Какое сопротивление поставить на светодиод 12в?

Лада 2107 Плакса › Бортжурнал › Расчёт резистора для светодиода. Подключение светодиодов к бортовой сети. Часть 1. Заповедь 1 — не сожги.

Вот тут я обещал рассказать о том, как можно рассчитать номинал резистора для того, чтобы бортовая сеть вашего автомобиля не сожгла светодиоды, которые вы к ней подключите.
Для начала определимся с терминологией (люди, знакомые с электроникой, могут перейти к следующему пункту).

Падение напряжения — напряжение U (измеряется в вольтах, V) — которое потребляет светодиод (да-да, совершенно нагло съедает его!).
Оно же — напряжение питания. Не путать с напряжением источника питания.
Рабочий ток — ток I (измеряется в амперах, А. мы будем измерять в миллиамперах — 1 мА = 0.001 А).
СопротивлениеR измеряется в омах — Ом. Именно в этих единицах измеряются резисторы (сопротивления).
Напряжение источника питания — в нашем случае напряжение бортовой сети автомобиля и равно примерно 12V при заглушенном двигателе и 14V при заведённом (при условии исправной работы генератора).

С терминологией вроде всё. Перейдём к теории.
Вот примерное падение напряжения для каждого из основных цветов светодиодов.

Красный — 1,6-2,03
Оранжевый — 2,03-2,1в
Жёлтый — 2,1-2,2в
Зелёный — 2,2-3,5в
Синий — 2,5-3,7в
Фиолетовый — 2,8-4в
Белый — 3-3,7в

Реальные значения могут немного колебаться в ту или иную сторону. О том, как точно выяснить сколько потребляет конкретный светодиод — ссылка ниже.
Разница связана с использованием в них разных материалов кристалла, что и даёт, собственно говоря, разную длину испускаемой волны, а равно и разный цвет.

Средний же рабочий ток для маломощных светодиодов составляет около 0.02А = 20мА.
В чём же, спросите вы, загвоздка? Всё ведь просто — подключил светодиод соблюдая полярность и он светит тебе.
Да, всё так, но светодиод – предмет тёмный, изучению не подлежит интересный.
Тогда как напряжения питания он забирает на себя ровно столько, сколько ему требуется, ток превышающий его рабочий ток, попросту сожжёт кристалл.

Давайте возьмём пример. Имеется светодиод оранжевого цвета, который, согласно приведённой выше таблице, имеет напряжение питания порядка 2,1V, и рабочий ток 20мА. Если мы обрушим на него всю мощь бортовой сети нашего автомобиля, то напряжение в цепи, в которую он включен, снизится на

2.1V, правда, избыточный ток тут же его сожжёт…
Как же быть, если нам, например, нужно установить светодиод для подсветки замка зажигания?
Всё просто – нужно лишить участок цепи, в которую включен светодиод, избыточного тока.

Как? – спросите вы. Всё просто. Был такой дядя, Георг Ом, который вывел известную любому старшекласснику формулу (закон Ома для участка цепи) – U=I*R (где U – напряжение, I – ток, R – сопротивление.)
Переворачиваем эту прекрасную формулу, получая R=U/I.
В нашем случае R – сопротивление (номинал резистора), которое нам потребуется; U – напряжение в участке цепи, I – рабочий ток нашего светодиода.
Vs – напряжение источника питания
Vl – напряжение питания светодиода
Таким образом R=(Vs-Vl)/I=(12-2.1)/0.02=9.9/0.02=495 Ом – номинал резистора, который необходимо включить в цепь, дабы напрямую подключить светодиод к бортовой сети при выключенном двигателе.
Для работы при включенном двигателе рассчитываем так же, только Vs берём уже 14В.
Настоятельно рекомендую производить расчёты для авто, беря за напряжение бортовой сети 14В, иначе ваши светодиоды достаточно быстро выйдут из строя.

Если взять номинал больше, например 550-600 Ом, то светодиод будет светить чуть менее ярко.
Если номинал будет меньше, то «свет твоей звезды будет коротким, хоть и очень ярким».

Достоверно узнать, сколько вольт потребляет конкретный светодиод, можно подключив его к источнику постоянного напряжения в 3-5 вольт, подсоединив последовательно вольтметр (можно использовать электронный мультиметр, включив его в соответствующий режим), после чего посчитать насколько снизилось напряжение в цепи. И исходя уже их этих, конкретных данных, рассчитать требуемый вам резистор. Подробнее об этом методе читайте здесь. (потребляемый ток можно вычислить так же).

В конце хочу сказать вам, что настоятельно рекомендую использовать номинал резистора немного выше чем расчётный, что, несомненно, продлит жизнь светодиодам.
Для определения резистора по цветовой маркировке (а именно так обозначаются современные резисторы, за исключением тех, что в SMD-корпусах) рекомендую использовать этот онлайн-калькулятор.
www.chipdip.ru/info/rescalc

Спасибо, что читаете мой БЖ, мне очень приятно. Если остались вопросы — задавайте не стесняясь — всем отвечу.

