение диодов происходит по их виду. Различают три категории: материал изготовления, площадь p-n перехода и назначение.

Материал

Для производства диодов используют один из четырех исходных полупроводников:

  • германий – в маломощных и прецизионных цепях, имеет больший коэффициент передачи;
  • кремний – недорогие и долговечные, устойчивы к воздействию температуры, но обладают меньшей проводимостью;
  • арсенид галлия – дороже и сложнее кремниевых, высокая радиационная стойкость;
  • фосфид индия – в светодиодах и для работы на сверхвысоких частотах.

Каждому материалу в разных системах соответствует своя буква или цифра, которую указывают в начале.

Площадь перехода

Есть два варианта конструкционного размещения катода и анода:

  1. Точечный диод. Один из электродов в виде узкой иглы вплавляется в кристалл, образуя p-n границу. Она имеет малую площадь, как следствие – высокая рабочая частота. Они почти вышли из применения по причине низкой прочности, уязвимости к перегрузкам и низкому максимальному току.
  2. Плоскостный диод. Область перехода больше – контакт проходит по площади пластинки полупроводника, соединяемой с кристаллом. Отличаются большей емкостью, низким уровнем помех, малым падением напряжения. Пример – диод Шоттки.

В современной маркировке разделение практически не встречается – плоскостные диоды постепенно вытесняют точечные.

Подтип

Следующее обозначение зависит от назначения прибора. Существует классификация диодов, применяемых в разных областях: туннельные, лазерные, варикапы, стабилитроны. Внутри подтипа также есть разделениеуже по техническим параметрам:

  • рабочая частота;
  • время восстановления;
  • прямой и обратный ток;
  • допустимые значения обратного и прямого напряжения;
  • температурный режим.

Получается большое количество возможных сочетаний, отсюда – сложность создания единой системы маркировки.

Маркировка отечественных диодов

Диоды российского производства по-своему маркировались в разные периоды. Стандарт постоянно менялся, до утверждения современной системы было разработано три варианта. По-разному маркировали диоды малой и большой мощности. Сочетаниям букв и цифр соответствуют цветовые символы, согласно таблице.

Старая система обозначений

Наименее информативная, с точки зрения современного разнообразия диодов, маркировка применялась до 1964 года. В нее входило всего три элемента:

  • буква «Д» – диод полупроводниковый;
  • номер, указывающий на особенности устройства диода и его назначение;
  • буква, определяющая разновидность (при ее наличии).

Вся полезная информация кодировалась во второй части – серийном номере. Например, номер до 200 означал, что диод точечный, от 200 до 400 – плоскостный; стабилитронам присваивали значение от 801 до 900 и так далее. Ориентироваться в такой системе было сложно.

В 1964 году систему усовершенствовали. В начале кода разместили указание на материал изготовления: 1, 2, 3 или Г, К, А – для германия, кремния и арсенида галлия, соответственно. Следующая буква означала тип прибора:

  • варикап – В;
  • стабилитрон – С;
  • диоды с высокими значениями рабочей частоты – А;
  • выпрямители и диодные мосты – Д.

Затем шел серийный номер, но относился он уже к конкретному подклассу. Это позволяло разделить, например, туннельный диод на несколько групп: генераторные (до 299), переключательные (до 399) и обращенные (до 499). При этом у стабилитронов номер указывал на стабилизационное напряжение. Например, 1С273 можно расшифровать так:

  • 1 – германиевый;
  • С – стабилитрон;
  • 273 – малой мощности, напряжение стабилизации – 73 В.

В конце могла стоять буква, означающая разновидность прибора, как и в первом варианте. Такая маркировка была более удобной, однако технологический прогресс и появление новых типов диодов потребовали очередной доработки.

Новая система обозначений

Для современных моделей отечественных диодов используют новый принцип маркировки, основанный на нескольких отраслевых стандартах. Без изменений остались обозначение материала полупроводника и категории диода. Изменения коснулись трехзначного номера, определяющего принцип работы.

Рассматривать его отдельно нельзя, так как для каждого типа диода подразумевают особое разделение по техническим параметрам. Например:

  • импульсные диоды – первая цифра означает время восстановления (от менее 1 нс до 500 и более);
  • выпрямители – среднее значение прямого тока;
  • стабилитроны – разная мощность (от 1 до 3 – менее 0,3 Вт, от 4 до 6 – до 5 Вт) и напряжение стабилизации (менее 10 В, до 100, более 100).

Следующие цифры, в отличие от старой системы, указывают номер разработки – характеристики конкретного диода в них не заложены. Если внутри класса диода есть дальнейшее разделение, после номера идет соответствующая литера.

Важно! В зависимости от назначения диода, в маркировке могут присутствовать дополнительные элементы, например, цифра на бескорпусном устройстве, определяющая особенности конструкции.

Диоды иностранных производителей

Похожий принцип с некоторыми отличиями используется в системе маркировки диодов импортного образца. Отличают три стандарта:

  1. JEDEC – американский. Каждый диод представлен в виде набора обозначений в виде 1NXY, где X – это серийный номер, а Y – модификация. Первые два символа есть у всех приборов, поэтому в цветовой маркировке их не учитывают. Каждой цифре или литере соответствует свой цвет, согласно таблице.
  2. PRO-ELECTRON – европейский. Две буквы в начале – материал и подкатегория диода. Серийный номер может иметь вид значения от 100 до 999 (бытовые приборы) либо с добавлением литер (Z10-A99), подразумевающих промышленное применение. Каждое из значений кодируется в цветовой элемент.
  3. JIS – японский. Заметно отличается от предыдущих – в начале указывается функциональный тип: фотодиод, обычный диод, транзистор или тиристор. Затем идет S – обозначение полупроводника; следующая литера – тип прибора внутри категории, затем серийный номер и буква модификации (одна или две).

Запомнить все сочетания практически невозможно. Если усвоить хотя бы основные соответствия, разобраться в назначении диода удастся гораздо быстрее.

SMD-диоды

Особенность SMD-диодов, монтирующихся прямо на поверхность плат, – невозможность полноценной маркировки из-за небольших размеров. Отсюда – своеобразная система идентификации. Несколько способов различить такие диоды:

  1. Обратить внимание на форму исполнения корпуса. У каждого типа есть характерный внешний вид, например, электролитические конденсаторы цилиндрические, керамические – в форме параллелепипеда.
  2. Свериться с таблицей типоразмеров. Обычно это четыре цифры, которые обозначают габариты резистора в дюймах.

Для каждого типа корпуса и назначения предусмотрена своя система обозначений, что делает расшифровку неудобной.

Полярность SMD-диода

Малый размер также не позволяет разместить привычные различимые обозначения полярностей. При определении катода руководствуются следующим:

  • маркировка в виде цветных колец наносится на его сторону;
  • некоторые корпуса без цветовых символов имеют паз на стороне катода;
  • если на корпусе изображен треугольник, его вершина указывает на отрицательный полюс.

Это помогает избежать путаницы. Чаще всего во всех системах маркировки символы наносят на сторону катода, это справедливо и для SMD-элементов.

Маркировка светодиодов

В идентификации светодиодов сложностей меньше. Каждый тип обладает характерными внешними отличительными признаками. Различают две категории:

  1. Цвет SMD-светодиода. В свою очередь, делят на группы по излучению: многоцветные диоды, нейтральный, теплый и холодный белый.
  2. Размер элемента. По аналогии с зарубежной кодировкой используют 4 цифры, которые обозначают размер в миллиметрах. 3014 – размер 3 х 1.4 мм.

Число перед типом светодиода означает количество на 1 метр ленты. Для устройств с длинными выводами, заключенными в пластмассовый или стеклянный корпус, применяют систему цветовых элементов, ознакомиться с которой можно в таблице.

Индекс цветопередачи CRI

Один из неочевидных параметров в кодировке – значение CRI, определяющее, насколько естественным выглядит свечение. Средний параметр равен 100 – это солнечный свет; меньшее значение применимо к источникам искусственного света. Соответственно, чем выше CRI, тем лучше.

Помимо определения нужного типа прибора в магазине, цветовую маркировку можно использовать в практических целях. Например, зная расположение и цвет элементов, можно рассчитать сопротивление резистора. Для этого достаточно занести данные в форму онлайн калькулятора. Понимание систем маркировки облегчает правильное использованию диодов и решает множество проблем, связанных с выбором нужного типа устройства.