Расчет резистора для светодиода, калькулятор

Светодиод имеет очень небольшое внутреннее сопротивление, если его подключить напрямую к блоку питания, то сила тока будет достаточной высокой, чтобы он сгорел. Медные или золотые нити, которыми кристалл подключается к внешним выводам, могут выдерживать небольшие скачки, но при сильном превышении перегорают и питание прекращает поступать на кристалл. Онлайн расчёт резистора для светодиода производится на основе его номинальной рабочей силы тока.

  • 1. Онлайн калькулятор
  • 2. Основные параметры
  • 3. Особенности дешёвых ЛЕД

Онлайн калькулятор

Предварительно составьте схему подключения, чтобы избежать ошибок в расчётах. Онлайн калькулятор покажет вам точное сопротивление в Омах. Как правило окажется, что резисторы с таким номиналом не выпускаются, и вам будет показан ближайший стандартный номинал. Если не удаётся сделать точный подбор сопротивления, то используйте больший номинал. Подходящий номинал можно сделать подключая сопротивление параллельно или последовательно. Расчет сопротивления для светодиода можно не делать, если использовать мощный переменный или подстроечный резистор. Наиболее распространены типа 3296 на 0,5W. При использовании питания на 12В, последовательно можно подключить до 3 LED.

Резисторы бывают разного класса точности, 10%, 5%, 1%. То есть их сопротивление может погрешность в этих пределах в положительную или отрицательную сторону.

Не забываем учитывать и мощность токоограничивающего резистора, это его способность рассеивать определенное количество тепла. Если она будет мала, то он перегреется и выйдет из строя, тем самым разорвав электрическую цепь.

Чтобы определить полярность можно подать небольшое напряжение или использовать функцию проверки диодов на мультиметре. Отличается от режима измерения сопротивления, обычно подаётся от 2В до 3В.

Основные параметры

Отличие характеристик кристаллов для дешевых ЛЕД

Так же при расчёте светодиодов следует учитывать разброс параметров, для дешевых они будут максимальны, для дорогих они будут более одинаковыми. Чтобы проверить этот параметр, необходимо включить их в равных условиях, то есть последовательно. Уменьшая тока или напряжение снизить яркость до слегка светящихся точек. Визуально вы сможете оценить, некоторые будут светится ярче, другие тускло. Чем равномернее они горят, тем меньше разброс. Калькулятор расчёта резистора для светодиода подразумевает, что характеристики светодиодных чипов идеальные, то есть отличие равно нулю.

Напряжение падения для распространенных моделей маломощных до 10W может быть от 2В до 12В. С ростом мощности увеличивается количество кристаллов в COB диоде, на каждом есть падение. Кристаллы включаются цепочками последовательно, затем они объединяются в параллельные цепи. На мощностях от 10W до 100W снижение растёт с 12В до 36В.

Этот параметр должен быть указан в технических характеристиках LED чипа и зависит от назначения:

  • цвета синий, красный, зелёный, желтый;
  • трёхцветный RGB;
  • четырёхцветный RGBW;
  • двухцветный, теплый и холодный белый.

Особенности дешёвых ЛЕД

Прежде чем подобрать резистор для светодиода на онлайн калькуляторе, следует убедится в параметрах диодов. Китайцы на Aliexpress продают множество led, выдавая их за фирменные. Наиболее популярны модели SMD3014, SMD 3528, SMD2835, SMD 5050, SMD5630, SMD5730. Всё самое плохое обычно делается под брендом Epistar.

Например, чаще всего китайцы обманывают на SMD5630 и SMD5730. Цифры в маркировке обозначают лишь размер корпуса 5,6мм на 3,0мм. В фирменных такой большой корпус используется для установки мощных кристаллов на 0,5W , поэтому у покупателей диодов СМД5630 напрямую ассоциируется с мощностью 0,5W. Хитрый китаец этим пользуется, и в корпус 5630 устанавливает дешевый и слабенький кристалл в среднем на 0,1W , при этом указывая потребление энергии 0,5W.

Китайские светодиодные лампы кукурузы

Наглядным примером будут автомобильные лампы и светодиодные кукурузы, в которых поставлено большое количество слабеньких и некачественных ЛЕД чипов. Обычный покупатель считает, чем больше светодиодов чем лучше светит и выше мощность.

Автомобильные лампы на самых слабых лед 0,1W

Чтобы сэкономить денежку, мои светодиодные коллеги ищут приличные ЛЕД на Aliexpress. Ищут хорошего продавца, который обещает определённые параметры, заказывают , ждут доставку месяц. После тестов оказывается, что китайский продавец обманул, продал барахло. Повезёт, если на седьмой раз придут приличные диоды, а не барахло. Обычно сделают 5 заказов, и не добившись результата и идут делать заказ в отечественный магазин, который может сделать обмен.