Видео

Какие светодиоды стоят?

При ремонте светового или любого другого оборудования мы часто сталкиваемся с вышедшими из строя светодиодами или светодиодными модулями. Которые не так трудно заменить зная ответ на вопрос какие светодиоды стоят именно здесь. Мы рассмотрим несколько самых популярных вопросов.

Какие светодиоды стоят в лампах?

Как определить какой светодиод стоит?

Какие светодиоды стоят именно у меня?

Производители не стоит на месте и вместо Ламп начали использовать светодиоды, которые своим ярким свечением и потреблением малого количества электроэнергии, позволяют создавать ЖК телевизоры с умопомрачительным качеством картинки. Матрицы телевизоров тоже за это время намного улучшились в качестве и цветопередаче, но тусклое свечение CCFL ламп не могло полноценно передать ту картинку, которую хотели бы видеть мы и производители телевизоров.

  1. Итак чтобы определить Какие светодиоды стоят в подсветке телевизора, вам необходимо воспользоватся вольтметром и определить напряжение светодиода. Вам может помочь в этом наша статья Как проверить светодиод?
  2. Далее после того как вы определили весь светодиодный модуль вышел из строя или одиночный светодиод. Вам нужно определить тип светодиода, а именно его габариты корпуса. Измеряются они в миллиметрах. Вам может помочь в этом наша статья Размеры светодиодов.
  3. Далее зная корпус диода и его напряжение вам не составит ни какого труда приобрести нужные вам светодиоды или светодиодные модули на Aliexpress.

Какие светодиоды стоят в лампах?

Наверное самое частое явление, вскрываешь лампу а там следующая картина, выгорел один из диодов. Если есть время и желание провести ремонт, то можно заменить вышедший из строя диод. Но появляется вопрос Какие светодиоды стоят в лампах?

Соответственно наш порядок действий.

  1. Вам необходимо воспользоватся вольтметром и определить напряжение светодиода. Вам может помочь в этом наша статьяКак проверить светодиод?
  2. Далее после того как вы определили весь светодиодный модуль вышел из строя или одиночный светодиод. Вам нужно определить тип светодиода, а именно его габариты корпуса. Измеряются они в миллиметрах. Вам может помочь в этом наша статья Размеры светодиодов . Но статья может и не пригодится так как, зачастую производители зачастую пишут тип светодиода на самой плате. Смотрите фото. Там будет указано 2835, 5050 или 5630 это и есть тип светодиода
  3. Далее зная корпус диода и его напряжение вам не составит ни какого труда приобрести нужные вам светодиоды или светодиодные модули на Aliexpress. Или выпаять диод из другой похожей светодиодной лампы.

Как определить какой светодиод стоит?

Как определить какой светодиод стоит в вашем устройстве или приборе.

Порядок действий тот же самый

  1. Вам необходимо воспользоватся тестером и определить напряжение светодиода. Вам может помочь в этом наша статьяКак проверить светодиод?
  2. Далее после того как вы определили весь светодиодный модуль вышел из строя или одиночный светодиод. Вам нужно определить тип светодиода, а именно его габариты корпуса. Измеряются они в миллиметрах. Вам может помочь в этом наша статья Размеры светодиодов.
  3. Далее зная корпус диода и его напряжение вам не составит ни какого труда приобрести нужные вам светодиоды или светодиодные модули на Aliexpress.

ВНИМАНИЕ!

Если перед вами светодиодный модуль с вышедшими из строя светодиодами и перед вами стабилизированный по напряжению модуль (т.е на напряжение 12/24 В). Проверьте тестером элементы сопротивления, так как зачастую светодиоды выходят из строя благодаря сгоревшему сопротивлению в цепи.

Светодиоды: виды и схема подключения

Светодиодами называют полупроводниковые приборы, которые при подаче напряжения создают оптическое излучение. Их международное буквенное обозначение – LED (LightEmittingDiode).

Содержание статьи

  • Устройство светодиода
  • Как работает светодиод?
  • Виды и основные параметры светодиодов
  • Применение светодиодов
  • Основные правила подключения светодиодов
  • Основные характеристики светодиодов
  • Способы подключения
  • Как подключить светодиоды к сети переменного тока 220 В через блок питания
  • Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

Устройство светодиода

Хотя и существует множество светодиодов, самая распространённая форма состоит из 5-миллиметрового полимерного корпуса с линзой, медного или алюминиевого основания, катода, параболического рефлектора (отражателя) и кристалла, который соединяется с анодом при помощи тонкой золотой проволоки.

Как работает светодиод?

Принцип работы изделия основывается на взаимодействии двух полупроводников, положительного и отрицательного типа (p-n-переход). Когда электрический ток проходит через полупроводники, в месте соприкосновения выделяется энергия, излучающая свет. Это обусловлено переходом от одного типа проводимости к другому, когда ионы положительно заряженных дырок соединяются с отрицательными зарядами электронов.

Виды и основные параметры светодиодов

На схеме светодиод обозначается как обычный диод с двумя параллельными стрелками, направленными наружу и указывающими на его излучающий характер. В продаже имеется большое количество типов светодиодов, которые различаются между собой функциональным назначением, конструкцией, мощностью, цветом свечения и другими свойствами.

По назначению светодиоды разделяют на два вида – индикаторные и осветительные.

  • светодиоды SMD;
  • сверхъяркие Super Flux “Piranha”;
  • DIP светодиоды (Direct In-line Package);
  • Straw Hat («соломенная шляпа»).
  • COB (Chip On Board) светодиоды;
  • SMD LED;
  • филаментные (Filament LED).

Индикаторные светодиоды отличаются малой мощностью и умеренной яркостью свечения. Используются для цветовой индикации режимов работы различных приборов и оборудования, а также для подсветки дисплеев и приборных щитов. Разновидности индикаторных светодиодов:

  • DIP-светодиоды. Кристалл-излучатель находится в выводном корпусе, который чаще всего представляет собой выпуклую линзу. Минус – малый угол рассеивания излучения.
  • «Пиранья» – излучатель сверхвысокой яркости с четырьмя выводами, обеспечивающими его удобное крепление на плате. Востребован для подсветки приборов в автомобилях и в рекламных вывесках.
  • «Соломенная шляпа». Цилиндрический двухвыводный прибор со значительным углом рассеивания излучения и увеличенным диаметром линзы. Применяется в декоративных конструкциях и светосигналах тревоги.
  • SMD-светодиоды. Приборы сверхвысокой яркости располагаются в корпусах, рассчитанных на SMT-монтаж. В их маркировке указываются размеры в дюймах (их сотых долях) или в мм. На базе SMD-светодиодов изготавливаются светодиодные ленты.

Осветительные светодиоды встречаются в конструкции фонарей, фар, лент. Отличаются мощностью и яркостью свечения. Большинство осветительных приборов размещают в корпусах для SMT-монтажа. Изготавливаются в двух разновидностях белого цвета:

  • cool white – холодный;
  • warm white – теплый.

Осветительный SMD-светодиод представляет собой теплоотводящую подложку, на которой смонтирован излучающий кристалл, обработанный люминофорным составом.

Применение светодиодов

Такая продукция активно применяется в разных областях: световая реклама, домашние и промышленные осветительные приборы, автомобильная светотехника, светофоры и дорожные знаки, дизайн помещений, ландшафтная и архитектурная подсветка, а также многое другое.

  • значительная длительность эксплуатации;
  • экологическая безопасность;
  • высокая надежность и безотказность;
  • экономия электроэнергии;
  • высокое качество освещения;
  • низкие эксплуатационные расходы.

Основные правила подключения светодиодов

Конструкция светодиодов рассчитана на их подключение только к источникам постоянного тока с соблюдением полярности. Существует три варианта определения полярности:

  • По длине ножки (кроме SMD). Более длинная ножка является катодом, а короткая – анодом. В SMD-светодиодах имеется срез (ключ), который всегда располагается ближе к катоду.
  • С помощью мультиметра. Прибор устанавливают в режим «Прозвонка». Красный и черный щупы устанавливают на выводы. Если прибор засветился, то, значит, что красный щуп был подключен к аноду, а черный – к катоду. Если свечение не возникло, значит, надо поменять положение щупов. Если результат не изменился (свечение отсутствует), значит, прибор вышел из строя.