Здравствуйте!
Товарищ подарил COB светодиод хорошей китайской марки, мощностью 50 ватт. На сайте производителя указано: 50 ватт, 1700 мА, прямое напряжение — 12-36 вольт. Странно, конечно, что такой разброс по напряжению при постоянном токе. Есть советский потенциометр (проволочный) 5 ватт, 230 ом (на самом деле разные в ящике в гараже и много, из СССР еще, можно повыбирать), и есть блок питания для лент со стабилизацией напряжения 12 вольт, мощностью 160 ватт макс. Есть также мультиметр )). И есть старый светильник в виде подводной лодки, который хочу вернуть к жизни. Нет необходимости в 50-ти ваттах отдачи (можно и в половину), но предполагаю сделать регулируемую (без ШИМ) подсветку, путем включения всего последовательно. Плюс радиатор с кулером. Как Вы считаете, можно так сделать? Или еще постоянный резистор добавить? Просто путаница какая-то у меня — производители пишут одно, а по закону ома по другому. Если потенциометр 5 ватт при падении на нём 1-3 вольта, должно же хватить этой мощности?
Спасибо!

У светодиода должно быть указано точное падение напряжения, в вашем случае это примерно 30-36 вольт. Силу тока можно регулировать хот резистором, хоть микросхемой. Настраиваемый драйвер у китайцев стоит 150-200 руб, регулируется напряжение и сила тока. Есть повышающие драйверы, которые с 12 вольт на входе будут давать 36 на выходе. В разделе «питание» у меня всё подробно расписано.

Добрый день. Очень полезные и информативные статьи, спасибо большое — я с нуля разобрался что к чему.
Остался только вопрос: я же правильно понимаю, что если я хочу использовать сомнительные китайские диоды, то я могу просто мультиметром проверить реальную мощность и по результатам подобрать нужное сопротивление?

Чтобы узнать примерную мощность светодиода надо измерить вольт-амперную характеристику светодиода. Рабочий ток и мощность должны быть указаны в параметрах.

А у меня все хорошо! Благодаря Вашей статье, Сергей, все стало понятно, как нас надувают хитрые китайцы Всегда думал, что лучше купить подороже у нас, чем подешевле у них. Но и покупая у нас, тоже нужно голову иметь еще раз спасибо за статью!

В светодиодной светотехнике много обмана у нас и у китайцев, лучше всего покупать что-нибудь проверенное.

Здравствуйте, Сергей! Приобрел две светодиодные автолампы в ПТФ (как дневные ходовые огни). Месяца через 3 в обеих лампах сгорели резисторы. Решил вместо сгоревших поставить нагрузку прямо в цепь, но не понял, как ее расчитать. Не понятно, как подключены светодиоды: последовательно или параллельно. Их по 13 шт. на каждой лампе. Что посоветуете?
P.S. Каждая лампа стоит рублей 800. Каждые 3 месяца покупать новые — «жаба душит». )))

Если шаба душит, то купите хорошие со стабилизатором и радиатором. Ваш цоколь не знаю, точную модель не посоветую.

Здравствуйте! Ставлю в фонарик светодиоды»соломенная шляпка» (3 вольта, 20 миллиампер) . Питание будет от DC-DC 5 вольт. Можно ли использовать в качестве гасящих резисторов smd на 100 ом 1 ватт? Или искать резисторы меньшей мощности?

Мощность резастора должна быть больше минимально допустимой, больше лучше.

Здравствуйте.Подбираю светодиоды к промышленной ЦМП Радуга-led,цвета-красный,желтый,зеленый,синий,выход до195в,постоянка.Протестировал некоторые автодиоды и 3v мощные,они диммируются max от50%,т.к выбор в моем городе невелик,остановился на 12v .прозрачных диам.5и10мм-димируются от 2.5V.Т.к при покупке известны как правило только U,замерил токи при 12в- от8 до26ма,в зависимости от цвета и диам.При попытке подобрать гасящий резистор потенциометром Сп-1(22,47,100к) до195в,диоды перегорают т.к удается выставить только меньшее значение I или U(на много).И так вопросы: почему не удается выставить оптимальные параметры пер. резистором,правильно ли я замеряю токи для расчета на вашем калькуляторе,можно ли при последовательном соединении суммировать I и U,подставив значения как для одного диода.

Это всё у меня описано на сайте. Лучше возьмите лампочки на 12 вольт. Или можно лампы или прожекторы на 220В с линейным стабилизатором.