Основные характеристики светодиодов

Две главные характеристики, указываемы в паспорте светоизлучающего прибора:

  • Падение напряжения на приборе. Типичное значение – 3,2 В. Также для каждого светодиода существуют максимально допустимые напряжения Umax и Umaxобр – для прямого и обратного включений.
  • Номинальный ток. Обычно эти приборы рассчитаны на силу тока в 20 мА.

Способы подключения

Простейший вариант – подключение к низковольтному источнику постоянного тока.

Самый удобный и безопасный вариант – подключить светодиод к батарейке или аккумулятору с помощью включения в схему маломощного резистора. Его функция – ограничение тока, протекающего через p-n-переход, определенным значением. Без этого элемента LED быстро утратит рабочие свойства.

Резистор выбирают по сопротивлению и мощности. Расчет сопротивления по формуле:

R = (Uпитания – Uпаспорт.)/Iном., Ом, в которой:

  • Uпитания – напряжение электропитания, В;
  • Uпаспорт. – падение напряжения, паспортное значение, В;
  • Iном. – номинальный ток.

Полученное значение округляют в большую сторону до ближайшей номинальной величины из ряда Е24. После этого рассчитывают мощность, которую должен рассеивать резистор.

P = Iном. 2 х R, где R – выбранное по таблице значение сопротивления.

Провести все эти действия можно быстро и просто с использованием онлайн-калькулятора.

Как подключить светодиоды к сети переменного тока 220 В через блок питания

Существует несколько типов блоков питания:

  • Стабилизированные источники постоянного напряжения для светодиодов на 5 Вольт и 12 Вольт. При колебаниях параметров сети напряжение на выходе такого источника питания остается постоянным и равным заявленной в паспорте величине. LED-светильники подсоединяют через резисторы.
  • Драйвер – импульсный блок питания со стабилизированным током. Характеристики, которые учитывают при его выборе: максимальное и минимальное выходное напряжение, выходной (рабочий) ток. В драйвере присутствует схема, стабилизирующая ток при скачках входного напряжения 220 В. При подключении светодиодного излучателя к драйверу резистор не требуется.

Способы создания схем из нескольких светодиодов – последовательное и параллельное соединение

При подключении нескольких светоизлучающих приборов к источнику питания может использоваться два варианта соединения – последовательное и параллельное.

Последовательное соединение представляет цепь полупроводниковых приборов, в которой катод первого излучателя спаян с анодом следующего – и так далее. Через все элементы последовательной цепи протекает ток одного значения, а падение напряжения суммируется. Мощность БП выбирается равной или превышающей сумму мощностей каждого элемента.

Минусы последовательного соединения:

  • При значительном количестве элементов цепи необходимо выбирать БП большого вольтажа.
  • При выходе из строя одного LED-диода перестает работать вся цепь.

В длинных лентах на 60-70 диодов на каждом элементе происходит падение напряжения примерно на 3 В, то есть такие ленты можно присоединять к сети 220 В через выпрямитель.

При параллельном подсоединении напряжение на всех элементах цепи будет равным, а суммируются токи каждого LED. Основная проблема в данном случае состоит в том, что LED-светильники, даже из одной партии, часто имеют различные характеристики. Поэтому, если поставить один общий резистор, на лампочки может подаваться ток разного значения, вследствие чего некоторые элементы будут светить слишком ярко, а некоторые – тускло. Решение проблемы – установка отдельных резисторов для каждого диода.

Минусы параллельного подключения:

  • большое количество элементов цепи из-за необходимости использования индивидуальных резисторов для каждого диода;
  • существенный рост нагрузки при перегорании одного LED-диода (если используется один мощный резистор на всю цепь).

Это самый подходящий вариант соединения светодиодов, поскольку он позволяет хотя бы частично скомпенсировать недостатки последовательного и параллельного подключений. В этом случае параллельно соединяются цепочки последовательно расположенных элементов. Этот способ применяется в современных елочных гирляндах или лентах. Преимущество такого решения: если даже выйдут из строя одна или несколько параллельных цепочек, остальные будут исправно светить.