Как правильно рассчитать и подобрать резистор для светодиода

Каждый из нас видел светодиод. Обычный маленький светодиод выглядит как пластиковая колбочка-линза на проводящих ножках, внутри которой расположены катод и анод. На схеме светодиод изображается как обычный диод, от которого стрелочками показан излучаемый свет. Вот и служит светодиод для получения света, когда электроны движутся от катода к аноду — p-n-переходом излучается видимый свет.

Изобретение светодиода приходится на далекие 1970-е, когда для получения света во всю применяли лампы накаливания. Но именно сегодня, в начале 21 века, светодиоды заняли наконец место самых эффективных источников электрического света.

Где у светодиода «плюс», а где «минус»?

Чтобы правильно подключить светодиод к источнику питания, необходимо прежде всего соблюсти полярность. Анод светодиода подключается к плюсу «+» источника питания, а катод — к минусу «-». Катод, подключаемый к минусу, имеет вывод короткий, анод, соответственно, — длинный — длинную ножку светодиода — на плюс «+» источника питания.

Взгляните во внутрь светодиода: большой электрод — это катод, его — к минусу, маленький электрод, похожий просто на окончание ножки, — на плюс. А еще рядом с катодом линза светодиода имеет плоский срез.

Паяльник долго на ножке не держать

Паять выводы светодиода следует аккуратно и быстро, ведь полупроводниковый переход очень боится лишнего тепла, поэтому нужно краткими движениями паяльника дотрагиваться его жалом до припаиваемой ножки, и тут же паяльник отводить в сторону. Лучше в процессе пайки держать припаиваемую ножку светодиода пинцетом, чтобы обеспечить на всякий случай отвод тепла от ножки.

Резистор обязателен при проверке светодиода

Мы подошли к самому главному — как подключить светодиод к источнику питания. Если вы хотите проверить светодиод на работоспособность, то не стоит напрямую присоединять его к батарее или к блоку питания. Если ваш блок питания на 12 вольт, то используйте для подстраховки резистор на 1 кОм последовательно с проверяемым светодиодом.

Не забывайте о полярности — длинный вывод на плюс, вывод от большого внутреннего электрода — к минусу. Если не использовать резистор, то светодиод быстро перегорит, в случае если вы нечаянно превысите номинальное напряжение, через p-n-переход потечет большой ток, и светодиод практически тут же выйдет из строя.

Цвет свечения светодиода

Светодиоды бывают разных цветов, однако цвет свечения не всегда определяется цветом линзы светодиода. Белый, красный, синий, оранжевый, зеленый или желтый — линза может быть прозрачной, а включишь — окажется красным или синим. Светодиоды синего и белого свечения — самые дорогие. Вообще, на цвет свечения светодиода влияет в первую очередь состав полупроводника, и как вторичный фактор — цвет линзы.

Многоцветные RGB светодиоды содержат в одном корпусе несколько излучающих свет p-n-переходов, каждый из которых дает свой цвет свечения. Комбинируя яркости компонентов токами или частотами импульсов токов (для красного, зеленого и синего кристаллов), можно получить любой оттенок. Здесь, конечно, балансирующие резисторы нужны на каждый цветовой канал.

Находим номинал резистора для светодиода

Резистор включается последовательно со светодиодом. Функция резистора — ограничить ток, сделать его близким к номиналу светодиода, чтобы светодиод мгновенно не перегорел, и работал бы в нормальном номинальном режиме. Берем в расчет следующие исходные данные:

Vps – напряжение источника питания;

Vdf – прямое падение напряжения на светодиоде в нормальном режиме;

If – номинальный ток светодиода при нормальном режиме свечения.

Теперь, прежде чем находить значение необходимого резистора R, отметим, что ток в последовательной цепи у нас будет постоянным, одним и тем же в каждом элементе: ток If через светодиод будет равен току Ir через ограничительный резистор.

Следовательно Ir = If. Но Ir = Ur/R – по закону Ома. А Ur = Vps-Vdf. Таким образом, R = Ur/Ir = (Vps-Vdf)/If.

То есть, зная напряжение источника питания, падение напряжения на светодиоде и его номинальный ток, можно легко подобрать подходящий ограничительный резистор.

Если найденное значение сопротивления не удается выбрать из стандартного ряда номиналов резисторов, то берут резистор несколько большего номинала, например вместо найденных 460 Ом, берут 470 Ом, которые всегда легко найти. Яркость свечения светодиода уменьшится весьма незначительно.

Пример подбора резистора:

Допустим, имеется источник питания на 12 вольт, и светодиод, которому нужно 1,5 вольта и 10 мА для нормального свечения. Подберем гасящий резистор. На резисторе должно упасть 12-1,5 = 10,5 вольт, а ток в последовательной цепи (источник питания, резистор, светодиод) должен получиться 10 мА, следовательно из Закона Ома: R = U/I = 10,5/0,010 = 1050 Ом. Выбираем 1,1 кОм.

Какой мощности должен быть резистор? Если R = 1100 Ом, а ток составит 0,01 А, то, по закону Джоуля-Ленца, на резисторе каждую секунду будет выделяться тепловая энергия Q = I*I*R = 0,11 Дж, что эквивалентно 0,11 Вт. Резистор мощностью 0,125 Вт подойдет, даже запас останется.

Последовательное соединение светодиодов

Если перед вами стоит цель соединить несколько светодиодов в единый источник света, то лучше всего соединение выполнять последовательно. Это нужно для того, чтобы к каждому светодиоду не цеплять свой резистор, чтобы избежать лишних потерь энергии. Наиболее подходят для последовательного соединения светодиоды одного и того же вида, из одной и той же партии.

Допустим, необходимо последовательно объединить 8 светодиодов по 1,4 вольта с током по 0,02 А для подключения к источнику питания 12 вольт. Очевидно, общий ток будет составлять 0,02 А, но общее напряжение составит 11,2 вольта, следовательно 0,8 вольт при токе в 0,02 А должны рассеяться на резисторе. R = U/I = 0,8/0,02 = 40 Ом. Выбираем резистор на 43 Ом минимальной мощности.

Параллельное соединение цепочек светодиодов — не лучший вариант

Если есть выбор, то светодиоды лучше всего соединять последовательно, а не параллельно. Если соединить несколько светодиодов параллельно через один общий резистор, то в силу разброса параметров светодиодов, каждый из них будет не в равных условиях с остальными, какой-то будет светиться ярче, принимая больше тока, а какой-то — наоборот тусклее. В результате, какой-нибудь из светодиодов сгорит раньше в силу быстрой деградации кристалла. Лучше для параллельного соединения светодиодов, если альтернативы нет, применить к каждой цепочке свой ограничительный резистор.

Как правильно рассчитать резистор для светодиода?

Основным параметром, влияющим на долговечность светодиода, является электрический ток, величина которого строго нормируется для каждого типа LED-элемента. Одним из распространенных способов ограничения максимального тока является использование ограничительного резистора. Резистор для светодиода можно рассчитать без применения сложных вычислений на основании закона Ома, используя технические значения параметров диода и напряжение в цепи включения.

Особенности включения светодиода

Работая по одинаковому принципу с выпрямительными диодами, светоизлучающие элементы, тем не менее, имеют отличительные особенности. Наиболее важные из них:

  1. Крайне отрицательная чувствительность к напряжению обратной полярности. Светодиод, включенный в цепь с нарушением правильной полярности, выходит из строя практически мгновенно.
  2. Узкий диапазон допустимого рабочего тока через p-n переход.
  3. Зависимость сопротивления перехода от температуры, что свойственно большинству полупроводниковых элементов.

На последнем пункте следует остановиться подробнее, поскольку он является основным для расчета гасящего резистора. В документации на излучающие элементы указывается допустимый диапазон номинального тока, при котором они сохраняют работоспособность и обеспечивают заданные характеристики излучения. Занижение величины не является фатальным, но приводит к некоторому снижению яркости. Начиная с некоторого предельного значения, прохождение тока через переход прекращается, и свечение будет отсутствовать.

Превышение тока сначала приводит к увеличению яркости свечения, но срок службы при этом резко сокращается. Дальнейшее повышение приводит к выходу элемента из строя. Таким образом, подбор резистора для светодиода преследует цель ограничить максимально допустимый ток в наихудших условиях.

Напряжение на полупроводниковом переходе ограничено физическими процессами на нем и находится в узком диапазоне около 1-2 В. Светоизлучающие диоды на 12 Вольт, часто устанавливаемые на автомобили, могут содержать цепочку последовательно соединенных элементов или ограничительную схему, включенную в конструкцию.

Зачем нужен резистор для светодиода

Использование ограничительных резисторов при включении светодиодов является пусть и не самым эффективным, зато самым простым и дешевым решением ограничить ток в допустимых пределах. Схемные решения, которые позволяют с высокой точностью стабилизировать ток в цепи излучателей достаточно сложны для повторения, а готовые имеют высокую стоимость.

Применение резисторов позволяет выполнять освещение и подсветку своими силами. Главное при этом — умение пользоваться измерительными приборами и минимальные навыки пайки. Грамотно рассчитанный ограничитель с учетом возможных допусков и колебаний температуры способен обеспечить нормальное функционирование светодиодов в течении всего заявленного срока службы при минимальных затратах.

Параллельное и последовательное включение светодиодов

С целью совмещения параметров цепей питания и характеристик светодиодов широко распространены последовательное и параллельное соединение нескольких элементов. У каждого типа соединений есть как достоинства, так и недостатки.