Подробно о напряжении светодиода

Зачастую в руки ремонтника или радиолюбителя попадают светодиоды без приложения технической документации. Для правильного применения полупроводниковых приборов требуется знать их характеристики, в противном случае скорый выход из строя светоизлучающего элемента неизбежен. Хотя управляющим параметром для LED является ток, знание рабочего напряжения является важным – при его превышении жизнь p-n перехода окажется недолгой.

Как узнать какой светодиод стоит в лампе

Самый простой вариант – если лампа полностью исправна. В этом случае надо просто измерить падение напряжения на любом из элементов. Если при подаче питания один или несколько элементов не светят (или все), надо идти другим путем.

Если лампа построена по схеме с драйвером, то на драйвере указано выходное напряжение в виде верхнего и нижнего пределов. Это связано с тем, что драйвер стабилизирует ток. Для этого ему надо изменять напряжение в определенных границах. Фактическое напряжение придется измерить мультиметром и убедиться, что оно в норме. Далее визуально (по дорожкам печатной платы) определить количество параллельных цепочек светодиодов в матрице и количество элементов в цепочке. Напряжение драйвера нужно разделить на число последовательно соединенных элементов. Если напряжение на драйвере не обозначено, то его можно лишь замерить по факту.

Если светильник построен по схеме с балластным резистором и его сопротивление известно (или его можно измерить), то напряжение светодиода можно определить расчетным способом. Для этого надо знать рабочий ток. В этом случае надо рассчитать:

  • падение напряжения на резисторе – Uрезистора=Iраб*Rрезистора;
  • падение напряжения на цепочке LED – Uled=Uпитания – Uрезистора;
  • разделить Uled на количество приборов в цепочке.

Если Iраб неизвестен, его можно принять равным 20-25 мА (схема с резистором применяется для маломощных фонарей). Точность будет приемлема для практических целей.

Сколько вольт имеет прямое напряжение светодиода

Если изучить стандартную вольт-амперную характеристику светодиода, можно заметить на ней несколько характерных точек:

  1. В точке 1 p-n переход начинает открываться. Через него начинает идти ток и LED начинает светиться.
  2. При увеличении напряжения ток достигает рабочего значения (в данном случае 20 мА), и в точке 2 напряжение является рабочим для данного LED, яркость свечения становится оптимальной.
  3. При дальнейшем увеличении напряжения ток растет, и в точке 3 достигает своего максимально допустимого значения. После этого он быстро выходит из строя, а кривая ВАХ растет только теоретически (штриховой участок).

Надо заметить, что после окончания перегиба и выхода на линейный участок ВАХ имеет большую крутизну, что ведет к двум последствиям:

  • при увеличении тока (например, при неисправности драйвера или отсутствии балластного резистора) напряжение растет слабо, поэтому можно говорить о постоянном падении напряжения на p-n переходе, независимо от рабочего тока (эффект стабилизации);
  • при небольшом увеличении напряжения ток растет быстро.

Поэтому заметно увеличивать напряжение на элементе относительно рабочего нельзя.

На сколько вольт бывают светодиоды

Параметры светодиодов большей частью зависят от материала, из которого изготовлен p-n переход, хотя часть характеристик все же зависит от конструктива. Типовые значения рабочего напряжения и цвет свечения для маломощных элементов при токе 20 мА сведены в таблицу:

Материал Цвет свечения Диапазон прямых напряжений, В
GaAs, GaAlAs Инфракрасный 1,1 – 1,6
GaAsP, GaP, AlInGaP Красный 1,5 – 2,6
GaAsP, GaP, AlInGaP Оранжевый 1,7 – 2,8
GaAsP, GaP, AlInGaP Желтый 1,7 – 2,5
GaP, InGaN Зеленый 1,7 – 4
ZnSe, InGaN Голубой 3,2 – 4,5
Люминофор Белый 2,7 – 4,3

Мощные осветительные светодиоды работают при больших токах. Так, кристалл популярного LED 5730 предназначен для длительной эксплуатации при токе 150 мА. Но из-за крутой ВАХ, стабилизирующей падение напряжения, его Uраб составляет около 3,2 В, что укладывается в указанное в таблице значение.

Как определить напряжение светодиода

Самый очевидный метод определения напряжения полупроводникового прибора – это использовать регулируемый источник питания. Если блок питания регулируется с нуля и при этом возможен контроль тока (а еще лучше – его ограничение), то больше ничего не нужно.