Параллельное включение

Достоинством такого соединения является использование всего одного ограничителя на всю цепь. Следует оговориться, что данное достоинство является единственным, поэтому параллельное соединение практически нигде не встречается, за исключением низкосортных промышленных изделий. Недостатки таковы:

  1. Мощность рассеивания на ограничительном элементе растет пропорционально количеству параллельно включенных светодиодов.
  2. Разброс параметров элементов приводит к неравномерности распределения токов.
  3. Перегорание одного из излучателей ведет к лавинообразному выходу из строя всех остальных ввиду увеличения падения напряжения на параллельно включенной группе.

Несколько увеличивает эксплуатационные свойства соединение, где ток через каждый излучающий элемент ограничивается отдельным резистором. Точнее, это является параллельным соединением отдельных цепей, состоящих из светодиодов с ограничительными резисторами. Основное достоинство — большая надежность, поскольку выход из строя одного или нескольких элементов никаким образом не отражается на работе остальных.

Недостатком является тот факт, что из-за разброса параметров светодиодов и технологического допуска на номинал сопротивлений яркость свечения отдельных элементов может сильно различаться. Такая схема содержит большое количество радиоэлементов.

Параллельное соединение с индивидуальными ограничителями находит применение в цепях с низким напряжением, начиная с минимального, ограниченного падением напряжения на p-n переходе.

Последовательное включение

Последовательное включение излучающих элементов получило самое широкое распространение, поскольку несомненным достоинством последовательной цепи является абсолютное равенство тока, проходящего через каждый элемент. Поскольку ток через единственный ограничительный резистор и через диод одинаков, то и рассеиваемая мощность будет минимальной.

Существенный недостаток — выход из строя хотя бы одного из элементов приведет к неработоспособности всей цепочки. Для последовательного соединения требуется повышенное напряжение, минимальное значение которого растет пропорционально количеству включенных элементов.

Смешанное включение

Использование большого количества излучателей возможно при выполнении смешанного соединения, когда используют несколько параллельно включенных цепочек, и последовательного соединения одного ограничительного резистора и нескольких светодиодов.

Перегорание одного из элементов приведет к неработоспособности только одной цепи, в которой установлен данный элемент. Остальные будут функционировать исправно.

Формулы расчета резистора

Расчет сопротивления резистора для светодиодов базируется на законе Ома. Исходными параметрами для того, как рассчитать резистор для светодиода, являются:

  • напряжение цепи;
  • рабочий ток светодиода;
  • падение напряжения на излучающем диоде (напряжение питания светодиода).

Величина сопротивления определяется из выражения:

где U — падение напряжения на резисторе, а I — прямой ток через светодиод.

Падение напряжения светодиода определяют из выражения:

где Uпит — напряжение цепи, а Uсв — паспортное падение напряжения на излучающем диоде.

Расчет светодиода для резистора дает значение сопротивления, которое не будет находиться в стандартном ряду значений. Брать нужно резистор с сопротивлением, ближайшим к вычисленному значению с большей стороны. Таким образом учитывается возможное увеличение напряжения. Лучше взять значение, следующее в ряду сопротивлений. Это несколько уменьшит ток через диод и снизит яркость свечения, но при этом нивелируется любое изменение величины питающего напряжения и сопротивления диода (например, при изменении температуры).

Перед тем как выбрать значение сопротивления, следует оценить возможное снижение тока и яркости по сравнению с заданным по формуле:

Если полученное значение составляет менее 5%, то нужно взять большее сопротивление, если от 5 до 10%, то можно ограничиться меньшим.

Не менее важный параметр, сказывающийся на надежности работы — рассеиваемая мощность токоограничительного элемента. Ток, проходящий через участок с сопротивлением, вызывает его нагрев. Для определения мощности, которая будет рассеиваться, используют формулу:

Используют ограничивающий резистор, чья допустимая мощность рассеивания будет превосходить расчетную величину.

Имеется светодиод с падением напряжения на нем 1.7 В с номинальным током 20 мА. Необходимо включить его в цепь с напряжением 12 В.

Падение напряжения на ограничительном резисторе составляет:

U = 12 — 1.7 = 10.3 В

R = 10.3/0.02 = 515 Ом.

Ближайшее большее значение в стандартном ряду составляет 560 Ом. При таком значении уменьшение тока по сравнению с заданным составляет чуть менее 10%, поэтому большее значение брать нет необходимости.

Рассеиваемая мощность в ваттах:

P = 10.3•10.3/560 = 0.19 Вт

Таким образом, для данной цепи можно использовать элемент с допустимой мощностью рассеивания 0.25 Вт.

Подключение светодиодной ленты

Светодиодные ленты выпускаются на различное напряжение питания. На ленте располагается цепь из последовательно включенных диодов. Количество диодов и сопротивление ограничительных резисторов зависят от напряжения питания ленты.

Наиболее распространенные типы светодиодных лент предназначены для подключения в цепь с напряжением 12 В. Использование для работы большего значения напряжения здесь также возможно. Для правильного расчета резисторов необходимо знать ток, идущий через единичный участок ленты.

Увеличение длины ленты вызывает пропорциональное увеличение тока, поскольку минимальные участки технологически соединены параллельно. Например, если минимальная длина отрезка составляет 50 см, то на ленту 5м из 10 таких отрезков придется возросший в 10 раз ток потребления.

Параллельное и последовательное соединение проводников

Что такое резистор и для чего он нужен?

Что такое делитель напряжения и как его рассчитать?

Определение ёмкости последовательно или параллельно соединённых конденсаторов — формула

Как рассчитать необходимое сечение провода по мощности нагрузки?

Как подобрать блок питания для светодиодной ленты по техническим характеристикам, расчёт мощности

Подключение светодиода к 12 вольтам в машине (расчет сопротивления) (видео)

Светодиоды — это современные, экономичные, надежные радиоэлементы, применяемые для световой индикации. Мы думаем об этом знает каждый и все! Именно исходя из этого опыта, столь высоко желание применить именно светодиоды, для конструирования самых различных электрических схем, как в бытовой электронике, так и для автомобиля. Но здесь возникают определенный трудности. Ведь самые распространенные светодиоды имеют напряжение питания 3…3,3 вольта, а бортовое напряжение автомобиля в номинале 12 вольт, при этом порой поднимается и до 14 вольт. Само собой здесь всплывает закономерное умозаключение, что для подключения светодиодов к 12 вольтовой сети машины, необходимо будет понизить напряжение. Именно этой теме, подключению светодиода к бортовой сети автомобиля и понижению напряжения, будет посвящена статья.

Содержание статьи:

Два основных принципа о том как можно подключить светодиод к 12 вольтам или понизить напряжение на нагрузке

Прежде, чем перейти к конкретным схемам и их описаниям, хотелось бы сказать о двух принципиально разных, но возможных вариантах подключения светодиода к 12 вольтовой сети.

Первый, это когда напряжение падает за счет того, что последовательно светодиоду подключается дополнительное сопротивление потребителя, в качестве которого выступает микросхема-стабилизатор напряжения. В этом случае определенная часть напряжения теряется в микросхеме, превращаясь в тепло. А значит вторая, оставшаяся, достается непосредственно нашему потребителю — светодиоду. Из-за этого он и не сгорает, так как не все суммарное напряжение проходит через него, а только часть. Плюсом применения микросхемы является тот факт, что она способна в автоматическом режиме поддерживать заданное напряжение. Однако есть и минусы. У вас не получиться снизить напряжение ниже уровня, на которое она рассчитана. Второе. Так как микросхема обладает определенным КПД, то падение относительно входа и выхода будет отличаться на 1-1,5 вольта в меньшую сторону. Также для применения микросхемы вам необходимо будет применить хороший рассеивающий радиатор, установленный на ней. Ведь по сути тепло выделяемое от микросхемы, это и есть невостребованные нами потери. То есть то, что мы отсекли от большего потенциала, чтобы получить меньший.

Второй вариант питания светодиода, когда напряжение ограничивается за счет резистора. Это сродни тому, если бы большую водопроводную трубы взяли бы и сузили. При этом поток (расход и давление) снизились бы в разы. В этом случае до светодиода доходит лишь часть напряжения. А значит, он также может работать без опасности быть сожженным. Минусом применения резистора будет то, что он также имеет свой КПД, то есть также тратит невостребованное напряжение в тепло. В этом случае бывает трудно установить резистор на радиатор. В итоге, он не всегда подойдет для включения в цепь. Также минусом будет являться и то обстоятельство, что резистор не поддерживает автоматического удержания напряжение в заданном пределе. При падении напряжения в общей цепи, он подаст настолько же меньшее напряжение и на светодиод. Соответственно обратная ситуация произойдет при повышении напряжения в общей цепи.

Конечно, тот и другой вариант не идеальны, так при работе от портативных источников энергии каждый из них будет тратить часть полезной энергии на тепло. А это актуально! Но что сделать, таков уж принцип их работы. В этом случае источник питания будет тратить часть своей энергии не на полезное действие, а на тепло. Здесь панацеей является использование широтно-импульсной модуляции, но это значительно усложняет схему… Поэтому мы все же остановимся на первых двух вариантах, которые и рассмотрим на практике.

Подключение светодиода через сопротивление к 12 вольтам в машине (через резистор)

Начнем, как и в абзаце выше, с варианта подключения светодиода к напряжению в 12 вольт через резистор. Для того чтобы вам лучше было понять как же происходит падение напряжение, мы приведем несколько вариантов. Когда к 12 вольтам подключено 3 светодиода, 2 и 1.