Надо подключить LED к источнику, строго соблюдая полярность. Дальше надо плавно поднимать напряжение (до 3..3,5 В). При определенном напряжении светодиод вспыхнет в полную силу. Этот уровень будет примерно соответствовать рабочему току, который можно считать по амперметру. Если у прибора нет встроенного амперметра, то крайне желательно контролировать ток по внешнему прибору.

Такой метод применим к приборам оптического диапазона. Свечение УФ- и ИК-светодиодов не видно человеческим зрением, но в последнем случае можно наблюдать за включением LED через камеру смартфона. Таким методом можно отследить появление инфракрасного излучения.

Важно! При подъеме напряжения не превышать предел 3..3,5 В! Если светодиод при таких условиях не горит, возможна неверная полярность подключения прибора. Он может выйти из строя из-за превышения предела обратного напряжения.

Если регулируемого источника нет, можно взять обычный блок питания с фиксированным выходом, заведомо превышающим предполагаемое напряжение светодиода. Или даже батарейку на 9 В, но в этом случае можно будет проверить только светодиод небольшой мощности. К светоизлучающему элементу надо последовательно припаять резистор так, чтобы ток в цепи не превысил верхний предел. Если предполагается, что LED маломощный и работает при токе не более 20 мА, то для источника с выходным напряжением 12 В резистор должен быть около 500 Ом. Если используется мощный осветительный прибор (например, типоразмера 5730) с током 150 мА (батарейка такой ток обеспечит не всегда), то резистор должен быть около 10 Ом. Надо подключить цепочку к источнику постоянного напряжения, убедиться в зажигании LED и замерить падение напряжения на нем.

Существуют и альтернативные способы узнать, на сколько вольт рассчитан светодиод .

Мультиметром

У некоторых мультиметров напряжение, подаваемое на клеммы в режиме тестирования диодов, достаточно велико для зажигания LED. Такой измерительный прибор можно использовать для определения рабочего напряжения светодиода, одновременно проверяя цоколевку полупроводникового элемента. При верном подключении p-n переход начнет светиться, а тестер покажет какое-то сопротивление (зависит от типа LED). Проблема этого метода в том, что для замера фактического значения Uрабочего на выводах светодиода потребуется второй мультиметр. И другой момент: измерительного напряжения мультиметра вряд ли будет достаточно для вывода светодиода в рабочую точку по току. Визуально это заметно по недостаточно яркому свечению, а для замеров это будет означать, что светодиод не вышел на линейную часть ВАХ и фактическое значение рабочего напряжения будет выше.

По внешнему виду

Рабочее напряжение приблизительно можно оценить по внешнему виду и цвету свечения LED (иногда цвет можно определить даже не подавая питание на прибор). Для этого можно воспользоваться таблицей, приведенной выше. Но однозначно определить напряжение по цвету свечения светодиода не получится. Зачастую производители подкрашивают компаунд, чтобы цвет излучения p-n перехода сложился с цветом линзы и получился новый оттенок. К тому же даже в пределах одного цвета существует разброс параметров (см. таблицу) для светодиодов разных типов. Так, для LED белого свечения разница напряжений может достигать более 50%.

Как узнать на какое напряжение рассчитан светодиод

Все вышесказанное относится к обычным LED, работающим без дополнительных встроенных элементов. Существующие технологии позволяют встраивать в корпус прибора добавочные комплектующие. Например, гасящие резисторы. Так получают светодиоды на большее напряжение – 5,12 или 220 В. Визуально определить напряжение зажигания таких приборов практически невозможно. Поэтому остается один путь.

Если предыдущие способы не дали результата и есть уверенность, что LED исправен, надо пробовать подавать на него повышенное напряжение. Сначала 5 В, потом увеличить напряжение до 12 В, если результата нет – можно попробовать повышать далее, вплоть до 220 В. Но до таких величин лучше не экспериментировать – это напряжение опасно для человека. Кроме того, в случае ошибки можно получить разрушение корпуса светодиода. При этом может произойти небольшой хлопок, оплавление изоляции проводов, возгорание и т.д. В настоящее время технологии шагнули далеко вперед, и светодиод стоит не настолько дорого, чтобы из-за него рисковать оборудованием и здоровьем.