Подключение 1 светодиода через сопротивление к 12 вольтам в машине (через резистор)

Итак, у нас есть светодиод. Его напряжение питания 3,3 вольта. То есть если бы мы взяли источник питания в 3,3 вольта и подключили к нему светодиод, то все было бы замечательно. Но в нашем случае наблюдается повышенное напряжение, которое не трудно посчитать по формуле. 14,5-3,3= 11,2 вольта. То есть нам необходимо первоначально снизить напряжение на 11,2 вольта, а затем лишь подать напряжение на светодиод. Для того чтобы нам рассчитать сопротивление, необходимо знать какой ток протекает в цепи, то есть ток потребляемый светодиодом. В среднем это около 0,02 А. При желании можете посмотреть номинальный ток в даташите к светодиоду. В итоге, по закону Ома получается. R=11,2/0,02=560 Ом. Сопротивление резистора рассчитано. Ну, а уж схему нарисовать и того проще.

Мощность резистора рассчитывается по формуле P=UI=11.2*0,02=0,224 Вт. Берем ближайший согласно стандартного типоряда.

Подключение 2 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

По аналогии с предыдущим примером все высчитывается также, но с одним условием. Так как светодиода уже два, то падение напряжения на них будет 6,6 вольта, а оставшиеся 14,5-6,6=7,9 вольта останутся резистору. Исходя из этого, схема будет следующей.

Так как ток в цепи не изменился, то мощность резистора остается без изменений.

Подключение 3 светодиодов через сопротивление к 12 вольтам в машине (через резистор)

И еще один вариант, когда практически все напряжение гасится светодиодами. А значит, резистор по своему номиналу будет еще меньше. Всего 240 Ом. Схема подключения 3 светодиодов к бортовой сети машины прилагается.

Напоследок нам лишь осталось сказать, что при расчетах было использовано напряжение не 12, а 14,5 вольт. Именно такое повышенное напряжение обычно возникает в электросети машины, когда она заведена.
Также не трудно прикинуть, что при подключении 4 светодиодов, вам и вовсе не потребуется применение какого либо резистора, ведь на каждый из светодиодов придется по 3,6 вольта, что вполне допустимо.

Подключение светодиода через стабилизатор напряжения к 12 вольтам в машине (через микросхему)

Теперь перейдем к стабилизированной схеме питания светодиодов от 12 вольт. Здесь, как мы уже и говорили, существует схема, которая регулирует собственное внутреннее сопротивление. Таким образом, питание светодиода будет осуществляться устойчиво, независимо от скачков напряжения бортовой сети. К сожалению минусом применения микросхемы является тот факт, что минимальное стабилизированное напряжение, которое возможно добиться будет 5 вольт. Именно с таким напряжением можно встретить наиболее широко известные микросхемы – стабилизаторы КР142 ЕН 5Б или иностранный аналог L7805 или L7805CV. Здесь разница лишь в производителе и номинальном рабочем токе от 1 до 1,5 А.

Так вот, оставшееся напряжение с 5 до 3,3 вольт придется гасить все по тому же примеру что и в предыдущих случаях, то есть с помощью применения резистора. Однако снизить напряжение резистором на 1,7 вольта это уже не столь критично как на 8-9 вольт. Стабилизация напряжения в этом случае все же будет наблюдаться! Приводим схему подключения микросхемы стабилизатора.
Как видите, она очень простая. Реализовать ее может каждый. Не сложнее чем припаять тот же резистор. Единственное условие это установка радиатора, который будет отводить тепло от микросхемы. Его установить нужно обязательно. На схеме написано что микросхема может питать 10 цепочек со светодиодом, на самом деле этот параметр занижен. По факту, если через светодиод проходит около 0,02 А, то она может обеспечивать питанием до 50 светодиодов. Если вам необходимо обеспечить питание большего количества, то используйте вторую такую же независимую схему. Использование двух микросхем подключенных параллельно не правильно. Так как их характеристики немного, да будут отличаться друг от друга, из-за индивидуальных особенностей. В итоге, у одной из микросхем будет шанс перегореть намного быстрее, так как режимы работы у нее будут иные — завышенные.
О применение аналогичных микросхем мы уже рассказывали в статье «Зарядное устройство на 5 вольт в машине». Кстати, если вы все же решитесь выполнить питание для светодиода на ШИМ, хотя это вряд ли того стоит, то эта статья также раскроет вам все секреты реализации такого проекта.

Подводя итог о подключение светодиода к 12 вольтам в машине своими руками

Подводя итог о подключении светодиода к 12 вольтовой сети можно сказать о простоте выполнения схемотехники. Как со случаем где применяется резистор, так и с микросхемой – стабилизатором. Все это легко и просто. По крайней мере, это самое простое, что может вам встретиться в электронике. Так что осилить подключение светодиода к бортовой сети машины в 12 вольт должен каждый и наверняка. Если уж и это не «по зубам», то за более сложное и вовсе браться не следует.

Видео по подключению светодиода к сети в автомобиле